69,742 research outputs found

    Fronts with a Growth Cutoff but Speed Higher than vv^*

    Get PDF
    Fronts, propagating into an unstable state ϕ=0\phi=0, whose asymptotic speed vasv_{\text{as}} is equal to the linear spreading speed vv^* of infinitesimal perturbations about that state (so-called pulled fronts) are very sensitive to changes in the growth rate f(ϕ)f(\phi) for ϕ1\phi \ll 1. It was recently found that with a small cutoff, f(ϕ)=0f(\phi)=0 for ϕ<ϵ\phi < \epsilon, vasv_{\text{as}} converges to vv^* very slowly from below, as ln2ϵ\ln^{-2} \epsilon. Here we show that with such a cutoff {\em and} a small enhancement of the growth rate for small ϕ\phi behind it, one can have vas>vv_{\text{as}} > v^*, {\em even} in the limit ϵ0\epsilon \to 0. The effect is confirmed in a stochastic lattice model simulation where the growth rules for a few particles per site are accordingly modified.Comment: 4 pages, 4 figures, to appear in Rapid Comm., Phys. Rev.

    Theory of Orbital Kondo Effect with Assisted Hopping in Strongly Correlated Electron Systems: Parquet Equations, Superconductivity and Mass Enhancement

    Full text link
    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals close to the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the atomic orbitals in the conduction band then orbital Kondo correlation occurs. The noncommutative nature of the coupling required for the Kondo effect is formally due to the form factors associated with the assisted hopping which in the momentum representation depends on the momenta of the conduction electrons involved. The leading logarithmic vertex corrections are due to the local Coulomb interaction between the electrons on the heavy orbital and in the conduction band. The renormalized vertex functions are obtained as a solution of a closed set of differential equations and they show power behavior. The amplitude of large renormalization is determined by an infrared cutoff due to finite energy and dispersion of the heavy particles. The enhanced assisted hopping rate results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature calculated is largest for intermediate mass enhancement, m/m23m^*/m \approx 2-3. For larger mass enhancement the small one particle weight (ZZ) in the Green's function reduces the transition temperature which may be characteristic for otherComment: 32 pages, RevTeX 3.0, figures on reques

    Performance Analysis and Enhancement of Multiband OFDM for UWB Communications

    Full text link
    In this paper, we analyze the frequency-hopping orthogonal frequency-division multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless personal area networks (WPANs) based on ultra-wideband (UWB) transmission. Besides considering the standard, we also propose and study system performance enhancements through the application of Turbo and Repeat-Accumulate (RA) codes, as well as OFDM bit-loading. Our methodology consists of (a) a study of the channel model developed under IEEE 802.15 for UWB from a frequency-domain perspective suited for OFDM transmission, (b) development and quantification of appropriate information-theoretic performance measures, (c) comparison of these measures with simulation results for the Multiband OFDM standard proposal as well as our proposed extensions, and (d) the consideration of the influence of practical, imperfect channel estimation on the performance. We find that the current Multiband OFDM standard sufficiently exploits the frequency selectivity of the UWB channel, and that the system performs in the vicinity of the channel cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading algorithm improve the system power efficiency by over 6 dB at a data rate of 480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers' comments (June 23, 2006

    Cooperative behavior of quantum dipole emitters coupled to a zero-index nanoscale waveguide

    Get PDF
    We study cooperative behavior of quantum dipole emitters coupled to a rectangular waveguide with dielectric core and silver cladding. We investigate cooperative emission and inter-emitter entanglement generation phenomena for emitters whose resonant frequencies are near the frequency cutoff of the waveguide, where the waveguide effectively behaves as zero-index metamaterial. We show that coupling emitters to a zero-index waveguide allows one to relax the constraint on precision positioning of emitters for observing inter-emitter entanglement generation and extend the spatial scale at which the superradiance can be observed

    Stochastic Acceleration of 3^3He and 4^4He in Solar Flares by Parallel Propagating Plasma Waves: General Results

    Full text link
    We study the acceleration in solar flares of 3^3He and 4^4He from a thermal background by parallel propagating plasma waves with a general broken power-law spectrum that takes into account the turbulence generation processes at large scales and the thermal damping effects at small scales. The exact dispersion relation for a cold plasma is used to describe the relevant wave modes. Because low-energy α\alpha-particles only interact with small scale waves in the 4^4He-cyclotron branch, where the wave frequencies are below the α\alpha-particle gyro-frequency, their pitch angle averaged acceleration time is at least one order of magnitude longer than that of 3^3He ions, which mostly resonate with relatively higher frequency waves in the proton-cyclotron (PC) branch. The α\alpha-particle acceleration rate starts to approach that of 3^3He beyond a few tens of keV nucleon1^{-1}, where α\alpha-particles can also interact with long wavelength waves in the PC branch. However, the 4^4He acceleration rate is always smaller than that of 3^3He. Consequently, the acceleration of 4^4He is suppressed significantly at low energies, and the spectrum of the accelerated α\alpha-particles is always softer than that of 3^3He. The model gives reasonable account of the observed low-energy 3^3He and 4^4He fluxes and spectra in the impulsive solar energetic particle events observed with the {\it Advanced Composition Explorer}. We explore the model parameter space to show how observations may be used to constrain the model.Comment: 29 pages, 11 Figures, Submitted to Ap

    Alignment dependent enhancement of the photo-electron cutoff for multi-photon ionization of molecules

    Get PDF
    The multiphoton ionization rate of molecules depends on the alignment of the molecular axis with respect to the ionizing laser polarization. By studying molecular frame photo-electron angular distributions from N2_2, O2_2 and benzene, we illustrate how the angle-dependent ionization rate affects the photo-electron cutoff energy. We find alignment can enhance the high energy cutoff of the photo-electron spectrum when probing along a nodal plane or when ionization is otherwise suppressed. This is supported by calculations using a tunneling model with a single ion state.Comment: 4 pages, 4 figure

    Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates

    Full text link
    We consider dark matter consisting of weakly interacting massive particles (WIMPs) and revisit in detail its thermal evolution in the early universe, with a particular focus on models where the annihilation rate is enhanced by the Sommerfeld effect. After chemical decoupling, or freeze-out, dark matter no longer annihilates but is still kept in local thermal equilibrium due to scattering events with the much more abundant standard model particles. During kinetic decoupling, even these processes stop to be effective, which eventually sets the scale for a small-scale cutoff in the matter density fluctuations. Afterwards, the WIMP temperature decreases more quickly than the heat bath temperature, which causes dark matter to reenter an era of annihilation if the cross-section is enhanced by the Sommerfeld effect. Here, we give a detailed and self-consistent description of these effects. As an application, we consider the phenomenology of simple leptophilic models that have been discussed in the literature and find that the relic abundance can be affected by as much two orders of magnitude or more. We also compute the mass of the smallest dark matter subhalos in these models and find it to be in the range of about 10^{-10} to 10 solar masses; even much larger cutoff values are possible if the WIMPs couple to force carriers lighter than about 100 MeV. We point out that a precise determination of the cutoff mass allows to infer new limits on the model parameters, in particular from gamma-ray observations of galaxy clusters, that are highly complementary to existing constraints from g-2 or beam dump experiments.Comment: minor changes to match published versio
    corecore