6,261 research outputs found

    CMOS OTA-C high-frequency sinusoidal oscillators

    Get PDF
    Several topology families are given to implement practical CMOS sinusoidal oscillators by using operational transconductance amplifier-capacitor (OTA-C) techniques. Design techniques are proposed taking into account the CMOS OTA's dominant nonidealities. Building blocks are presented for amplitude control, both by automatic gain control (AGC) schemes and by limitation schemes. Experimental results from 3- and 2- mu m CMOS (MOSIS) prototypes that exhibit oscillation frequencies of up to 69 MHz are obtained. The amplitudes can be adjusted between 1 V peak to peak and 100 mV peak to peak. Total harmonic distortions from 2.8% down to 0.2% have been measured experimentally.ComisiĆ³n Interministerial de Ciencia y TecnologĆ­a ME87-000

    A 1.2-V 10- ĀµW NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2 Ā°C (3Ļƒ) From 70 Ā°C to 125 Ā°C

    Get PDF
    An NPN-based temperature sensor with digital output transistors has been realized in a 65-nm CMOS process. It achieves a batch-calibrated inaccuracy of Ā±0.5 ā—¦C (3Ā¾) and a trimmed inaccuracy of Ā±0.2 ā—¦C (3Ā¾) over the temperature range from āˆ’70 ā—¦C to 125 ā—¦C. This performance is obtained by the use of NPN transistors as sensing elements, the use of dynamic techniques, i.e. correlated double sampling and dynamic element matching, and a single room-temperature trim. The sensor draws 8.3 Ī¼A from a 1.2-V supply and occupies an area of 0.1 mm2

    A Radiation-Hard Dual Channel 4-bit Pipeline for a 12-bit 40 MS/s ADC Prototype with extended Dynamic Range for the ATLAS Liquid Argon Calorimeter Readout Electronics Upgrade at the CERN LHC

    Full text link
    The design of a radiation-hard dual channel 12-bit 40 MS/s pipeline ADC with extended dynamic range is presented, for use in the readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider. The design consists of two pipeline A/D channels with four Multiplying Digital-to-Analog Converters with nominal 12-bit resolution each. The design, fabricated in the IBM 130 nm CMOS process, shows a performance of 68 dB SNDR at 18 MHz for a single channel at 40 MS/s while consuming 55 mW/channel from a 2.5 V supply, and exhibits no performance degradation after irradiation. Various gain selection algorithms to achieve the extended dynamic range are implemented and tested.Comment: 22 pages, 22 figures, accepted by JINS

    A 0.18Āµm CMOS DDCCII for Portable LV-LP Filters

    Get PDF
    In this paper a current mode very low voltage (LV) (1V) and low power (LP) (21 ĀµW) differential difference second generation current conveyor (CCII) is presented. The circuit is developed by applying the current sensing technique to a fully balanced version of a differential difference amplifier (DDA) so to design a suitable LV LP integrated version of the so-called differential difference CCII (DDCCII). Post-layout results, using a 0.18Āµm SMIC CMOS technology, have shown good general circuit performances making the proposed circuit suitable for fully integration in battery portable systems as, for examples, fully differential Sallen-Key bandpass filter

    A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier

    Get PDF
    Concentric distributed active transformers (DAT) are used to implement a fully-integrated quad-band power amplifier (PA) in a standard 130 nm CMOS process. The DAT enables the power amplifier to integrate the input and output matching networks on the same silicon die. The PA integrates on-chip closed-loop power control and operates under supply voltages from 2.9 V to 5.5 V in a standard micro-lead-frame package. It shows no oscillations, degradation, or failures for over 2000 hours of operation with a supply of 6 V at 135Ā° under a VSWR of 15:1 at all phase angles and has also been tested for more than 2 million device-hours (with ongoing reliability monitoring) without a single failure under nominal operation conditions. It produces up to +35 dBm of RF power with power-added efficiency of 51%

    Mask Programmable CMOS Transistor Arrays for Wideband RF Integrated Circuits

    Get PDF
    A mask programmable technology to implement RF and microwave integrated circuits using an array of standard 90-nm CMOS transistors is presented. Using this technology, three wideband amplifiers with more than 15-dB forward transmission gain operating in different frequency bands inside a 4-22-GHz range are implemented. The amplifiers achieve high gain-bandwidth products (79-96 GHz) despite their standard multistage designs. These amplifiers are based on an identical transistor array interconnected with application specific coplanar waveguide (CPW) transmission lines and on-chip capacitors and resistors. CPW lines are implemented using a one-metal-layer post-processing technology over a thick Parylene-N (15 mum ) dielectric layer that enables very low loss lines (~0.6 dB/mm at 20 GHz) and high-performance CMOS amplifiers. The proposed integration approach has the potential for implementing cost-efficient and high-performance RF and microwave circuits with a short turnaround time
    • ā€¦
    corecore