914 research outputs found

    Attributing Image Generative Models using Latent Fingerprints

    Full text link
    Generative models have enabled the creation of contents that are indistinguishable from those taken from the nature. Open-source development of such models raised concerns about the risks in their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit significant tradeoff between robust attribution accuracy and generation quality, and also lack designing principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method

    Doing Research. Wissenschaftspraktiken zwischen Positionierung und Suchanfrage

    Get PDF
    Forschung wird zunehmend aus Sicht ihrer Ergebnisse gedacht - nicht zuletzt aufgrund der Umwälzungen im System Wissensschaft. Der Band lenkt den Fokus jedoch auf diejenigen Prozesse, die Forschungsergebnisse erst ermöglichen und Wissenschaft konturieren. Dabei ist der Titel Doing Research als Verweis darauf zu verstehen, dass forschendes Handeln von spezifischen Positionierungen, partiellen Perspektiven und Suchbewegungen geformt ist. So knüpfen alle Beitragenden auf reflexive Weise an ihre jeweiligen Forschungspraktiken an. Ausgangspunkt sind Abkürzungen - die vermeintlich kleinsten Einheiten wissenschaftlicher Aushandlung und Verständigung. Der in den Erziehungs-, Sozial-, Medien- und Kunstwissenschaften verankerte Band zeichnet ein vieldimensionales Bild gegenwärtigen Forschens mit transdisziplinären Anknüpfungspunkten zwischen Digitalität und Bildung. (DIPF/Orig.

    Covert Communication in Autoencoder Wireless Systems

    Get PDF
    The broadcast nature of wireless communications presents security and privacy challenges. Covert communication is a wireless security practice that focuses on intentionally hiding transmitted information. Recently, wireless systems have experienced significant growth, including the emergence of autoencoder-based models. These models, like other DNN architectures, are vulnerable to adversarial attacks, highlighting the need to study their susceptibility to covert communication. While there is ample research on covert communication in traditional wireless systems, the investigation of autoencoder wireless systems remains scarce. Furthermore, many existing covert methods are either detectable analytically or difficult to adapt to diverse wireless systems. The first part of this thesis provides a comprehensive examination of autoencoder-based communication systems in various scenarios and channel conditions. It begins with an introduction to autoencoder communication systems, followed by a detailed discussion of our own implementation and evaluation results. This serves as a solid foundation for the subsequent part of the thesis, where we propose a GAN-based covert communication model. By treating the covert sender, covert receiver, and observer as generator, decoder, and discriminator neural networks, respectively, we conduct joint training in an adversarial setting to develop a covert communication scheme that can be integrated into any normal autoencoder. Our proposal minimizes the impact on ongoing normal communication, addressing previous works shortcomings. We also introduce a training algorithm that allows for the desired tradeoff between covertness and reliability. Numerical results demonstrate the establishment of a reliable and undetectable channel between covert users, regardless of the cover signal or channel condition, with minimal disruption to the normal system operation

    Adversarial Deep Learning and Security with a Hardware Perspective

    Get PDF
    Adversarial deep learning is the field of study which analyzes deep learning in the presence of adversarial entities. This entails understanding the capabilities, objectives, and attack scenarios available to the adversary to develop defensive mechanisms and avenues of robustness available to the benign parties. Understanding this facet of deep learning helps us improve the safety of the deep learning systems against external threats from adversaries. However, of equal importance, this perspective also helps the industry understand and respond to critical failures in the technology. The expectation of future success has driven significant interest in developing this technology broadly. Adversarial deep learning stands as a balancing force to ensure these developments remain grounded in the real-world and proceed along a responsible trajectory. Recently, the growth of deep learning has begun intersecting with the computer hardware domain to improve performance and efficiency for resource constrained application domains. The works investigated in this dissertation constitute our pioneering efforts in migrating adversarial deep learning into the hardware domain alongside its parent field of research

