
HAL Id: hal-01891598
https://hal.inria.fr/hal-01891598

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Curiosity Driven Exploration of Learned Disentangled
Goal Spaces

Adrien Laversanne-Finot, Alexandre Péré, Pierre-Yves Oudeyer

To cite this version:
Adrien Laversanne-Finot, Alexandre Péré, Pierre-Yves Oudeyer. Curiosity Driven Exploration of
Learned Disentangled Goal Spaces. CoRL 2018 - Conference on Robot Learning, Oct 2018, Zürich,
Switzerland. �hal-01891598�

https://hal.inria.fr/hal-01891598
https://hal.archives-ouvertes.fr

Curiosity Driven Exploration of Learned
Disentangled Goal Spaces

Adrien Laversanne-Finot
Flowers Team

Inria and Ensta-ParisTech, France
adrien.laversanne-finot@inria.fr

Alexandre Péré
Flowers Team

Inria and Ensta-ParisTech, France
alexandre.pere@inria.fr

Pierre-Yves Oudeyer
Flowers Team

Inria and Ensta-ParisTech, France
pierre-yves.oudeyer@inria.fr

Abstract: Intrinsically motivated goal exploration processes enable agents to
autonomously sample goals to explore efficiently complex environments with high-
dimensional continuous actions. They have been applied successfully to real world
robots to discover repertoires of policies producing a wide diversity of effects.
Often these algorithms relied on engineered goal spaces but it was recently shown
that one can use deep representation learning algorithms to learn an adequate goal
space in simple environments. However, in the case of more complex environments
containing multiple objects or distractors, an efficient exploration requires that the
structure of the goal space reflects the one of the environment. In this paper we
show that using a disentangled goal space leads to better exploration performances
than an entangled goal space. We further show that when the representation
is disentangled, one can leverage it by sampling goals that maximize learning
progress in a modular manner. Finally, we show that the measure of learning
progress, used to drive curiosity-driven exploration, can be used simultaneously to
discover abstract independently controllable features of the environment. The code
used in the experiments is available at https://github.com/flowersteam/
Curiosity_Driven_Goal_Exploration.

Keywords: Goal exploration, Multi-goal learning, Intrinsic motivation, Indepen-
dently controllable features

1 Introduction

A key challenge of lifelong learning is how embodied agents can discover the structure of their
environment and learn what outcomes they can produce and control. Within a developmental
perspective [1, 2], this entails two closely linked challenges. The first challenge is that of exploration:
how can learners self-organize their own exploration curriculum to discover efficiently a maximally
diverse set of outcomes they can produce. The second challenge is that of learning disentangled
representations of the world out of low-level observations (e.g. pixel level), and in particular,
discovering abstract high-level features that can be controlled independently.

Exploring to discover how to produce diverse sets of outcomes. Discovering autonomously a
diversity of outcomes that can be produced on the environment through rolling out motor programs
has been shown to be highly useful for embodied learners. This is key for acquiring world models and
repertoires of parameterized skills [3, 4, 5], to efficiently bootstrap exploration for deep reinforcement
learning problems with rare or deceptive rewards [6, 7], or to quickly repair strategies in case of
damages [8]. However, this problem is particularly difficult in high-dimensional continuous action
and state spaces encountered in robotics given the strong constraints on the number of samples
that can be experimented. In many cases, naive random exploration of motor commands is highly
inefficient due to high-dimensional action spaces, redundancies in the sensorimotor system, or to the
presence of “distractors” that cannot be controlled [3].

ar
X

iv
:1

80
7.

01
52

1v
2

 [
cs

.L
G

]
 9

 A
ug

 2
01

8

https://github.com/flowersteam/Curiosity_Driven_Goal_Exploration
https://github.com/flowersteam/Curiosity_Driven_Goal_Exploration

Several approaches to organize exploration can be considered. First, imitation learning can be used
to take advantage of observations of another agent acting on the environment [9]. While observing
the environment changing as a consequence of other agent’s actions can often be leveraged, there
are many cases where it is either impossible for other agents to demonstrate how to act, or for the
learner to observe the motor program used by the other agent. For these reasons, various forms of
autonomous curiosity-driven learning approaches have been proposed [10], often inspired by forms of
spontaneous exploration displayed by human children [11]. Some of these approaches have used the
framework of (deep) reinforcement learning, considering intrinsic rewards valuing states or actions
in terms of novelty, information gain, or prediction errors, e.g. [12, 13, 14, 5]. However, many of
these approaches are not directly applicable to high-dimensional redundant continuous action spaces
[12, 15], or face complexity challenges to be applicable to real world robots [16, 17].

Another approach to curiosity-driven exploration is known as Intrinsically Motivated Goal Exploration
Processes (IMGEPs) [3, 18], an architecture closely related to Goal Babbling [19]. The general idea
of IMGEPs is to equip the agent with a goal space, where each point is a vector of (target) features of
behavioural outcomes. During exploration, the agent samples goals in this goal space according to a
certain strategy. A powerful strategy for selecting goals is to maximize empirical competence progress
using multi-armed bandits [3]. This enables to automate the formation of a learning curriculum where
goals are progressively explored from simple to more complex, avoiding goals that are either too
simple or too complex. For each sampled goal the agent dedicates a budget of experiments to improve
its performance regarding this particular goal. IMGEPs are often implemented using a population
approach, where the agent stores an archive of all the policy parameters and the corresponding
outcomes. This makes the approach powerful since the agent is able to leverage each encountered
past experience when facing a new goal. This approach has been shown to enable high-dimensional
robots to learn very efficiently locomotion skills [3], manipulation of soft objects [19, 20] or tool use
[18]. Related approaches were recently experimented in the context of Deep Reinforcement Learning,
such as in Hindsight Experience Replay [21] and Reverse Curriculum Learning [22] (however using
monolithic goal parameterized policies), and within the Power Play framework [23].

Learning disentangled representations of goal spaces. Even if IMGEP approaches have been
shown to be very powerful, one limit has been to rely on engineered representations of goal spaces.
For example, experiments in [3, 7, 18, 22, 21] have leveraged the availability of goal spaces that
directly encoded the position, speed or trajectories of objects/bodies. A major challenge is how to
learn goal spaces in cases where only low-level perceptual measures are available to the learner (e.g.
pixels). A first step in this direction was presented in [24], using deep networks and algorithms such
as Variational AutoEncoders (VAEs) to learn goal spaces as a latent representation of the environment.
In simple simulated scenes where a robot arm learned to interact with a single controllable object,
this approach was shown to be as efficient as using handcrafted goal features. But [24] did not study
what was the impact of the quality of the learned representation. Moreover, when the environment
contains several objects including a distractor object, an efficient exploration of the environment is
possible only if the structure of the goal space reflects the one of the environment. For example,
when objects are represented as abstract distinct entities, modular curiosity-driven goal exploration
processes can be leveraged for efficient exploration, by focusing on objects that provide maximal
learning progress, and avoiding distractor objects that are either trivial or not controllable [18]. An
open question is thus whether it is possible to learn goal spaces with adequate disentanglement
properties and develop exploration algorithms that can leverage those learned disentangled properties
from low-level perceptual measures.

