3 research outputs found

    Currents induced by fast movements inside the MRI room may cause inhibition in an implanted pacemaker

    No full text

    Should patients with brain implants undergo MRI?

    Get PDF
    Patients suffering from neuronal degenerative diseases are increasingly being equipped with neural implants to treat symptoms or restore functions and increase their quality of life. Magnetic resonance imaging (MRI) would be the modality of choice for diagnosis and compulsory post-operative monitoring of such patients. However, interactions between the MR environment and implants pose severe health risks to the patient. Nevertheless, neural implant recipients regularly underwent MRI examinations, and adverse events were reported rarely. This should not imply that the procedures are safe. More than 300.000 cochlear implant recipients are excluded from MRI unless the indication outweighs excruciating pain. For 75.000 DBS recipients quite the opposite holds: MRI is considered essential part of the implantation procedure and some medical centres deliberately exceed safety regulations which they referred to as crucially impractical. MRI related permanent neurological dysfunctions in DBS recipients have occurred in the past when manufacturer recommendations were exceeded. Within the last decades extensive effort has been invested to identify, characterise, and quantify the occurring interactions. Today we are far from a satisfying solution to achieve a safe and beneficial MR procedure for all implant recipients. To contribute, we intend to raise awareness of a growing concern and want to summon the community to stop absurdities and instead improve the situation for the increasing number of patients. Therefore, we review implant safety in the MRI literature from an engineering point of view, with a focus on cochlear and DBS implants as success stories in clinical practice. We briefly explain fundamental phenomena which can lead to patient harm, and point out breakthroughs and errors made. We end with conclusions and strategies to avoid future implants from being contraindicated to MR examinations. We believe that implant recipients should enter MRI, but before doing so, we should make sure that the procedure is reasonable

    Advanced interfaces for biomedical engineering applications in high- and low field NMR/MRI

    Get PDF
    Das zentrale Thema dieser Dissertation ist die Magnetresonanz(MR)-Sicherheit und MR-Kompatibilität von Bauelementen. Der Öffentlichkeit bekannt ist diese Thematik im Zusammenhang mit kommerziellen Implantaten. Die Gefahren, die sich aus den Wechselwirkungen zwischen dem MR-Tomografen (MRT) und dem Implantat ergeben, hindern viele Patienten daran, eine Untersuchung mittels MRT durchführen zu lassen. MR-Kompatibilität spielt jedoch nicht nur beim Design und der Kennzeichnung von Implantaten eine wichtige Rolle, sondern auch bei der Entwicklung von Bauelementen für die MR-Hardware. Beide Themen, Implantatinteraktionen und Hardware-Design, bilden fundamentale Aspekte dieser Arbeit. Der erste Teil befasst sich mit MRT-Wechselwirkungen von Implantaten. Die Ergebnisse einer umfangreichen Literaturrecherche zeigen, dass dringend belastbare Daten benötigt werden, um die durch MRT ausgelösten Schwingungen von Implantaten besser verstehen zu können. Dies gilt insbesondere für Vibrationen in viskoelastischen Umgebungen wie dem Gehirn. Im Rahmen dieser Arbeit wird ein neuartiges Messsystem vorgestellt, mit dem sich Schwingungen bei Standard-MRT-Aufnahmen und mit hoher Genauigkeit quantitativ messen lassen. Durch die Verwendung einer amplituden- und frequenzgesteuerten externen Stromversorgung werden die Übertragungsfunktionen implantatartiger Strukturen in viskoelastischen Umgebungen präzise bestimmt. Basierend auf den erfassten Daten wird eine Korrelation zwischen den resultierenden Schwingungsamplituden und den Zeitparametern der Aufnahmesequenz hergestellt und experimentell verifiziert. Eine wichtige Erkenntnis ist, dass die untersuchten Strukturen ein unterdämpftes Verhalten zeigen und damit resonant schwingen können. Darüber hinaus wird eine neue Kennzahl eingeführt, anhand derer die Wechselwirkung des Implantats auf Vibrationen klassifiziert werden können. Die Kennzahl gibt das normierte induzierte Drehmoment an, und ermöglicht eine einfache Berechnung des maximal zu erwartenden Drehmomoments auf jedem MRT-System. Somit können die zu erwartenden Maximalamplituden unkompliziert und für jedes System direkt ermittelt werden. Eine anderes Forschungsgebiet, die in-situ-Kernspinspektroskopie und -MRT von biologischen Untersuchungsobjekten im Hochfeld, erfordert eine neuartige MR-Messsonde sowie verbesserte MR-kompatible Substrate für die Zellkultivierung. Eine MR-Sonde mit flexibler Schnittstelle wurde entwickelt. Die endgültige Version ist mit zwei HF-Kanälen und einer Gradientenschnittstelle für flüssiggekühlte Gradienten ausgestattet. Ein Leistungsbewertung wurde mittels Standard-NMR/MRT-Experimenten durchgeführt, die eine Linienbreite von 0,5 Hz und ein mit kommerziellen Messsystem vergleichbares Signal-Rausch-Verhältnis ergaben. Der Vorteil liegt in dem integrierten Durchführungssystem innerhalb des mechanischen Rahmens. Dies bietet eine einfache Methode, zur spezifischen Erweiterung der Messsonde unter Verwendung zusätzlicher elektrischer, optischer und fluidischer Versorgungsleitungen. Auf dieser Basis können spezifische, komplexe experimentelle Hochfeld-NMR/MRT-Aufbauten in kurzer Zeit realisiert werden, ohne Bedarf nach maßgeschneiderten, teuren Sonden. Als Referenz werden zwei Messaufbauen präsentiert, bei ersterem wird die Sonde für ein Öl-Wasser-Fluidikexperiment und bei dem zweitem, in einem wasserstoffbasierten Hyperpolarisationsexperiment eingesetzt. Darüber hinaus wird ein neuartiges, MR-kompatibles 3D-Zellsubstrat basierend auf Kohlenstoff vorgestellt, das erfolgreich auf Zellwachstum und MR-Bildgebung getestet wurde. Die MRT dient des Weiteren als Analysewerkzeug, um die Erhaltung der Morphologie während der Pyrolyse zu untersuchen und zu bestätigen. Das Herstellungsprotokoll ist auf andere Vorläuferpolymere anwendbar, die den Weg zu einer Vielzahl von lithografisch strukturierten 3D-Gerüsten ebnen
    corecore