    Towards Legal Regulations of Generative AI in the Creative Industry

    Get PDF
    Objective: this article aims to answer the following questions: 1. Can generative artificial intelligence be a subject of copyright law? 2. What risks the unregulated use of generative artificial intelligence systems can cause? 3. What legal gaps should be filled in to minimize such risks?Methods: comparative legal analysis, sociological method, concrete sociological method, quantitative data analysis, qualitative data analysis, statistical analysis, case study, induction, deduction.Results: the authors identified several risks of the unregulated usage of generative artificial intelligence in the creative industry, among which are: violation of copyright and labor law, violation of consumers rights and the rise of public distrust in government. They suggest that a prompt development of new legal norms can minimize these risks. In conclusion, the article constants that states have already begun to realize that the negative impact of generative artificial intelligence on the creative industry must not be ignored, hence the development of similar legal regulations in states with completely different regimes.Scientific novelty: the article provides a comprehensive study of the impact of generative artificial intelligence on the creative industry from two perspectives: the perspective of law and the perspective of the industry. The empirical basis of it consists of two international surveys and an expert opinion of a representative of the industry. This approach allowed the authors to improve the objectivity of their research and to obtain results that can be used for finding a practical solution for the identified risks. The problem of the ongoing development and popularization of generative artificial intelligence systems goes beyond the question “who is the author?” therefore, it needs to be solved by introduction of other than the already existing mechanisms and regulations - this point of view is supported not only by the results of the surveys but also by the analysis of current lawsuits against developers of generative artificial intelligence systems.Practical significance: the obtained results can be used to fasten the development of universal legal rules, regulations, instruments and standards, the current lack of which poses a threat not only to human rights, but also to several sectors within the creative industry and beyond

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-

    Security considerations in the open source software ecosystem

    Get PDF
    Open source software plays an important role in the software supply chain, allowing stakeholders to utilize open source components as building blocks in their software, tooling, and infrastructure. But relying on the open source ecosystem introduces unique challenges, both in terms of security and trust, as well as in terms of supply chain reliability. In this dissertation, I investigate approaches, considerations, and encountered challenges of stakeholders in the context of security, privacy, and trustworthiness of the open source software supply chain. Overall, my research aims to empower and support software experts with the knowledge and resources necessary to achieve a more secure and trustworthy open source software ecosystem. In the first part of this dissertation, I describe a research study investigating the security and trust practices in open source projects by interviewing 27 owners, maintainers, and contributors from a diverse set of projects to explore their behind-the-scenes processes, guidance and policies, incident handling, and encountered challenges, finding that participants’ projects are highly diverse in terms of their deployed security measures and trust processes, as well as their underlying motivations. More on the consumer side of the open source software supply chain, I investigated the use of open source components in industry projects by interviewing 25 software developers, architects, and engineers to understand their projects’ processes, decisions, and considerations in the context of external open source code, finding that open source components play an important role in many of the industry projects, and that most projects have some form of company policy or best practice for including external code. On the side of end-user focused software, I present a study investigating the use of software obfuscation in Android applications, which is a recommended practice to protect against plagiarism and repackaging. The study leveraged a multi-pronged approach including a large-scale measurement, a developer survey, and a programming experiment, finding that only 24.92% of apps are obfuscated by their developer, that developers do not fear theft of their own apps, and have difficulties obfuscating their own apps. Lastly, to involve end users themselves, I describe a survey with 200 users of cloud office suites to investigate their security and privacy perceptions and expectations, with findings suggesting that users are generally aware of basic security implications, but lack technical knowledge for envisioning some threat models. The key findings of this dissertation include that open source projects have highly diverse security measures, trust processes, and underlying motivations. That the projects’ security and trust needs are likely best met in ways that consider their individual strengths, limitations, and project stage, especially for smaller projects with limited access to resources. That open source components play an important role in industry projects, and that those projects often have some form of company policy or best practice for including external code, but developers wish for more resources to better audit included components. This dissertation emphasizes the importance of collaboration and shared responsibility in building and maintaining the open source software ecosystem, with developers, maintainers, end users, researchers, and other stakeholders alike ensuring that the ecosystem remains a secure, trustworthy, and healthy resource for everyone to rely on

