110,232 research outputs found

    Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

    Full text link
    We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems --- including multi-constraint variants --- by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without weakening the model. As opposed to our method, which provides strong models, conventional models are usually highly symmetric and provide very weak lower bounds. Our formulation is equivalent to Gilmore and Gomory's, thus providing a very strong linear relaxation. However, instead of using column-generation in an iterative process, the method constructs a graph, where paths from the source to the target node represent every valid packing pattern. The same method, without any problem-specific parameterization, was used to solve a large variety of instances from several different cutting and packing problems. In this paper, we deal with vector packing, graph coloring, bin packing, cutting stock, cardinality constrained bin packing, cutting stock with cutting knife limitation, cutting stock with binary patterns, bin packing with conflicts, and cutting stock with binary patterns and forbidden pairs. We report computational results obtained with many benchmark test data sets, all of them showing a large advantage of this formulation with respect to the traditional ones

    Non-affine response: jammed packings versus spring networks

    Get PDF
    We compare the elastic response of spring networks whose contact geometry is derived from real packings of frictionless discs, to networks obtained by randomly cutting bonds in a highly connected network derived from a well-compressed packing. We find that the shear response of packing-derived networks, and both the shear and compression response of randomly cut networks, are all similar: the elastic moduli vanish linearly near jamming, and distributions characterizing the local geometry of the response scale with distance to jamming. Compression of packing-derived networks is exceptional: the elastic modulus remains constant and the geometrical distributions do not exhibit simple scaling. We conclude that the compression response of jammed packings is anomalous, rather than the shear response.Comment: 6 pages, 6 figures, submitted to ep

    Ant colony optimisation and local search for bin-packing and cutting stock problems

    Get PDF
    The Bin Packing Problem and the Cutting Stock Problem are two related classes of NP-hard combinatorial optimization problems. Exact solution methods can only be used for very small instances, so for real-world problems, we have to rely on heuristic methods. In recent years, researchers have started to apply evolutionary approaches to these problems, including Genetic Algorithms and Evolutionary Programming. In the work presented here, we used an ant colony optimization (ACO) approach to solve both Bin Packing and Cutting Stock Problems. We present a pure ACO approach, as well as an ACO approach augmented with a simple but very effective local search algorithm. It is shown that the pure ACO approach can compete with existing evolutionary methods, whereas the hybrid approach can outperform the best-known hybrid evolutionary solution methods for certain problem classes. The hybrid ACO approach is also shown to require different parameter values from the pure ACO approach and to give a more robust performance across different problems with a single set of parameter values. The local search algorithm is also run with random restarts and shown to perform significantly worse than when combined with ACO

    Constructive procedures to solve 2-dimensional bin packing problems with irregular pieces and guillotine cuts

    No full text
    This paper presents an approach for solving a new real problem in cutting and packing. At its core is an innovative mixed integer programme model that places irregular pieces and defines guillotine cuts. The two-dimensional irregular shape bin packing problem with guillotine constraints arises in the glass cutting industry, for example, the cutting of glass for conservatories. Almost all cutting and packing problems that include guillotine cuts deal with rectangles only, where all cuts are orthogonal to the edges of the stock sheet and a maximum of two angles of rotation are permitted. The literature tackling packing problems with irregular shapes largely focuses on strip packing i.e. minimizing the length of a single fixed width stock sheet, and does not consider guillotine cuts. Hence, this problem combines the challenges of tackling the complexity of packing irregular pieces with free rotation, guaranteeing guillotine cuts that are not always orthogonal to the edges of the stock sheet, and allocating pieces to bins. To our knowledge only one other recent paper tackles this problem. We present a hybrid algorithm that is a constructive heuristic that determines the relative position of pieces in the bin and guillotine constraints via a mixed integer programme model. We investigate two approaches for allocating guillotine cuts at the same time as determining the placement of the piece, and a two phase approach that delays the allocation of cuts to provide flexibility in space usage. Finally we describe an improvement procedure that is applied to each bin before it is closed. This approach improves on the results of the only other publication on this problem, and gives competitive results for the classic rectangle bin packing problem with guillotine constraint
    corecore