Discovering high-level controllable features of the environment. Although methods to learn
disentangled representation of the world exist [25, 26], they do not allow to distinguish features
that are controllable by the learner from features describing external phenomena that are outside
the control of the agent. However, identifying such independantly controllable features [27] is of
paramount importance for agents to develop compact world models that generalize well, as well as
to grow efficiently their repertoire of skills. One idea to address this challenge, initially explored
in [28], is that learners may identify and characterize controllable sets of features as sensorimotor
space manifolds where it is possible to learn how to control perceptual values with actions, i.e. where
learning progress is possible. Unsupervised learning approaches could then build coarse categories
distinguishing the body, controllable objects, other animate agents, and uncontrollable objects as
entities with different learning progress profiles [28]. However, this work only considered identifying
learnable and controllable manifolds among sets of engineered features.

2

Figure 1: The IMGEP-MUGL approach.

In this paper, we explore the idea that a useful learned representation for efficient exploration would
be a factorized representation where each latent variable would be sensitive to changes made in a
single true dregree of freedom of the environment, while being invariant to changes in other degrees of
freedom [29]. Further on, we investigate how independently controllable features of the environment
can be identified among these disentangled variables through interactions with the environement.
We study this question using β-VAEs [25, 30] which is a natural extension of VAEs and have been
shown to provide good disentanglement properties. We extend the experimental framework of [24],
simulating a robot arm learning how it can produce outcomes in a scene with two objects, including a
distractor. In order to assess the role of the representation we use a two-stage process, which first
learns to see and then learns to act. The first stage consists of a representation learning phase where
the agent builds a representation of the world by passively observing it (events in the environment are
assumed to be produced by another agent in this phase, see [24]. In the second phase the agent uses
this representation to interact with the world, by sampling goals that provide high learning progress,
and where goals are target values of one or several latent variables to be reached through action.
This procedure was adopted for two reasons. For one, it is similar to the developmental progression
in infant development, where the infant first spends most of his time observing the world due to
limitations in motor exploration. Secondly, it helps in understanding the impact of disentanglement
given the multiple components of the architecture.

The first contribution we make in this paper is to study the impact of using a learned disentangled
goal space representations on the efficiency of exploration and discovery of a diversity of outcomes in
IMGEPs. To the best of our knowledge, it is the first time that the role of disentanglement is studied
in the context of exploration. Precisely, we show that:

• using a disentangled state representation is beneficial to exploration: using IMGEPS, the
agents explores more states in fewer experiments than when the representation is entangled.

• disentangled representations learned by β-VAEs can be further leveraged by modular
curiosity-driven IMGEPs to explore as efficiently as using handcrafted low-dimensional
scene features, in experiments that include both controllable and distractor objects. On the
contrary, we show that representations learned by VAEs are not sufficiently structured to
enable a similarly efficient exploration.

The second contribution of this article is to show that identifying abstract independently controllable
features from low-level perception can emerge from a representation learning pipeline where learning
disentangled features from passive observations (β-VAEs) is followed by curiosity-driven active
exploration driven by the maximization of learning progress. This second phase allows in particular to
distinguish features related to controllable objects (disentangled features with high learning progress)
from features related to distractors (disentangled features with low learning progress).

2 Modular goal exploration with learned goal spaces

This section introduces Intrinsically Motivated Goal Exploration Processes with modular goal spaces
as they are typically used in environments with handcrafted goal spaces. It then describes the

3

Figure 2: Intrinsically Motivated Goal Exploration Process examplified.

architecture used in this article where the handcrafted goal space is replaced by a representation of
the space that is learned before exploration and then used as a goal space for IMGEPs. The overall
architecture is summarized in Figure 1.

2.1 Intrinsically motivated goal exploration processes with modular goal spaces

To fully understand the IMGEP approach, one must imagine the agent as performing a sequence of
contextualized and parameterized experiments. The problem of exploration is readily defined using
the following elements:

• A context space C. The context c represents the initial state of the environment. It corre-
sponds to parameters of the experiment that are not chosen by the agent.

• A parameterization space Θ. The parameterization θ corresponds to the parameters of the
experiment that the agent can control at will (e.g. motor commands for a robot).

• An outcome space O. Here we consider an outcome o to be a vector representing all the
signals captured by the agent sensors during an experiment.

• An environment dynamic D : C,Θ → O which maps parameters performed in a certain
context, to outcomes. In the case of exploration algorithm, this dynamic is considered
unknown.

For instance, as presented in Figure 2, a parameterization could be the weights of a closed-loop neural
network controller for a robot manipulating a ball. A context could be the initial position of the ball
and an outcome could be the position of the ball at the end of a fixed duration experiment. Using
those elements, the exploration problem can be simply put as:

Given a fixed budget n of experiments to perform, how to gather tuples
{(ci, θi, oi)}i=1...n which maximize the diversity of the set of outcomes
{oi}i=1...n.

One approach that was shown to produce good exploration performances is Intrinsically Motivated
Goal Exploration Processes. This algorithmic architecture uses the following elements:

• A goal space T . The elements τ ∈ T represent the goals that the agent can set for himself.
We also use the term task to refer to an element of T .
• A goal sampling policy γ : T 7→ [0, 1]. This distribution allows the agent to choose a goal in

the goal space. Depending on the exploration strategy being active or fixed, this distribution
can evolve during exploration.

• A Meta-Policy mechanism Π : T , C 7→ Θ, which given a goal and a context, outputs a
parameterization that is most likely to produce an outcome fulfilling a goal, under the current
knowledge.

• A cost function C : T ,O 7→ R, internally used by the Meta-Policy. This cost function
outputs the fitness of an outcome for a given task τ .