    The Informal Screen Media Economy of Ukraine

    Get PDF
    This research explores informal film translation (voice over and subtitling) and distribution (pirate streaming and torrenting) practices in Ukraine, which together comprise what I call the informal screen media economy of Ukraine. This study addresses wider issues of debate around the distinct reasons media piracy exists in non-Western economies. There is already a considerable body of research on piracy outside of the traditional anti-piracy discourse, one that recognises that informal media are not all unequivocally destructive nor that they are necessarily marginal, particularly in non-Western countries. Yet, there remain gaps in the range of geographies and specific types of pirate practices being studied. Furthermore, academics often insufficiently address the intricate conditions of the context within which a given pirate activity is undertaken. Finally, whereas many researchers talk about pirates, considerably fewer talk to them. This project sets out to address these gaps. Specifically, I examine the distinct practicalities of the informal screen media practices in Ukraine through netnographic observations of pirate sites and in-depth interviews with the Ukrainian informal screen media practitioners. I explore their notably diverse motivations for engaging in these activities and how they negotiate their practices with the complex economic, cultural, and regulatory context of Ukraine. I find that, contrary to common perceptions, the Ukrainian pirates do not oppose the copyright law but operate largely within and around it. A more important factor in piracy in Ukraine instead is the economics of the Ukrainian language. This is reflected in the language exclusivity inherent to most Ukrainian pirate distribution platforms as well as in the motives of some informal translators, for whom their practice is a form of language activism. Overall, I argue for a more holistic approach to researching the informal space of the media economy, especially in non-Western contexts, one that recognises the heterogeneity of this space and explores accordingly intricate factors behind its existence. In addition, this project offers a methodological contribution by providing a detailed reflection on the use of ethnographic methods to study a pirate economy in a non-Western, non-anglophone country

