38,716 research outputs found

    Cultural Learning in a Dynamic Environment: an Analysis of Both Fitness and Diversity in Populations of Neural Network Agents

    Get PDF
    Evolutionary learning is a learning model that can be described as the iterative Darwinian process of fitness-based selection and genetic transfer of information leading to populations of higher fitness. Cultural learning describes the process of information transfer between individuals in a population through non-genetic means. Cultural learning has been simulated by combining genetic algorithms and neural networks using a teacher/pupil scenario where highly fit individuals are selected as teachers and instruct the next generation. This paper examines the effects of cultural learning on the evolutionary process of a population of neural networks. In particular, the paper examines the genotypic and phenotypic diversity of a population as well as its fitness. Using these measurements, it is possible to examine the effects of cultural learning on the population's genetic makeup. Furthermore, the paper examines whether cultural learning provides a more robust learning mechanism in the face of environmental changes. Three benchmark tasks have been chosen as the evolutionary task for the population: the bit-parity problem, the game of tic-tac-toe and the game of connect-four. Experiments are conducted with populations employing evolutionary learning alone and populations combining evolutionary and cultural learning in an environment that changes dramatically.Cultural Learning, Dynamic Environments, Diversity, Multi-Agent Systems, Artificial Life

    Modeling the Evolution of Artifact Capabilities in Multi-Agent Based Simulations

    Get PDF
    Cognitive scientists agree that the exploitation of objects as tools or artifacts has played a significant role in the evolution of human societies. In the realm of autonomous agents and multi-agent systems, a recent artifact theory proposes the artifact concept as an abstraction for representing functional system components that proactive agents may exploit towards realizing their goals. As a complement, the cognition of rational agents has been extended to accommodate the notion of artifact capabilities denoting the reasoning and planning capacities of agents with respect to artifacts. Multi-Agent Based Simulation (MABS) a well established discipline for modeling complex social systems, has been identified as an area that should benefit from these theories. In MABS the evolution of artifact exploitation can play an important role in the overall performance of the system. The primary contribution of this dissertation is a computational model for integrating artifacts into MABS. The emphasis of the model is on an evolutionary approach that facilitates understanding the effects of artifacts and their exploitation in artificial social systems over time. The artifact theories are extended to support agents designed to evolve artifact exploitation through a variety of learning and adaptation strategies. The model accents strategies that benefit from the social dimensions of MABS. Realized with evolutionary computation methods specifically genetic algorithms, cultural algorithms and multi-population cultural algorithms, artifact capability evolution is supported at individual, population and multi-population levels. A generic MABS and case studies are provided to demonstrate the use of the model in new and existing MABS systems. The accommodation of artifact capability evolution in artificial social systems is applicable in many domains, particularly when the modeled system is one where artifact exploitation is relevant to the evolution of the society and its overall behavior. With artifacts acknowledged as major contributors to societal evolution the impact of our model is significant, providing advanced tools that enable social scientists to analyze their findings. The model can inform archaeologists, economists, evolution theorists, sociologists and anthropologists among others

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    Human-Agent Decision-making: Combining Theory and Practice

    Full text link
    Extensive work has been conducted both in game theory and logic to model strategic interaction. An important question is whether we can use these theories to design agents for interacting with people? On the one hand, they provide a formal design specification for agent strategies. On the other hand, people do not necessarily adhere to playing in accordance with these strategies, and their behavior is affected by a multitude of social and psychological factors. In this paper we will consider the question of whether strategies implied by theories of strategic behavior can be used by automated agents that interact proficiently with people. We will focus on automated agents that we built that need to interact with people in two negotiation settings: bargaining and deliberation. For bargaining we will study game-theory based equilibrium agents and for argumentation we will discuss logic-based argumentation theory. We will also consider security games and persuasion games and will discuss the benefits of using equilibrium based agents.Comment: In Proceedings TARK 2015, arXiv:1606.0729
    corecore