96,777 research outputs found
Modelling of heat transfers and prediction of crystallization during cooling of chicken fat
Heat transfers that occurred during chicken fat dry fractionation process were characterized. The heat flux model developed led to follow the heat flux associated with crystallization (?r) during the cooling step. A crystallization kinetics was performed by measuring the solid content of the suspension of crystals at regular intervals by low-resolution pulsed nuclear magnetic resonnance. The variation of the total heat of crystallization calculated from the thermal model developed in this study was in good agreement with the crystallization kinetics. The results reported suggested that monitoring ?r during cooling could be useful for the prediction and control of crystallization kinetics and therefore the yield of fat dry fractionation process. (Résumé d'auteur
The crystallization of tough thermoplastic resins in the presence of carbon fibers
The crystallization kinetics of the thermoplastic resins poly(phenylene sulfide) (PPS) and poly(aryl-ether-ether-ketone) (PEEK) in the presence and in the abscence of carbon fibers was studied. How carbon fiber surfaces in composites affect the crystallization of tough thermoplastic polymers that may serve as matrix resins were determined. The crystallization kinetics of such substances can provide useful information about the crystallization mechanisms and, thus, indicate if the presence of carbon fibers cause any changes in such mechanisms
Vitrification and determination of the crystallization time scales of the bulk-metallic-glass-forming liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3
The crystallization kinetics of Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 were studied in an electrostatic levitation (ESL) apparatus. The measured critical cooling rate is 1.75 K/s. Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 is the first bulk-metallic-glass-forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the ESL. Furthermore, the sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. The shortest time to reach crystallization in an isothermal experiment; i.e., the nose of the TTT diagram is 32 s. The nose of the TTT diagram is at 900 K and positioned about 200 K below the liquidus temperature
Controlling the isothermal crystallization of isodimorphic PBS-ran-PCL random copolymers by varying composition and supercooling
In this work, we study for the first time, the isothermal crystallization behavior of isodimorphic random poly(butylene succinate)-ran-poly(e-caprolactone) copolyesters, PBS-ran-PCL, previously synthesized by us. We perform nucleation and spherulitic growth kinetics by polarized light optical microscopy (PLOM) and overall isothermal crystallization kinetics by differential scanning calorimetry (DSC). Selected samples were also studied by real-time wide angle X-ray diffraction (WAXS). Under isothermal conditions, only the PBS-rich phase or the PCL-rich phase could crystallize as long as the composition was away from the pseudo-eutectic point. In comparison with the parent homopolymers, as comonomer content increased, both PBS-rich and PCL-rich phases nucleated much faster, but their spherulitic growth rates were much slower. Therefore, the overall crystallization kinetics was a strong function of composition and supercooling. The only copolymer with the eutectic composition exhibited a remarkable behavior. By tuning the crystallization temperature, this copolyester could form either a single crystalline phase or both phases, with remarkably different thermal propertiesPeer ReviewedPostprint (published version
The crystallization of asymmetric patchy models for globular proteins in solution
Asymmetric patchy particle models have recently been shown to describe the
crystallization of small globular proteins with near quantitative accuracy.
Here, we investigate how asymmetry in patch geometry and bond energy generally
impact the phase diagram and nucleation dynamics of this family of soft matter
models. We find the role of the geometry asymmetry to be weak, but the energy
asymmetry to markedly interfere with the crystallization thermodynamics and
kinetics. These results provide a rationale for the success and occasional
failure of George and Wilson's proposal for protein crystallization conditions
as well as physical guidance for developing more effective protein
crystallization strategies.Comment: 10 pages, 8 figure
Investigation of the kinetics of crystallization of molten binary and ternary oxide systems Quarterly status report, 1 Dec. 1968 - 28 Feb. 1969
Kinetics of crystallization of molten binary and ternary oxide system
Experimental determination of a time–temperature-transformation diagram of the undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy using the containerless electrostatic levitation processing technique
High temperature high vacuum electrostatic levitation was used to determine the complete time–temperature–transformation (TTT) diagram of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass forming alloy in the undercooled liquid state. This is the first report of experimental data on the crystallization kinetics of a metallic system covering the entire temperature range of the undercooled melt down to the glass transition temperature. The measured TTT diagram exhibits the expected "C" shape. Existing models that assume polymorphic crystallization cannot satisfactorily explain the experimentally obtained TTT diagram. This originates from the complex crystallization mechanisms that occur in this bulk glass-forming system, involving large composition fluctuations prior to crystallization as well as phase separation in the undercooled liquid state below 800 K
Investigation of the kinetics of crystallization of molten binary and ternary oxide systems Quarterly status report, 1 Mar. - 30 Nov. 1968
Glass composition preparation and research on crystallization kinetics of molten binary and ternary oxide systems of glas
Crystallization kinetics of poly(lactic acid)-talc composites
The crystallization kinetics of Poly(lactic acid) / talc composites were determined over a range of 0 wt.% to 15 wt.% of talc. Talc was found to change the crystallization kinetics. The presence of talc increases the crystallization rate and this increase is related to talc concentration and to crystallization temperature. In order to understand the effect of talc and PLA crystallinity on mechanical properties, dynamic mechanical thermal analyses were performed on Poly(lactic acid) / talc composites before and after an annealing process. It was demonstrated that the presence of crystals improves thermo-mechanical properties but in order to achieve good results at high temperatures the reinforcing effect of a filler such as talc is necessar
The glass transition and crystallization kinetic studies on BaNaB9O15 glasses
Transparent glasses of BaNaB9O15 (BNBO) were fabricated via the conventional
melt-quenching technique. The amorphous and the glassy nature of the
as-quenched samples were respectively, confirmed by X-ray powder diffraction
(XRD) and differential scanning calorimetry (DSC). The glass transition and
crystallization parameters were evaluated under non-isothermal conditions using
DSC. The correlation between the heating rate dependent glass transition and
the crystallization temperatures was discussed and deduced the Kauzmann
temperature for BNBO glass-plates and powdered samples. The values of the
Kauzmann temperature for the plates and powdered samples were 776 K and 768 K,
respectively. Approximation-free method was used to evaluate the
crystallization kinetic parameters for the BNBO glass samples. The effect of
the sample thickness on the crystallization kinetics of BNBO glasses was also
investigated.Comment: 23 pages, 12 figure
- …
