2,696,923 research outputs found
Current-mode piecewise-linear function generators
We present a systematic design technique for current-mode piecewise-linear (PWL) function generators. It uses two building blocks: a high-resolution current rectifier, and a programmable current amplifier. We show how to arrange these blocks to obtain basic non-linearities from which generic characteristics are built through aggregations. Measurements from a 1.0 /spl mu/m CMOS prototype chip show 10 pA resolution in the rectification operation and 0.6% non-linearity errors in the programmable scaling operation for 2 /spl mu/A input current range
Computing centroids in current-mode technique
A novel current-mode circuit for calculating the centre of mass of a discrete distribution of currents is described. It is simple and compact, an ideal building block for VLSI analogue IC design. The design principles are presented as well as the simulated behaviour of a one-dimensional implementation
Orbital current mode in elliptical quantum dots
An orbital current mode peculiar to deformed quantum dots is theoretically
investigated; first by using a simple model that allows to interpret
analytically its main characteristics, and second, by numerically solving the
microscopic equations of time evolution after an initial perturbation within
the time-dependent local-spin-density approximation. Results for different
deformations and sizes are shown.Comment: 4 REVTEX pages, 4 PDF figures, accepted in PRB:R
CMOS current-mode chaotic neurons
This paper presents two nonlinear CMOS current-mode circuits that implement neuron soma equations for chaotic neural networks, and another circuit to realize programmable current-mode synapse using CMOS-compatible BJT's. They have been fabricated in a double-metal, single-poly 1.6 /spl mu/m CMOS technology and their measured performance reached the expected function and specifications. The neuron soma circuits use a novel, highly accurate CMOS circuit strategy to realize piecewise-linear characteristics in the current-mode domain. Their prototypes obtain reduced area and low voltage power supply (down to 3 V) with clock frequency of 500 kHz. As regard to the synapse circuit, it obtains large linearity and continuous, linear, weight adjustment by exploration of the exponential-law operation of CMOS-BJT's. The full accordance observed between theory and measurements supports the development of future analog VLSI chaotic neural networks to emulate biological systems and advanced computation
Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks
This paper presents a unified, comprehensive approach
to the design of continuous-time (CT) and discrete-time
(DT) cellular neural networks (CNN) using CMOS current-mode
analog techniques. The net input signals are currents instead
of voltages as presented in previous approaches, thus avoiding
the need for current-to-voltage dedicated interfaces in image
processing tasks with photosensor devices. Outputs may be either
currents or voltages. Cell design relies on exploitation of current
mirror properties for the efficient implementation of both linear
and nonlinear analog operators. These cells are simpler and
easier to design than those found in previously reported CT
and DT-CNN devices. Basic design issues are covered, together
with discussions on the influence of nonidealities and advanced
circuit design issues as well as design for manufacturability
considerations associated with statistical analysis. Three prototypes
have been designed for l.6-pm n-well CMOS technologies.
One is discrete-time and can be reconfigured via local logic for
noise removal, feature extraction (borders and edges), shadow
detection, hole filling, and connected component detection (CCD)
on a rectangular grid with unity neighborhood radius. The other
two prototypes are continuous-time and fixed template: one for
CCD and other for noise removal. Experimental results are given
illustrating performance of these prototypes
Current-Carrying Zero Mode for the Nielsen-Olesen String
Zero modes of strings in the abelian Higgs model are analyzed. In spite of
the fact that the gauge symmetry is not broken in the string center, the
corresponding zero mode is shown to exist and to see it one has to analyze
carefully the dependence on transverse coordinates for the excitations. The
analysis of this kind is also important for the Witten model of superconducting
string. Unusual properties of the zero modes connected with the broken gauge
symmetry in the string background are investigated. One of the modes carries
the current quite similar to that in the Witten model and gives back reaction
to the string profile. It is claimed that the current in the string improves
stability of the electroweak string.Comment: 10 pages, LATEX, no figures, submitted to Phys Lett
Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs
Current-mode (CM) and voltage-mode (VM) multiphase sinusoidal oscillator (MSO) structures using current backward transconductance amplifier (CBTA) are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd) equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm) of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters
Spin-torque effect on spin wave modes in magnetic nanowires
The interaction between a spin polarized dc electrical current and spin wave
modes of a cylindrical nanowire is investigated in this report. We found that
close to the critical current, the uniform mode is suppressed, while the edge
mode starts to propagate into the sample. When the current exceeds the critical
value, this phenomenon is even more accentuated. The edge mode becomes the
uniform mode of the nanowire. The higher spin wave modes are slowly pushed away
by the current until the propagating mode remains.Comment: 11 pages, 6 gigure
- …