4

When the environment is simple, such as for experiments presented in [24] where a robotic arm
explore its possible interactions with a single object, the structure of the goal space is not critical.
However, in more complex scenes with multiple objects (e.g. including tools or objects that cannot be
controlled), it was shown in [31] that it is important to have a goal space which reflects the structure
of the environment. In particular, having a modular goal space, i.e. of the form T =

⊗N
i=1 Ti,

where the Ti are different modules representing the properties of various objects, leads to much better
exploration performances. In this case, at each exploration step the agent first chooses a module to
explore and then a goal in this module. In this case the goal sampling policy reads:

γ(τ) = γ(τ |i)p(i), (1)
where p(i) is the probability to sample the Ti module, and γ(τ |i) is the probability to sample the goal
τ given that the module i was selected.1

The algorithmic architecture described in Figure 2 works as follows: at each step, the exploration
process samples a module, then samples a a goal in this module, observes the context, executes a meta-
policy mechanism to guess the best policy parameters for this goal, which it then uses to perform the
experiment. The observed outcome is then compared to the goal, and used to update the meta-policy
(leveraging the information for other goals) as well as the module sampling policy. Depending on the
algorithmic instantiation of this architecture, different Meta-Policy mechanisms can be used [3, 31].
In any case, the Meta-Policy must be initialized using a buffer of experiments {ci, θi, oi} containing
at least two different oi. As such, a bootstrap of several Random Parameterization Exploration
iterations is always performed at the beginning. This leads to Algorithmic Architecture 1. The reader
can refer to Appendix 6.1 for a detailed explanation of the Meta-Policy implementation.

The strength of the modular architecture is that modules can be selected using a curiosity-driven active
module sampling scheme. In this scheme, γ(τ |i) is fixed, and p(i) is updated at time t according to:

p(i) := 0.9× Υi(t)∑N
k=1 Υk(t)

+ 0.1× 1

N
, (2)

where Υi(t) is an interest measure based on the estimation of the average improvement of the
precision of the meta-policy for fulfilling goals in Ti, which is a form of learning progress called
competence progress (see [3] and Appendix 6.1 for further details on the interest measure). The
second term of Equation (2) forces the agent to explore a random module 10% of the time. The
general idea is that monitoring the learning progress allows the agent to concentrate on objects which
can be learned to control while ignoring objects that cannot.

Algorithmic Architecture 1: Curiosity Driven Modular Goal Exploration Strategy
Input:
Goal modules (engineered or learned with MUGL): {R,Pi, γ(·|i), Ci}, Meta-Policy Π, HistoryH

1 begin
2 for A fixed number of Bootstrapping iterations do
3 Observe context c
4 Sample θ ∼ U(−1, 1)
5 Perform experiment and observe outcome o
6 Append (c, θ, o) toH
7 Initialize Meta-Policy Π with historyH
8 Initialize module sampling probability p = U(nmod)
9 for A fixed number of Exploration iterations do

10 Observe context c
11 Sample a module i ∼ p
12 Sample a goal for module i, τ ∼ γ(·|i)
13 Compute θ using Meta-Policy Π on tuple (c, τ, i)
14 Perform experiment and retrieve outcome o
15 Append (c, θ, o) toH
16 Update Meta-Policy Π with (c, θ, o)
17 Update module sampling probability p according to Eq. (2)

18 return The historyH

1Obviously γ(τ |i) = 0 if τ /∈ Ti.

5

(a) Representation learning on ob-
served outcomes (Lines 2-5)

(b) Generation of projection op-
erators and estimation of γ(τ |i)
distributions (Lines 6-7)

(c) Cost function generation (Line
8)

Figure 3: The three main steps of the MUGL algorithm

2.2 Modular Unsupervised Goal-space Learning for IMGEP

In [24], an algorithm for Unsupervised Goal-space Learning (UGL) was proposed. The principle is
to let the agent observe another agent producing a diversity of outcomes {oi}. Afterwards, this set of
outcomes is used to learn a low-dimensional representation which is then employed as a goal-space.
In these experiments, there is always a single goal space corresponding to the learned representation
of the environment. However, if one wishes to use the algorithm presented in the previous section, it
is necessary to have different goal spaces: one for each module.

In order to use a Modular Goal Exploration strategy with a learned goal space, we propose Algorithm
2, which performs Modular Unsupervised Goal-space Learning (MUGL) and is represented in
Figure 3. The idea is to learn a representation of the outcomes in the same way as UGL. The modules
are then defined using orthogonal projections over a fixed number of latent variables. For example, a
module could correspond to setting goals only on the first and second dimensions of the representation
of an outcome. The underlying rationale is that, if we manage to learn a disentangled representation
of the outcomes, each latent variable would correspond to a single property of a single object. Thus,
by forming modules containing only latent variables corresponding to the same object, the exploration
algorithm may be able to explore the different objects separately.

Algorithm 2: Modular Unsupervised Goal-space Learning (MUGL)
Input:
Representation learning algorithm R (e.g. VAE, βVAE), Kernel Density Estimator algorithm E

1 begin
2 for A fixed number of Observation iterations nr do
3 Observe external agent produce outcome oi
4 Append this sample to database Do = {oi}i=0,...,nr

5 Learn an embedding function R : O 7→ Rnd using algorithm R on data Do
6 Generate an ensemble of projection operators {Pk}
7 Estimate γ(τ |k) from {PkR(oi)}i=0,...,nr using algorithm E
8 Set the cost functions to be Ck(τ, o) = ‖PkR(o)− τ‖
9 return The goal modules {R,Pk, γ(τ |k), Ck}.

After learning the representation, a specific criterion is used to decide which projection operators to
use. In the particular case of VAEs and βVAEs, the choice of the projection operators is based on the
value of the Kullback-Leibler divergence of each latent variable, as presented in Appendix 6.1. Since
representation learned with VAEs and βVAEs come with a prior over the latent variables, instead of

6

Figure 4: A roll-out of experiment in the Arm-2-Balls environment. The blue ball can be grasped and
moved, while the orange one is a distractor that can not be handled, and follows a random walk.

estimating the modular goal-policies γ(τ |k), we used the Gaussian prior assumed during training.
Finally, a set of modular cost functions Ck(τ, o) is defined, using the distance between the goal and
the k-th projection of the latent representation of the outcome.

The overall approach combining IMGEPs with learned modular goal spaces is summarized in Figure 1.
Note that the algorithm proposed in [24] is a particular instance of this architecture with only one
module containing all the latent variables. In this case there is no module sampling strategy, and only
a goal sampling strategy. This specific case is here referred to as Random Goal Exploration (RGE).

3 Experiments

We carried out experiments in a simulated environment to address the following questions:

• To what extent is the structure of the learned representation important for the performance
of IMGEP-UGL in terms of efficiently discovering a diversity of outcomes?

• Is it possible to leverage the structure of the representation with Modular Curiosity-Driven
Goal Exploration algorithms?

• Can the learning progress measure of goal exploration be used to identify controllable
abstract features of the environment?

