1,101 research outputs found

    Stable control of 10 dB two-mode squeezed vacuum states of light

    Full text link
    Continuous variable entanglement is a fundamental resource for many quantum information tasks. Important protocols like superactivation of zero-capacity channels and finite-size quantum cryptography that provides security against most general attacks, require about 10 dB two-mode squeezing. Additionally, stable phase control mechanisms are necessary but are difficult to achieve because the total amount of optical loss to the entangled beams needs to be small. Here, we experimentally demonstrate a control scheme for two-mode squeezed vacuum states at the telecommunication wavelength of 1550 nm. Our states exhibited an Einstein-Podolsky-Rosen covariance product of 0.0309 \pm 0.0002, where 1 is the critical value, and a Duan inseparability value of 0.360 \pm 0.001, where 4 is the critical value. The latter corresponds to 10.45 \pm 0.01 dB which reflects the average non-classical noise suppression of the two squeezed vacuum states used to generate the entanglement. With the results of this work demanding quantum information protocols will become feasible.Comment: 8 pages, 4 figure

    Quantum Interference of Photon Pairs from Two Trapped Atomic Ions

    Get PDF
    We collect the fluorescence from two trapped atomic ions, and measure quantum interference between photons emitted from the ions. The interference of two photons is a crucial component of schemes to entangle atomic qubits based on a photonic coupling. The ability to preserve the generated entanglement and to repeat the experiment with the same ions is necessary to implement entangling quantum gates between atomic qubits, and allows the implementation of protocols to efficiently scale to larger numbers of atomic qubits.Comment: 4 pages, 4 figure

    Two Color Entanglement

    Full text link
    We report on the generation of entangled states of light between the wavelengths 810 and 1550 nm in the continuous variable regime. The fields were produced by type I optical parametric oscillation in a standing-wave cavity build around a periodically poled potassium titanyl phosphate crystal, operated above threshold. Balanced homodyne detection was used to detect the non-classical noise properties, while filter cavities provided the local oscillators by separating carrier fields from the entangled sidebands. We were able to obtain an inseparability of I=0.82, corresponding to about -0.86 dB of non-classical quadrature correlation.Comment: 4 pages, 2 figure

    Time domain Einstein-Podolsky-Rosen correlation

    Get PDF
    We experimentally demonstrate creation and characterization of Einstein-Podolsky-Rosen (EPR) correlation between optical beams in the time domain. The correlated beams are created with two independent continuous-wave optical parametric oscillators and a half beam splitter. We define temporal modes using a square temporal filter with duration TT and make time-resolved measurement on the generated state. We observe the correlations between the relevant conjugate variables in time domain which correspond to the EPR correlation. Our scheme is extendable to continuous variable quantum teleportation of a non-Gaussian state defined in the time domain such as a Schr\"odinger cat-like state.Comment: 4 pages, 4 figure

    Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints

    Full text link
    The need for spatial and spectral filtering in the generation of polarization entanglement is eliminated by combining two coherently-driven type-II spontaneous parametric downconverters. The resulting ultrabright source emits photon pairs that are polarization entangled over the entire spatial cone and spectrum of emission. We detect a flux of \sim12 000 polarization-entangled pairs/s per mW of pump power at 90% quantum-interference visibility, and the source can be temperature tuned for 5 nm around frequency degeneracy. The output state is actively controlled by precisely adjusting the relative phase of the two coherent pumps.Comment: 10 pages, 5 figure

    Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier

    Full text link
    We experimentally demonstrated that the quantum correlations of amplitude and phase quadratures between signal and idler beams produced from a non-degenerate optical parametric amplifier (NOPA) can be significantly improved by using a mode cleaner in the pump field and reducing the phase fluctuations in phase locking systems. Based on the two technical improvements the quantum entanglement measured with a two-mode homodyne detector is enhanced from ~ 4 dB to ~ 6 dB below the quantum noise limit using the same NOPA and nonlinear crystal.Comment: 7 pages, 5 figure

    Cascaded Entanglement Enhancement

    Full text link
    We present a cascaded system consisting of three non-degenerate optical parametric amplifiers (NOPAs) for the generation and the enhancement of quantum entanglement of continuous variables. The entanglement of optical fields produced by the first NOPA is successively enhanced by the second and the third NOPAs from -5.3 dBdB to -8.1 dBdB below the quantum noise limit. The dependence of the enhanced entanglement on the physical parameters of the NOPAs and the reachable entanglement limitation for a given cascaded NOPA system are calculated. The calculation results are in good agreement with the experimental measurements.Comment: 5 pages, 4 figure
    corecore