2,952 research outputs found

    Visual exploration of semantic-web-based knowledge structures

    Get PDF
    Humans have a curious nature and seek a better understanding of the world. Data, in- formation, and knowledge became assets of our modern society through the information technology revolution in the form of the internet. However, with the growing size of accumulated data, new challenges emerge, such as searching and navigating in these large collections of data, information, and knowledge. The current developments in academic and industrial contexts target the corresponding challenges using Semantic Web techno- logies. The Semantic Web is an extension of the Web and provides machine-readable representations of knowledge for various domains. These machine-readable representations allow intelligent machine agents to understand the meaning of the data and information; and enable additional inference of new knowledge. Generally, the Semantic Web is designed for information exchange and its processing and does not focus on presenting such semantically enriched data to humans. Visualizations support exploration, navigation, and understanding of data by exploiting humans’ ability to comprehend complex data through visual representations. In the context of Semantic- Web-Based knowledge structures, various visualization methods and tools are available, and new ones are being developed every year. However, suitable visualizations are highly dependent on individual use cases and targeted user groups. In this thesis, we investigate visual exploration techniques for Semantic-Web-Based knowledge structures by addressing the following challenges: i) how to engage various user groups in modeling such semantic representations; ii) how to facilitate understanding using customizable visual representations; and iii) how to ease the creation of visualizations for various data sources and different use cases. The achieved results indicate that visual modeling techniques facilitate the engagement of various user groups in ontology modeling. Customizable visualizations enable users to adjust visualizations to the current needs and provide different views on the data. Additionally, customizable visualization pipelines enable rapid visualization generation for various use cases, data sources, and user group

    Continuous Performance Benchmarking Framework for ROOT

    Get PDF
    Foundational software libraries such as ROOT are under intense pressure to avoid software regression, including performance regressions. Continuous performance benchmarking, as a part of continuous integration and other code quality testing, is an industry best-practice to understand how the performance of a software product evolves over time. We present a framework, built from industry best practices and tools, to help to understand ROOT code performance and monitor the efficiency of the code for a several processor architectures. It additionally allows historical performance measurements for ROOT I/O, vectorization and parallelization sub-systems.Comment: 8 pages, 5 figures, CHEP 2018 - 23rd International Conference on Computing in High Energy and Nuclear Physic

    Visualizing Large Business Process Models: Challenges, Techniques, Applications

    Get PDF
    Large process models may comprise hundreds or thousands of process elements, like activities, gateways, and data objects. Presenting such process models to users and enabling them to interact with these models constitute crucial tasks of any process-aware information systems (PAISs). Existing PAISs, however, neither provide adequate techniques for visualizing and abstracting process models nor for interacting with them. In particular, PAISs do not provide tailored process visualizations as needed in complex application environments. This paper presents examples of large process models and discusses some of the challenges to be tackled when visualizing and abstracting respective models. Further, it presents a comprehensive framework that allows for personalized process model visualizations, which can be tailored to the specific needs of the different user groups. First, process model complexity can be reduced by abstracting the models, i.e., by eliminating or aggregating process elements not relevant in the given visualization context. Second, the appearance of process elements can be customized independent of the process modeling language used. Third, different visualization formats (e.g., process diagrams, process forms, and process trees) are supported. Finally, it will be discussed how tailored visualizations of process models may serve as basis for changing and evolving process models at a high level of abstraction

    A visual exploration workflow as enabler for the exploitation of Linked Open Data

    Get PDF
    Abstract. Semantically annotating and interlinking Open Data results in Linked Open Data which concisely and unambiguously describes a knowledge domain. However, the uptake of the Linked Data depends on its usefulness to non-Semantic Web experts. Failing to support data consumers to understand the added-value of Linked Data and possible exploitation opportunities could inhibit its diffusion. In this paper, we propose an interactive visual workflow for discovering and ex-ploring Linked Open Data. We implemented the workflow considering academic library metadata and carried out a qualitative evaluation. We assessed the work-flow’s potential impact on data consumers which bridges the offer: published Linked Open Data; and the demand as requests for: (i) higher quality data; and (ii) more applications that re-use data. More than 70 % of the 34 test users agreed that the workflow fulfills its goal: it facilitates non-Semantic Web experts to un-derstand the potential of Linked Open Data.
    • …
    corecore