Environment We experimented on the Arm-2-Balls environment, where a rotating 7-joints robotic
arm evolves in an environment containing two balls of different sizes, as represented in Figure 4.
One ball can be grasped and moved around in the scene by the robotic arm. The other ball acts
as a distractor: it cannot be grasped nor moved by the robotic arm but follows a random walk.
The agent perceives the scene as a 64 × 64 pixels image. For the representation learning phase,
we generated a set of images where the positions of the two balls were uniformly distributed over
[−1, 1]4. These images were then used to learn a representation using a VAE or a βVAE. In order to
assess the importance of the disentangled representation, we used the same disentangled/entangled
representation for all the instantiations of the exploration algorithms. This allowed us to study the
effect of disentangled representations by eliminating the variance due to the inherent difficulty of
learning such representations.

Baselines The results obtained using IMGEPs with learned goal spaces are compared to two natural
baselines:

• The first baseline is the naive approach of Random Parameter Exploration (RPE), where
exploration is performed by uniformly sampling parameterizations θ. In the case of hard
exploration problems, this strategy is regarded as a low performing one, since no previous
information is leveraged to choose the next parameterization. This strategy gives a lower
bound on the expected performances of exploration algorithms.

• The second baseline is Modular Goal Exploration with Engineered Features Repre-
sentation (MGE-EFR): it corresponds to a modular IMGEP in which the goal space is
handcrafted and corresponds to the true degrees of freedom of the environment. In the
Arm-2-Balls environment it corresponds to the positions of the two balls, given as a point
in [−1, 1]4. Since essentially all the information is available to the agent under a highly
semantic form, it is expected to give an upper bound on the performances of the exploration

7

(a) Small exploration noise (σ = 0.05) (b) Large exploration noise (σ = 0.1)

Figure 5: Exploration ratio through epochs for different exploration noises.

algorithms. We performed experiments with both one module (RGE-EFR) and two modules
(one for the ball and one for the distractor) (MGE-EFR).

4 Results

To assess the performances of the MGE algorithm on learned goal spaces, we experimented with
two different representations coming from two learning algorithms: β-VAE (disentangled) and VAE
(entangled, see 6.2). In each case, we ran 20 trials of 10,000 iterations each, for both the RGE and
MGE exploration algorithms.

Exploration performances The exploration performance of all the algorithms was measured
according to the number of cells reached by the ball in a discretized grid of 900 cells (30 cells for
each dimension of the ball that can be moved; the distractor is not accounted for in the exploration
evaluation). Not all cells can be reached given that the arm is rotating and is of unit length: the
maximum ratio between the number of reached cells and all the cells is approximately π/4 ≈ 0.8.

In Figure 5, we can see the evolution of the ratio of the number of cells visited with respect to all the
cells through exploration epochs (one exploration epoch is defined as one experimentation/roll-out of
a parameter θ). First, one can see that all the algorithms have much better performances than the naive
RPE, both in term of speed of exploration and final performance. Secondly, for both RGE and MGE
with learned goal spaces, using a disentangled representation is beneficial. One can also see that
when the representation used as a goal space is disentangled, the modular architecture (MGE-βVAE)
performs much better than the flat architecture (RGE-βVAE), with performances that match the
modular architecture with engineered features (MGE-EFR). However, when the representation is
entangled, using a modular architecture is actually detrimental to the performances since each module
encodes then only partially for the ball position. Figure 5 also shows that the MGE architectures
with a disentangled representation performs particularly well even if the exploration noise is low
whereas the RGE architectures or MGE architectures with an entangled representation relies on a
large exploration noise to produce a large variety of outcomes. We cross-refer to Appendix 6.7 for
examples of exploration curves together with exploration scatters.

Benefits of disentanglement and modules

The evolution of the interest of the different modules through the exploration epochs is represented in
Figure 6a . First, in the disentangled case, one can see that the interest is high only for the modules
corresponding to the latent variables encoding for the ball position.2 This is natural since these latent
variables are the only ones that can be learned to control with motor commands. In the entangled
case, the interest of each module follows a random trajectory, with no module standing out with a
particular interest. This effect can be understood as follows: the entanglement introduces spurious
correlations between the outcomes of the actions of the agent and the tasks in every module, which
bring the interest measures to follow random fluctuations based on the collected outcomes. These
correlations, in turn, lead the agent to sample more frequently policies that in fact did not have any
impact on the outcome, making the overall performance worse.

2The semantic mapping between latent variables and external objects is made by the experimenter.

8

(a) Disentangled representation (βVAE) (b) Entangled representation (VAE)

Figure 6: Interest evolution for each module through epochs. In the case of a disentangled representa-
tion the algorithm shows interest only for the module which correspond to latent variables encoding
for the position of the ball (which is unknown by the agent, which does not distinguish between the
ball and the distractor).

When the representation used as a goal space is disentangled, the modular approach is particularly well
suited in the presence of distractors. Indeed, thanks to the projection operator, the noise introduced in
the latent variables by the random walk of the distractor is completely ignored by the module which
contains the latent variables of the ball. This allows to learn a better inverse model for modules which
ignore the distractor, which in turn yields a better exploration (see Appendix 6.1 and 6.6 for details).

Independently Controllable Features

As explained above and illustrated in Figure 6a, when the representation is disentangled, the MGE
algorithm is able to monitor the learnability of certain modules (possibly individual latent features,
see 6.5), and leverage it to focus exploration on goals with high learning progress. This is illustrated
on the interest curves by the clear difference in interest between modules where learning progress
happens and those where it does not. It happens that modules that produce high learning progress
correspond precisely to modules that can be controlled. As such, as a side benefit of using modular
goal exploration algorithms, the agent discovers in an unsupervised manner which are the features
of the environment that can be controlled (and in turn explores them more). This knowledge could
then be used by another algorithm whose performance depends on its ability to know which are the
independantly controllable features of the environment.

5 Conclusion

In this paper we studied the role of the structure of learned goal space representations in IMGEPs.
More specifically, we have shown that when the representation possesses good disentanglement
properties, they can be leveraged by a curiosity-driven modular goal exploration architecture and
lead to highly efficient exploration. In particular, this enables exploration performances as good as
when using engineered features. In addition, the monitoring of learning progress enables the agent to
discover which latent features can be controlled by its actions, and focus its exploration by setting
goals in their corresponding subspace.

The perspectives of this work are twofold. First it would be interesting to show how the initial
representation learning step could be performed online. Secondly, beyond using learning progress to
discover controllable features during exploration, it would be interesting to re-use this knowledge to
acquire more abstract representations and skills.

