314,874 research outputs found

    Extension of the past lifetime and its connection to the cumulative entropy

    Full text link
    Given two absolutely continuous nonnegative independent random variables, we define the reversed relevation transform as dual to the relevation transform. We first apply such transforms to the lifetimes of the components of parallel and series systems under suitably proportionality assumptions on the hazards rates. Furthermore, we prove that the (reversed) relevation transform is commutative if and only if the proportional (reversed) hazard rate model holds. By repeated application of the reversed relevation transform we construct a decreasing sequence of random variables which leads to new weighted probability densities. We obtain various relations involving ageing notions and stochastic orders. We also exploit the connection of such a sequence to the cumulative entropy and to an operator that is dual to the Dickson-Hipp operator. Iterative formulae for computing the mean and the cumulative entropy of the random variables of the sequence are finally investigated

    Computationally efficient algorithms for the two-dimensional Kolmogorov-Smirnov test

    Get PDF
    Goodness-of-fit statistics measure the compatibility of random samples against some theoretical or reference probability distribution function. The classical one-dimensional Kolmogorov-Smirnov test is a non-parametric statistic for comparing two empirical distributions which defines the largest absolute difference between the two cumulative distribution functions as a measure of disagreement. Adapting this test to more than one dimension is a challenge because there are 2^d-1 independent ways of ordering a cumulative distribution function in d dimensions. We discuss Peacock's version of the Kolmogorov-Smirnov test for two-dimensional data sets which computes the differences between cumulative distribution functions in 4n^2 quadrants. We also examine Fasano and Franceschini's variation of Peacock's test, Cooke's algorithm for Peacock's test, and ROOT's version of the two-dimensional Kolmogorov-Smirnov test. We establish a lower-bound limit on the work for computing Peacock's test of Omega(n^2.lg(n)), introducing optimal algorithms for both this and Fasano and Franceschini's test, and show that Cooke's algorithm is not a faithful implementation of Peacock's test. We also discuss and evaluate parallel algorithms for Peacock's test

    Mean-Variance Optimization in Markov Decision Processes

    Get PDF
    We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudopolynomial exact and approximation algorithms.Comment: A full version of an ICML 2011 pape

    Correlator Bank Detection of GW chirps. False-Alarm Probability, Template Density and Thresholds: Behind and Beyond the Minimal-Match Issue

    Full text link
    The general problem of computing the false-alarm rate vs. detection-threshold relationship for a bank of correlators is addressed, in the context of maximum-likelihood detection of gravitational waves, with specific reference to chirps from coalescing binary systems. Accurate (lower-bound) approximants for the cumulative distribution of the whole-bank supremum are deduced from a class of Bonferroni-type inequalities. The asymptotic properties of the cumulative distribution are obtained, in the limit where the number of correlators goes to infinity. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a gaussian-correlation inequality. The result is used to estimate the optimum template density, yielding the best tradeoff between computational cost and detection efficiency, in terms of undetected potentially observable sources at a prescribed false-alarm level, for the simplest case of Newtonian chirps.Comment: submitted to Phys. Rev.

    Computation of the Marcum Q-function

    Get PDF
    Methods and an algorithm for computing the generalized Marcum QQ-function (Qμ(x,y)Q_{\mu}(x,y)) and the complementary function (Pμ(x,y)P_{\mu}(x,y)) are described. These functions appear in problems of different technical and scientific areas such as, for example, radar detection and communications, statistics and probability theory, where they are called the non-central chi-square or the non central gamma cumulative distribution functions. The algorithm for computing the Marcum functions combines different methods of evaluation in different regions: series expansions, integral representations, asymptotic expansions, and use of three-term homogeneous recurrence relations. A relative accuracy close to 101210^{-12} can be obtained in the parameter region (x,y,μ)[0,A]×[0,A]×[1,A](x,y,\mu) \in [0,\,A]\times [0,\,A]\times [1,\,A], A=200A=200, while for larger parameters the accuracy decreases (close to 101110^{-11} for A=1000A=1000 and close to 5×10115\times 10^{-11} for A=10000A=10000).Comment: Accepted for publication in ACM Trans. Math. Soft
    corecore