10,135 research outputs found

    Smart Grid Security: Threats, Challenges, and Solutions

    Get PDF
    The cyber-physical nature of the smart grid has rendered it vulnerable to a multitude of attacks that can occur at its communication, networking, and physical entry points. Such cyber-physical attacks can have detrimental effects on the operation of the grid as exemplified by the recent attack which caused a blackout of the Ukranian power grid. Thus, to properly secure the smart grid, it is of utmost importance to: a) understand its underlying vulnerabilities and associated threats, b) quantify their effects, and c) devise appropriate security solutions. In this paper, the key threats targeting the smart grid are first exposed while assessing their effects on the operation and stability of the grid. Then, the challenges involved in understanding these attacks and devising defense strategies against them are identified. Potential solution approaches that can help mitigate these threats are then discussed. Last, a number of mathematical tools that can help in analyzing and implementing security solutions are introduced. As such, this paper will provide the first comprehensive overview on smart grid security

    Malware in the Future? Forecasting of Analyst Detection of Cyber Events

    Full text link
    There have been extensive efforts in government, academia, and industry to anticipate, forecast, and mitigate cyber attacks. A common approach is time-series forecasting of cyber attacks based on data from network telescopes, honeypots, and automated intrusion detection/prevention systems. This research has uncovered key insights such as systematicity in cyber attacks. Here, we propose an alternate perspective of this problem by performing forecasting of attacks that are analyst-detected and -verified occurrences of malware. We call these instances of malware cyber event data. Specifically, our dataset was analyst-detected incidents from a large operational Computer Security Service Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on automated systems. Our data set consists of weekly counts of cyber events over approximately seven years. Since all cyber events were validated by analysts, our dataset is unlikely to have false positives which are often endemic in other sources of data. Further, the higher-quality data could be used for a number for resource allocation, estimation of security resources, and the development of effective risk-management strategies. We used a Bayesian State Space Model for forecasting and found that events one week ahead could be predicted. To quantify bursts, we used a Markov model. Our findings of systematicity in analyst-detected cyber attacks are consistent with previous work using other sources. The advanced information provided by a forecast may help with threat awareness by providing a probable value and range for future cyber events one week ahead. Other potential applications for cyber event forecasting include proactive allocation of resources and capabilities for cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa

    Local Cyber-Physical Attack for Masking Line Outage and Topology Attack in Smart Grid

    Full text link
    Malicious attacks in the power system can eventually result in a large-scale cascade failure if not attended on time. These attacks, which are traditionally classified into \emph{physical} and \emph{cyber attacks}, can be avoided by using the latest and advanced detection mechanisms. However, a new threat called \emph{cyber-physical attacks} which jointly target both the physical and cyber layers of the system to interfere the operations of the power grid is more malicious as compared with the traditional attacks. In this paper, we propose a new cyber-physical attack strategy where the transmission line is first physically disconnected, and then the line-outage event is masked, such that the control center is misled into detecting as an obvious line outage at a different position in the local area of the power system. Therefore, the topology information in the control center is interfered by our attack. We also propose a novel procedure for selecting vulnerable lines, and analyze the observability of our proposed framework. Our proposed method can effectively and continuously deceive the control center into detecting fake line-outage positions, and thereby increase the chance of cascade failure because the attention is given to the fake outage. The simulation results validate the efficiency of our proposed attack strategy.Comment: accepted by IEEE Transactions on Smart Grid. arXiv admin note: text overlap with arXiv:1708.0320
    corecore