Finally, as mentioned in the introduction, another advantage of using a disentangled representation
is that, as was shown in [30], it evinces superior performances in a transfer learning scenario.
Both approaches are not incompatible and one could envision a scheme where one would learn
a disentangled representation in a simulated environment and use this representation to perform
exploration in a real world environment.

9

Acknowledgments

We would like to thank Olivier Sigaud for helpful comments on an earlier version of this article.

References
[1] G. Baldassarre and M. Mirolli. Intrinsically Motivated Learning in Natural and Artificial

Systems, volume 9783642323. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN
978-3-642-32374-4. doi:10.1007/978-3-642-32375-1. URL http://link.springer.com/
10.1007/978-3-642-32375-1.

[2] A. Cangelosi and M. Schlesinger. From Babies to Robots: The Contribution of Developmental
Robotics to Developmental Psychology. Child Development Perspectives, feb 2018. ISSN
17508592. doi:10.1111/cdep.12282. URL http://doi.wiley.com/10.1111/cdep.12282.

[3] A. Baranes and P. Y. Oudeyer. Active learning of inverse models with intrinsically motivated
goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, 2013. ISSN
09218890. doi:10.1016/j.robot.2012.05.008. URL http://dx.doi.org/10.1016/j.robot.
2012.05.008.

[4] B. Da Silva, G. Konidaris, and A. Barto. Active learning of parameterized skills. In International
Conference on Machine Learning, pages 1737–1745, 2014.

[5] T. Hester and P. Stone. Intrinsically motivated model learning for developing curious robots.
Artificial Intelligence, 247:170–186, 2017.

[6] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and J. Clune. Improving exploration
in evolution strategies for deep reinforcement learning via a population of novelty-seeking
agents. arXiv preprint arXiv:1712.06560, 2017.

[7] C. Colas, O. Sigaud, and P.-Y. Oudeyer. GEP-PG: Decoupling exploration and exploitation in
deep reinforcement learning. In International Conference on Machine Learning (ICML), 2018.

[8] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals. Nature,
521(7553):503, 2015.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[10] P.-Y. Oudeyer. Computational theories of curiosity-driven learning. In G. Gordon, editor, The
New Science of Curiosity. NOVA, 2018.

[11] D. E. Berlyne. Curiosity and exploration. Science, 153(3731):25–33, 1966.

[12] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing
Systems, pages 1471–1479, 2016.

[13] M. C. Machado, M. G. Bellemare, and M. Bowling. A laplacian framework for option discovery
in reinforcement learning. In International Conference on Machine Learning, 2017.

[14] A. G. Barto. Intrinsic motivation and reinforcement learning. In Intrinsically motivated learning
in natural and artificial systems, pages 17–47. Springer, 2013.

[15] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. arXiv preprint arXiv:1705.05363, 2017.

[16] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Curiosity-driven
exploration in deep reinforcement learning via bayesian neural networks. arXiv preprint
arXiv:1605.09674, 2016.

[17] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel. # exploration: A study of count-based exploration for deep reinforcement learning.
arXiv preprint arXiv:1611.04717, 2016.

10

http://dx.doi.org/10.1007/978-3-642-32375-1
http://link.springer.com/10.1007/978-3-642-32375-1
http://link.springer.com/10.1007/978-3-642-32375-1
http://dx.doi.org/10.1111/cdep.12282
http://doi.wiley.com/10.1111/cdep.12282
http://dx.doi.org/10.1016/j.robot.2012.05.008
http://dx.doi.org/10.1016/j.robot.2012.05.008
http://dx.doi.org/10.1016/j.robot.2012.05.008

[18] S. Forestier, Y. Mollard, and P.-Y. Oudeyer. Intrinsically Motivated Goal Exploration Processes
with Automatic Curriculum Learning. CoRR, 2017. URL http://arxiv.org/abs/1708.
02190.

[19] M. Rolf, J. J. Steil, and M. Gienger. Goal babbling permits direct learning of inverse kinematics.
IEEE Transactions on Autonomous Mental Development, 2(3):216–229, 2010. ISSN 19430604.
doi:10.1109/TAMD.2010.2062511.

[20] S. M. Nguyen and P.-Y. Oudeyer. Socially guided intrinsic motivation for robot learning of
motor skills. Autonomous Robots, 36(3):273–294, 2014.

[21] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight Experience Replay. In Nips, jul 2017. URL http:
//arxiv.org/abs/1707.01495.

[22] C. Florensa, D. Held, M. Wulfmeier, and P. Abbeel. Reverse curriculum generation for
reinforcement learning. arXiv preprint arXiv:1707.05300, 2017.

[23] J. Schmidhuber. Powerplay: Training an increasingly general problem solver by continually
searching for the simplest still unsolvable problem. Frontiers in psychology, 4:313, 2013.

[24] A. Péré, S. Forestier, O. Sigaud, and P.-Y. Oudeyer. Unsupervised Learning of Goal Spaces for
Intrinsically Motivated Goal Exploration. In ICLR, pages 1–26, 2018. URL http://arxiv.
org/abs/1803.00781.

[25] I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell, S. Mohamed, and A. Lerchner.
Early Visual Concept Learning with Unsupervised Deep Learning. CoRR, jun 2016. URL
http://arxiv.org/abs/1606.05579.

[26] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN: Inter-
pretable Representation Learning by Information Maximizing Generative Adversarial Nets,
volume 9006 of Lecture Notes in Computer Science. Springer International Publishing, Cham,
2015. ISBN 978-3-319-16816-6. doi:10.1007/978-3-319-16817-3. URL http://arxiv.org/
abs/1606.03657http://link.springer.com/10.1007/978-3-319-16817-3.

[27] V. Thomas, E. Bengio, W. Fedus, J. Pondard, P. Beaudoin, H. Larochelle, J. Pineau, D. Precup,
and Y. Bengio. Disentangling the independently controllable factors of variation by interact-
ing with the world. pages 1–9, 2017. URL http://acsweb.ucsd.edu/{~}wfedus/pdf/
ICF{_}NIPS{_}2017{_}workshop.pdf.

[28] P. Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation systems for autonomous mental
development. IEEE Transactions on Evolutionary Computation, 11(2):265–286, apr 2007.
ISSN 1089778X. doi:10.1109/TEVC.2006.890271. URL http://ieeexplore.ieee.org/
document/4141061/.

[29] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013. ISSN
01628828. doi:10.1109/TPAMI.2013.50.

[30] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, A. Lerchner,
and G. Deepmind. beta-VAE: Learning Basic Visual Concepts with a Constrained Variational
Framework. In ICLR, number July, pages 1–13, 2017. URL https://openreview.net/
forum?id=Sy2fzU9gl.