    Towards a human-centric data economy

    Get PDF
    Spurred by widespread adoption of artificial intelligence and machine learning, “data” is becoming a key production factor, comparable in importance to capital, land, or labour in an increasingly digital economy. In spite of an ever-growing demand for third-party data in the B2B market, firms are generally reluctant to share their information. This is due to the unique characteristics of “data” as an economic good (a freely replicable, non-depletable asset holding a highly combinatorial and context-specific value), which moves digital companies to hoard and protect their “valuable” data assets, and to integrate across the whole value chain seeking to monopolise the provision of innovative services built upon them. As a result, most of those valuable assets still remain unexploited in corporate silos nowadays. This situation is shaping the so-called data economy around a number of champions, and it is hampering the benefits of a global data exchange on a large scale. Some analysts have estimated the potential value of the data economy in US$2.5 trillion globally by 2025. Not surprisingly, unlocking the value of data has become a central policy of the European Union, which also estimated the size of the data economy in 827C billion for the EU27 in the same period. Within the scope of the European Data Strategy, the European Commission is also steering relevant initiatives aimed to identify relevant cross-industry use cases involving different verticals, and to enable sovereign data exchanges to realise them. Among individuals, the massive collection and exploitation of personal data by digital firms in exchange of services, often with little or no consent, has raised a general concern about privacy and data protection. Apart from spurring recent legislative developments in this direction, this concern has raised some voices warning against the unsustainability of the existing digital economics (few digital champions, potential negative impact on employment, growing inequality), some of which propose that people are paid for their data in a sort of worldwide data labour market as a potential solution to this dilemma [114, 115, 155]. From a technical perspective, we are far from having the required technology and algorithms that will enable such a human-centric data economy. Even its scope is still blurry, and the question about the value of data, at least, controversial. Research works from different disciplines have studied the data value chain, different approaches to the value of data, how to price data assets, and novel data marketplace designs. At the same time, complex legal and ethical issues with respect to the data economy have risen around privacy, data protection, and ethical AI practices. In this dissertation, we start by exploring the data value chain and how entities trade data assets over the Internet. We carry out what is, to the best of our understanding, the most thorough survey of commercial data marketplaces. In this work, we have catalogued and characterised ten different business models, including those of personal information management systems, companies born in the wake of recent data protection regulations and aiming at empowering end users to take control of their data. We have also identified the challenges faced by different types of entities, and what kind of solutions and technology they are using to provide their services. Then we present a first of its kind measurement study that sheds light on the prices of data in the market using a novel methodology. We study how ten commercial data marketplaces categorise and classify data assets, and which categories of data command higher prices. We also develop classifiers for comparing data products across different marketplaces, and we study the characteristics of the most valuable data assets and the features that specific vendors use to set the price of their data products. Based on this information and adding data products offered by other 33 data providers, we develop a regression analysis for revealing features that correlate with prices of data products. As a result, we also implement the basic building blocks of a novel data pricing tool capable of providing a hint of the market price of a new data product using as inputs just its metadata. This tool would provide more transparency on the prices of data products in the market, which will help in pricing data assets and in avoiding the inherent price fluctuation of nascent markets. Next we turn to topics related to data marketplace design. Particularly, we study how buyers can select and purchase suitable data for their tasks without requiring a priori access to such data in order to make a purchase decision, and how marketplaces can distribute payoffs for a data transaction combining data of different sources among the corresponding providers, be they individuals or firms. The difficulty of both problems is further exacerbated in a human-centric data economy where buyers have to choose among data of thousands of individuals, and where marketplaces have to distribute payoffs to thousands of people contributing personal data to a specific transaction. Regarding the selection process, we compare different purchase strategies depending on the level of information available to data buyers at the time of making decisions. A first methodological contribution of our work is proposing a data evaluation stage prior to datasets being selected and purchased by buyers in a marketplace. We show that buyers can significantly improve the performance of the purchasing process just by being provided with a measurement of the performance of their models when trained by the marketplace with individual eligible datasets. We design purchase strategies that exploit such functionality and we call the resulting algorithm Try Before You Buy, and our work demonstrates over synthetic and real datasets that it can lead to near-optimal data purchasing with only O(N) instead of the exponential execution time - O(2N) - needed to calculate the optimal purchase. With regards to the payoff distribution problem, we focus on computing the relative value of spatio-temporal datasets combined in marketplaces for predicting transportation demand and travel time in metropolitan areas. Using large datasets of taxi rides from Chicago, Porto and New York we show that the value of data is different for each individual, and cannot be approximated by its volume. Our results reveal that even more complex approaches based on the “leave-one-out” value, are inaccurate. Instead, more complex and acknowledged notions of value from economics and game theory, such as the Shapley value, need to be employed if one wishes to capture the complex effects of mixing different datasets on the accuracy of forecasting algorithms. However, the Shapley value entails serious computational challenges. Its exact calculation requires repetitively training and evaluating every combination of data sources and hence O(N!) or O(2N) computational time, which is unfeasible for complex models or thousands of individuals. Moreover, our work paves the way to new methods of measuring the value of spatio-temporal data. We identify heuristics such as entropy or similarity to the average that show a significant correlation with the Shapley value and therefore can be used to overcome the significant computational challenges posed by Shapley approximation algorithms in this specific context. We conclude with a number of open issues and propose further research directions that leverage the contributions and findings of this dissertation. These include monitoring data transactions to better measure data markets, and complementing market data with actual transaction prices to build a more accurate data pricing tool. A human-centric data economy would also require that the contributions of thousands of individuals to machine learning tasks are calculated daily. For that to be feasible, we need to further optimise the efficiency of data purchasing and payoff calculation processes in data marketplaces. In that direction, we also point to some alternatives to repetitively training and evaluating a model to select data based on Try Before You Buy and approximate the Shapley value. Finally, we discuss the challenges and potential technologies that help with building a federation of standardised data marketplaces. The data economy will develop fast in the upcoming years, and researchers from different disciplines will work together to unlock the value of data and make the most out of it. Maybe the proposal of getting paid for our data and our contribution to the data economy finally flies, or maybe it is other proposals such as the robot tax that are finally used to balance the power between individuals and tech firms in the digital economy. Still, we hope our work sheds light on the value of data, and contributes to making the price of data more transparent and, eventually, to moving towards a human-centric data economy.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Georgios Smaragdakis.- Secretario: Ángel Cuevas Rumín.- Vocal: Pablo Rodríguez Rodrígue
    corecore