1,862 research outputs found

    Curiosity Driven Exploration of Learned Disentangled Goal Spaces

    Get PDF
    International audienceIntrinsically motivated goal exploration processes enable agents to autonomously sample goals to explore efficiently complex environments with high-dimensional continuous actions. They have been applied successfully to real world robots to discover repertoires of policies producing a wide diversity of effects. Often these algorithms relied on engineered goal spaces but it was recently shown that one can use deep representation learning algorithms to learn an adequate goal space in simple environments. However, in the case of more complex environments containing multiple objects or distractors, an efficient exploration requires that the structure of the goal space reflects the one of the environment. In this paper we show that using a disentangled goal space leads to better exploration performances than an entangled goal space. We further show that when the representation is disentangled, one can leverage it by sampling goals that maximize learning progress in a modular manner. Finally, we show that the measure of learning progress, used to drive curiosity-driven exploration, can be used simultaneously to discover abstract independently controllable features of the environment. The code used in the experiments is available at https://github.com/flowersteam/ Curiosity_Driven_Goal_Exploration

    Automatic Curriculum Learning For Deep RL: A Short Survey

    Full text link
    Automatic Curriculum Learning (ACL) has become a cornerstone of recent successes in Deep Reinforcement Learning (DRL).These methods shape the learning trajectories of agents by challenging them with tasks adapted to their capacities. In recent years, they have been used to improve sample efficiency and asymptotic performance, to organize exploration, to encourage generalization or to solve sparse reward problems, among others. The ambition of this work is dual: 1) to present a compact and accessible introduction to the Automatic Curriculum Learning literature and 2) to draw a bigger picture of the current state of the art in ACL to encourage the cross-breeding of existing concepts and the emergence of new ideas.Comment: Accepted at IJCAI202

    CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning

    Get PDF
    In open-ended environments, autonomous learning agents must set their own goals and build their own curriculum through an intrinsically motivated exploration. They may consider a large diversity of goals, aiming to discover what is controllable in their environments, and what is not. Because some goals might prove easy and some impossible, agents must actively select which goal to practice at any moment, to maximize their overall mastery on the set of learnable goals. This paper proposes CURIOUS, an algorithm that leverages 1) a modular Universal Value Function Approximator with hindsight learning to achieve a diversity of goals of different kinds within a unique policy and 2) an automated curriculum learning mechanism that biases the attention of the agent towards goals maximizing the absolute learning progress. Agents focus sequentially on goals of increasing complexity, and focus back on goals that are being forgotten. Experiments conducted in a new modular-goal robotic environment show the resulting developmental self-organization of a learning curriculum, and demonstrate properties of robustness to distracting goals, forgetting and changes in body properties.Comment: Accepted at ICML 201

    GRIMGEP: Learning Progress for Robust Goal Sampling in Visual Deep Reinforcement Learning

    Get PDF
    Designing agents, capable of learning autonomously a wide range of skills is critical in order to increase the scope of reinforcement learning. It will both increase the diversity of learned skills and reduce the burden of manually designing reward functions for each skill. Self-supervised agents, setting their own goals, and trying to maximize the diversity of those goals have shown great promise towards this end. However, a currently known limitation of agents trying to maximize the diversity of sampled goals is that they tend to get attracted to noise or more generally to parts of the environments that cannot be controlled (distractors). When agents have access to predefined goal features or expert knowledge, absolute Learning Progress (ALP) provides a way to distinguish between regions that can be controlled and those that cannot. However, those methods often fall short when the agents are only provided with raw sensory inputs such as images. In this work we extend those concepts to unsupervised image-based goal exploration. We propose a framework that allows agents to autonomously identify and ignore noisy distracting regions while searching for novelty in the learnable regions to both improve overall performance and avoid catastrophic forgetting. Our framework can be combined with any state-of-the-art novelty seeking goal exploration approaches. We construct a rich 3D image based environment with distractors. Experiments on this environment show that agents using our framework successfully identify interesting regions of the environment, resulting in drastically improved performances. The source code is available at https://sites.google.com/view/grimgep
    corecore