[31] S. Forestier and P. Y. Oudeyer. Modular active curiosity-driven discovery of tool use. IEEE
International Conference on Intelligent Robots and Systems, 2016-Novem:3965–3972, 2016.
ISSN 21530866. doi:10.1109/IROS.2016.7759584.

[32] F. C. Y. Benureau and P.-Y. Oudeyer. Behavioral Diversity Generation in Autonomous Ex-
ploration through Reuse of Past Experience. Frontiers in Robotics and AI, 3(March), 2016.
ISSN 2296-9144. doi:10.3389/frobt.2016.00008. URL http://journal.frontiersin.
org/Article/10.3389/frobt.2016.00008/abstract.

11

http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1708.02190
http://dx.doi.org/10.1109/TAMD.2010.2062511
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1803.00781
http://arxiv.org/abs/1803.00781
http://arxiv.org/abs/1606.05579
http://dx.doi.org/10.1007/978-3-319-16817-3
http://arxiv.org/abs/1606.03657 http://link.springer.com/10.1007/978-3-319-16817-3
http://arxiv.org/abs/1606.03657 http://link.springer.com/10.1007/978-3-319-16817-3
http://acsweb.ucsd.edu/{~}wfedus/pdf/ICF{_}NIPS{_}2017{_}workshop.pdf
http://acsweb.ucsd.edu/{~}wfedus/pdf/ICF{_}NIPS{_}2017{_}workshop.pdf
http://dx.doi.org/10.1109/TEVC.2006.890271
http://ieeexplore.ieee.org/document/4141061/
http://ieeexplore.ieee.org/document/4141061/
http://dx.doi.org/10.1109/TPAMI.2013.50
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
http://dx.doi.org/10.1109/IROS.2016.7759584
http://dx.doi.org/10.3389/frobt.2016.00008
http://journal.frontiersin.org/Article/10.3389/frobt.2016.00008/abstract
http://journal.frontiersin.org/Article/10.3389/frobt.2016.00008/abstract

[33] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik,
A. A. Efros, and T. Darrell. Zero-Shot Visual Imitation. In ICLR, pages 1–12, 2018. URL
http://arxiv.org/abs/1804.08606.

[34] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner.
Understanding disentangling in β-VAE. In Nips, 2017.

[35] D. P. Kingma and J. L. Ba. Adam: a Method for Stochastic Optimization. International
Conference on Learning Representations 2015, pages 1–15, 2015. ISSN 09252312. doi:
http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503.

12

http://arxiv.org/abs/1804.08606
http://dx.doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
http://dx.doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503

(a) Direct-Model Meta-Policy

(b) Inverse-Model Meta-Policy

Figure 7: The two different approaches to construct a meta-policy mechanism.

6 Appendices

6.1 Intrinsically Motivated Goal Exploration Processes

In this part, we give further explanations on Intrinsically Motivated Goal Exploration Processes.

Meta-Policy Mechanism This mechanism allows, given a context c and a goal τ , to find the
parameters θ that are most likely to produce an outcome o fulfilling the task τ . The notion of an
outcome o fulfilling a task τ is quantified using a cost function C : T × O 7→ R. The cost function
can be seen as representing the fitness of the outcome o regarding the task τ .

The meta-policy can be constructed in two different ways which are depicted in Figure 7:

• Direct-Model Meta-Policy: In this case, an approximate phenomenon dynamic model D̃
is learned using a regressor (e.g. LWR). The model is then updated regularly by performing
a training step with the newly acquired data. At execution time, for a given goal τ , a
loss function is defined over the parameterization space through L(θ) = C(τ, D̃(θ, c)). A
black-box optimization algorithm, such as L-BFGS, is then used to optimize this function
and find the optimal set of parameters θ (see [3, 31, 32] for examples of such meta-policy
implementations in the IMGEP framework).

• Inverse-Model Meta-Policy: Here, an inverse model Ĩ : T × C 7→ Θ is learned from the
historyH which contains all the previous experiments in the form of tuples (ci, θi, oi). To

13

do so, every experiments outcomes oi must be turned into a task τi. The inverse model can
then be learned using usual regression techniques from the set {(τi, ci, θi)}.

In our case, we took the approach of using an Inverse-Model based Meta-Policy. We draw the
attention of the reader on the following implementation details:

• Depending on the case, multiple outcomes, and consequently multiple parameters can
optimally solve a task, while a combination of them cannot. This is known as the redundancy
problem in robotics and special approaches must be used to handle it when learning inverse
models, in particular within the IMGEP framework [3]. This has also been tackled under
the terminology of multi-modality in [33]. To solve this problem, we used a κ-nn regressor
with κ = 1.
• Turning outcomes {oi} into goals {τi} may prove difficult in some cases. Indeed, it may

happen that a given outcome does not solve optimally any task in the goal space, or that
it solves optimally multiple tasks. In our case, we assumed that the learned encoder is a
one-to-one map from outcome space to goal space and thus, that every outcome solves
optimally a unique task in each module. Hence, tasks were associated to outcomes using the
encoder R: τi := R(oi).

• Since the different modules are associated to projection operators, each produced outcome
o optimally solve one task for each module. Indeed, if we consider projections on the
canonical axis of the latent space, o will solve one task for each module, corresponding to
each component of R(o). This mechanism allows to leverage information of every single
outcome, for all goal-space modules. For this reason, one κ-nearest-neighbor model was
used for each module of the goal space. At each exploration iteration all the modules are
updated using their associated projection operators on the embedding of the outcome.

Our particular implementation of the Meta-Policy is outlined in Algorithm 3. The Meta-Policy is in-
stantiated with one database per goal module. Each database store the representations of the outcomes
projected on its associated subspace together with the associated contexts and parameterizations.
Given that the meta policy is implemented with a nearest neighbor regressor, training the meta policy
simply amounts to updating all the databases. Note that, as stated above, even though at each step the
goal is sampled in only one module, the outcome obtained after an exploration iteration is used to
update all databases.

Algorithm 3: Meta-Policy (simple implementation using a nearest-neighbor model)
1 Require: Goal modules: {R,Pk, γ(τ |k), Ck}k∈{1,..,nmod}
2 Function Initialize_Meta-Policy(H):
3 for k ∈ {1, .., nmod} do
4 databasek ← VoidDatabase
5 for (c, θ, o) ∈ H do
6 Add (c, θ, PkR(o)) to databasek

7 Function Update_Meta-Policy(c, θ, o):
8 for k ∈ {1, .., nmod} do
9 Add (c, θ, PkR(o)) to databasek

10 Function Infer_parameterization(c, τ, k):
11 θ ← NearestNeighbor(databasek, c, τ)
12 return θ

Active module sampling based on Interest measure Recalling from the paper, at each iteration,
the probability of sampling a specific module Ti is given by:

γ(i) := 0.9× Υi(t)∑N
k=1 Υk(t)

+ 0.1× 1

N
,

where Υi(t) represents the interest of the Ti module after t iterations. LetH(i)
t = {(τi, θi, oi)}τi∈TI

be the history of experiments obtained when the goal was sampled in module Ti. The progress at

14

Figure 8: Kullback-Leibler divergence of each latent variable over training.

exploration step t is defined as:

δt = C(τt, o
′)− C(τt, ot), (3)

where ot and τt are respectively the outcome and goal for the current exploration step and o′ is the
outcome associated to the experiment inH(i)

t for which the goal τ ′ is the closest to τt. The interest
of a module is designed to track the progress. Specifically, the interest of each module is updated
according to:

Υi(t) =
n− 1

n
Υi(t− 1) +

1

n
δt, (4)

where n = 1000 is a decay rate that ensures that if no progress is made the interest of the module
will go to zero over time. One can refer to [31] for details on this approach.

Projection criterion for VAE and βVAE An important aspect of the MUGL algorithm is the
choice of the projection operators {Pk}. In this work, the representation learning algorithms are VAE
and βVAE. In this case, two projection schemes can be considered:

• Projection on all canonical axis: nd projection operators, each projecting the latent point
on a single latent axis.

• Projection on 2D planes sorted by DKL: nd
2 projection operators, each projecting on a

2D plane aligned with latent axis. The grouping of dimensions as 2D planes is performed
by sorting the dimensions by increasing DKL, i.e. the divergence is computed for each
dimension, by projecting the latent representation on the dimension and measuring its
divergence with the unit gaussian prior. Latent dimensions are then grouped two by two
according to their DKL value.

In this work we mainly considered the second grouping scheme. The first grouping scheme could
be considered to discover which features can be controlled. Of course in practice one often does
not know in advance how many latent variables should be grouped together and it can be necessary
to consider more advanced grouping schemes. In practice it is often the case that latent variables
which correspond to the same objects have similar KL divergence value (see Figure 8 for an example
of a training curve and appendix 6.2 for an explanation of this phenomenon). As such it could be
envisioned to group latent variables which have similar KL divergence together.

6.2 Deep Representation Learning Algorithms

In this section we summarize the theoretical arguments behind Variational AutoEncoder (VAE) and
βVAE.

Variational Auto-Encoders (VAEs) Let x ∈ X be a set of observations. If we assume that the
observed data are realizations of a random variable, we can hypothesize that they are conditioned
by a random vector of independent factors z, i.e. that p(x, z) = p(z)pθ(x, z), where p(z) is a prior

15

distribution over z and pθ(x, z) is a conditional distribution. In this setting, given a i.i.d dataset
X = {x1, . . . ,xN}, learning the model amount to searching the parameters θ that maximizes the
dataset likelihood:

logL(D) =

N∑
i=1

log pθ(x
i) (5)

However, in most cases, the marginal probability:

pθ(x) =

∫
p(x, z)dz (6)

and the posterior probability:

pθ(z|x) =
p(x, z)

p(z)
=

p(x, z)∫
p(x, z)dz

(7)

are both computationally intractable, making the maximum likelihood estimation unfeasible. To
overcome this problem, we can introduce an arbitrary distribution qφ(z|x) and remark that the
following holds:

log pθ(x) = L(x; θ, φ) + DKL [qφ(z|x)‖pθ(z|x)] , (8)

where DKL denotes the Kullback-Leibler (KL) divergence and

L(x; θ, φ) = Ez∼qφ(z|x)[log pθ(x|z)]− DKL[qφ(z|x)‖pθ(z)]. (9)

Since the KL divergence is non-negative, it follows from (8) that:

L(x; θ, φ) ≤ log pθ(x)− DKL([qφ(z|x)‖pθ(z|x)] (10)

for any distribution q, hence the name of Evidence Lower Bound (ELBO). Consequently, maximizing
the ELBO has the effect to maximize the log likelihood, while minimizing the KL-Divergence
between the approximate qφ(z|x) distribution, and the true unknown posterior pθ(z|x). The approach
taken by VAEs is to learn the parameters of both conditional distributions pθ(x|z) and qφ(z|x) as
non-linear functions. This is done by maximizing the ELBO of the dataset:

L(θ, φ) =

N∑
i=1

L(xi; θ, φ) (11)

by jointly optimizing over the parameters θ and φ. When the prior p(z) is an isotropic unit Gaussian
distribution and the variational approximation qφ(z|x) and p(z|ψ) follow a Multivariate Gaussian
distribution with diagonal covariance, the KL divergence term can be computed in a closed form.

β Variational Auto-Encoders (βVAEs) In essence, a VAE can be understood as an AutoEncoder
with stochastic units (qφ(z|x) plays the role of an encoder while pθ(x|z) plays the role of the decoder),
together with a regularization term given by the KL divergence between the approximation of the
posterior and the prior. This term ensures that the latent space is structured. The existence of a prior
over the latent variables gives the ability to use a VAE as a generative model, and latent variables
sampled according to the prior p(z) can be transformed by the decoder into samples.

Ideally, in order to be more easily interpretable, we would like to have a disentangled representation,
i.e. a representation where a single latent is sensitive to changes in only one generative factor while
being invariant to changes in other factors. When the prior distribution p(z) is an isotropic unit
Gaussian distribution (p(z) = N (0, I)) the role of the regularization term can be understood as a
pressure that encourages the VAE to learn independent latent factors z. As such, it was suggested in
[25, 30] that modifying the training objective to:

L(x; θ, φ) = Ez∼qφ(z|x)[log pθ(x|z)]− βDKL[qφ(z|x)‖pθ(z)], (12)

where β is an additional parameter, will allow one to control the degree of applied pressure to learn
independent generating factors by tuning the parameter β. In particular values of β higher than 1
should lead to representations with better disentanglement properties.

One of the drawbacks of βVAE is that for large values of β the reconstruction cost is often dominated
by the KL divergence term. This leads to poor reconstructed samples where the model ignores some

16

of the factors of variation altogether. In order to tackle this issue, it was further suggested in [34] to
modify the training objective to be:

L(x; θ, φ) = Ez∼qφ(z|x)[log pθ(x|z)]− β|DKL[qφ(z|x)‖pθ(z)]− C|, (13)

where C is a new parameter that defines the capacity of the VAE. The value of C determines the
capacity of the network to encode information in the latent variables. For low values of the capacity
the network will mostly reconstruct properties which have a high reconstruction cost whereas high
capacity ensures that the network can have a low reconstruction error. By optimizing the training
objective (13) with a gradually increased capacity the network will start to encode features with
high reconstruction cost and then progressively encode more factors of variations whilst retaining
disentangling in previously learned factors. At the end of the training one should thus obtain a
representation with good disentanglement properties where each factor of variation is encoded into a
unique latent variable.

In our experiments we used the training objective of Eq. (13) as detailed in Sec. 6.4.

6.3 Disentanglement properties

We compared the disentanglement properties of two representations. One with the procedure outlined
in Sec. 6.2 with β = 150 and a capacity linearly increased to 12 over the course of the training. The
other representation was a vanilla VAE with β = 1. In order to assess the disentanglement properties
of the two representations we performed a latent traversal study. The results of which are displayed
in Figure 9.

It was experimentally observed that the positions of the two balls were indeed disentangled in most
cases when the representation was obtained using a βVAE even though the data used for the training
was generated using independent samples for the position of the two balls. As explained in the
previous section, this effect can be understood as follows: since the two balls do not have the same
reconstruction cost, the VAE tends to reconstruct the object with the highest reconstruction cost first
(in this case the largest ball), and when the capacity reaches the adequate value, it starts reconstructing
the other ball [34]. It follows that the latent variables encoding for the position of the two balls are
often disentangled.

6.4 Details of Neural Architectures and training

Model Architecture The encoder for the VAEs consisted of 4 convolutional layers, each with 32
channels, 4x4 kernels, and a stride of 2. This was followed by 2 fully connected layers, each of 256
units. The latent distribution consisted of one fully connected layer of 20 units parametrizing the
mean and log standard deviation of 10 Gaussian random variables. The decoder architecture was the
transpose of the encoder, with the output parametrizing Bernoulli distributions over the pixels. ReLu
were used as activation functions. This architecture is based on the one proposed in [25].

Training details For the training of the disentangled representation we followed the procedure
outlined in Sec. 6.2. The value of β was 150 and the capacity was linearly increased from 0 to 12
over the course of 400,000 training iterations. The optimizer used was Adam [35] with a learning rate
of 5e−5 and batch size of 64. The overall training of the representation took 1M training iterations.
For the training of the entangled representation the same procedure was followed except that β was
set to 1 and that the capacity was set to 0.

6.5 Interest curves for Projection on all canonical axis

In the main text of the paper we discussed the case of 5 modules. In general one can imagine having
one modules per latent variable. In this case the agent would learn to discover and control each of the
latent variables separately.

In Figure 10 is represented the interest curves when there are 10 modules, one for each latent variable.
When the representation is disentangled (βVAE), the interest is high only for modules which encode
for some degrees of freedom of the ball. On the other hand, when the representation is entangled, the
interest follows some kind of random walk for all modules. This is due to the fact that all the modules
encode for both the ball and the distractor position which introduces some noise in the prediction of
each module.

17

(a) Disentangled latent representation learned by Beta-
VAE (b) Entangled latent representation learned with VAE

Figure 9: (a) Latent traversal study for a disentangled representation (βVAE). Each row represents a
latent variable and rows are ordered by KL divergence (lowest at the bottom). Each row represents
the reconstruction obtained from the traversal of each latent variable over three standard variation
around the unit Gaussian prior mean while keeping the other latent variables to the value obtained
by running inference on an image of the dataset. From the picture it is clear that the first two latent
variables encode the x and y position of the Ball and that the third and fourth latent variables encode
the x and y position of the Distractor. At the end of the training the remaining latent variables have
converged to the unit Gaussian prior. (b) Similar analysis for an entangled representation (VAE). No
latent variable encode for a single factor of variation.

(a) Disentangled representation (βVAE) (b) Entangled representation (VAE)

Figure 10: Interest curves for Projection on all canonical axis

18

Figure 11: Exploration ratio through epochs for all the exploration algorithms in the Arm-2-Balls
environment with a distractor that does not move.

6.6 Effect of noise in the distractor

We also experimented with different noise level in the displacement of the distractor. As expected,
when the noise level is low, the distractor does not move very far from its initial position and no longer
acts as a distractor. In this case there is no advantage of using a modular algorithm as illustrated
by Figure 11. However, it is still beneficial to have a disentangled representation since it helps in
learning good inverse models.

6.7 Exploration Curves

Examples of exploration curves obtained with all the exploration algorithms discussed in this paper
(Figure 12 for algorithms with engineered features representation and Figure 13 for algorithms with
learned goal spaces). It is clear that the random parameterization exploration algorithm fails to
produce a wide variety of outcomes. Although the random goal exploration algorithms perform much
better than the random parameterization algorithm, they tend to produce outcomes that are cluttered in
a small region of the space. On the other hand the outcomes obtained with modular goal exploration
algorithms are scattered over all the accessible space, with the exception of the case where the goal
space is entangled (VAE).

19

(a) Random Parameterization Exploration

(b) Random Goal Exploration with Engineered Features Representation (RGE-EFR)

(c) Modular Goal Exploration with Engineered Features Representation (MGE-EFR)

Figure 12: Examples of achieved outcomes together with the ratio of covered cells in the Arm-2-Balls
environment for RPE, MGE-EFR and RGE-EFR exploration algorithms. The number of times the
ball was effectively handled is also represented.

20

(a) Random Goal Exploration with an entangled representation (VAE) as a goal space (RGE-VAE)

(b) Modular Goal Exploration with an entangled representation (VAE) as a goal space (MGE-VAE)

(c) Random Goal Exploration with a disentangled representation (βVAE) as a goal space (RGE-βVAE)

(d) Modular Goal Exploration with a disentangled representation (βVAE) as a goal space (MGE-βVAE)

Figure 13: Examples of achieved outcomes together with the ratio of covered cells in the Arm-2-Balls
environment for MGE and RGE exploration algorithms using learned goal spaces (VAE and βVAE).
The number of times the ball was effectively handled is also represented.

21

	1 Introduction
	2 Modular goal exploration with learned goal spaces
	2.1 Intrinsically motivated goal exploration processes with modular goal spaces
	2.2 Modular Unsupervised Goal-space Learning for IMGEP

	3 Experiments
	4 Results
	5 Conclusion
	6 Appendices
	6.1 Intrinsically Motivated Goal Exploration Processes
	6.2 Deep Representation Learning Algorithms
	6.3 Disentanglement properties
	6.4 Details of Neural Architectures and training
	6.5 Interest curves for Projection on all canonical axis
	6.6 Effect of noise in the distractor
	6.7 Exploration Curves

