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Investigation of the Kinetics of Crystallization of 

Molten Binary and Ternary Oxide Systems 

Summary and Quarterly Status Report No. 13 - March 1, 1968 through November 30, 1968 

Contract No. NASW-1301 

This report deals in detail with the work carried out in the thirteenth 
quarter of Contract NASW-1301, a period which started September 1, 1968 and 
ended November 30, 1968. The report also summarizes the research of the nine-
month contractual period starting March 1, 1968 and ending November 30, 1968. 
In the nine-month period eighty-three new glass compositions were prepared and 
partially characterized through various property measurements such as density, 
modulus and fiberizability. The research program recently has comprised essentially 

—__threareas, the cordierite-rare earth and/or zirconia glass region, the UARL invert 
analog glass systems, and a pre1imiiary-eva-lua-t-ien-of-_the_mechanical properties of 

two-phase glass systems. 

Good results to date have been obtained in the UARL invert analog glass series 
where several compositions have been found with values for Young's modulus of 20.7, 
20.19, 20.25 million psi for bulk samples, and for the 20.1 million psi samples a 
specific modulus of 6.82 million psi per gram per cubic centimeter. Equally good 
results are shown by the cordierite-rare earth and/or zirconia system with glasses 

having moduli of 22.36, 20.12, and 19. 23 million psi for bulk samples and with a 
specific modulus again in hybrid units of 7.38 for the highest one of these. A 
promising new direction has been found based on the fact that in some glasses a 
second phase due to heat treatment develops so rapidly that it is present in 
glass fibers drawn at high rates of speed with a resultant improvement in modulus. 

INTRODUCTION 

This is the thirteenth quarterly report for Contract NASW-1301 entitled 
"Investigation of the Kinetics of Crystallization of Molten Binary and Ternary 
Oxide Systems." It is also the summary report-for the fourth contractual period 
which included the eleventh, twelfth, and thlfteenth quarters. The twelfth 
quarter started September 1, 1968 and ended November 30, 1968 while the nine-month 
contractual extension period ran from March 1, 1968 through November 30, 1968.
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The primary objective of this contract is to gain a better understanding of 
the mechanisms of glass formation by measuring the rate at which crystallization 
occurs and the effect of antinucleating agents on the observed crystallization 
rate for systems which tend to form complex three-dimensional structures. The 
molten oxide systems selected for study, the reasons for their selection, and the 
methods used to prepare them form the first major section of this report. It will 
be noted that the report emphasizes those molten oxide systems that tend to form 
complex three-dimensional structures such as rings or interpenetrating layers 
since this approach, as will be shown, has resulted in several new glass compositions 
with increased values for Young's modulus. 

The research, therefore, continues to emphasize the viewpoint that glass 
formation must be considered as a rate phenomenon and will continue to concen-
trate on systems that tend to form complex many-atom three-dimensional molecules 
and which have suitable viscosity and surface tension to permit mechanical drawing 
of glass fibers. This view of the glass formation process justifies the consider-
ation of oxide systems previously thought impractical and allows the search for 
systems that may yield high-strength, high-modulus glass fibers to be carried out 
on an unusually broad basis. 

In addition, the research indicates that the effect of microstructure of 
e the answer to such 

a program is not predictable from any surmise while preliminary experiments at 
UA.RL indicate both that such structures may increase the modulus and can be 
induced in mechanical drawn fibers without any alteration in the drawing process. 

Measurement of crystallization rates in molten oxides using microscopic 
observations and a inicrofurnace proved that lanthanum oxide successfully lowered 
the rate of crystallization for glasses in the cordierite field. In this quarter 
the electron microprobe was used to investigate the role played by lanthanum 
oxide in crystallization kinetics and the results are reported in the second 
section of the report. Observations of the liquidus and working range using 
the same equipment proved very helpful in deciding which compositions could be 
successfully fiberized and these observations are also included in this second 
report section. 

Characterization of the experimental glasses produced as bulk specimens is 
the subject of the third section of the report. Such characterization is 
largely achieved by measuring the density, and determining Young's modulus for 
bulk samples of the experimental glasses. Originally, specimens for measuring 
Young's modulus of bulk glasses were made by first casting a glass slab, anneal-
ing it, and then cutting rectangular bars from the slab by precision optical 
grinding techniques. Now, however, we form samples suitable for modulus 
determinations by pulling molten glass into fused silica tubes by the use of 
controlled suction with hypodermic syringes so that such measurement of Young's 
modulus is now much cheaper and more expedient. 

2



H910373-13 

The actual making of a glass fiber from a given composition is, of course, 
the best test for the fiberizing characteristics of that composition and details 
of this process together with the evaluation of Young's modulus for the glass 
fiber form the fourth and concluding section of the experimental data. 

SELECTION AND PREPARATION OF GLASS SYSTEMS FOR 
PRELIMINARY EVALUATION 

Low Atomic Number Oxide Components are Primary Choice 

Since the ultimate long-range objective of this program is the attainment 
of high-modulus, high-strength-to-density continuous vitreous fibers, research 
will be largely concentrated on complex molecules composed of low atomic number 
oxides such as those shown in the tabulation below (Ref. i). 

Moduli-Density Values for Several Low Atomic Number Oxides 

You- g's Moulus 

Modulus Density Maximum Streggth Density Ratio 

Oxide (106 psi) (ns/cm3) (5% Strain - 10	 psi) 106 psi/gms/cm3 

Al203 76 4.o 3.8 19 

BeO 51 3.0 2.6 17 

MgO 35 3.5 1.8 10 

SiO2 10.5 2.2 0.53 5 

MgO Al203 35 3.6 1.8 10 

Ti02 141 14.26 2.06 9.6

For this reason, specific molecular systems considered have been silicates 
(since silica is the best-known glass former) such as cordierite, A13M92 
(Si5A1)Ol8, known to have a ring crystal structure with ions arranged in sheets 
but not a layer structure (Ref. 2); benitoite, BaTiSi 309 1 likewise a complex 
three-dimensional structure (Ref. 2); and beryl, Be3Al2S16O18, a ring structure 
like that of cordierite. The low value for silica in contrast to the other 
oxides indicate that the percentage of silica in such a glass must be held at 
a minimum if high moduli are to be achieved. The major constituent, silica 
which provides the glass structure and the desired viscosity characteristics, 
can be regarded as a necessary evil and the positive direction for modulus 
improvement clearly lies in using no more silica than necessary and so leads 
to the consideration of invert analog glasses as we show in a later section. 
It is only natural, also that one should devote some attention to glass systems 
other than silica and UARL continues its efforts in this area although all such 
nonsilica systems prepared by us to date have such high densities that specific 
moduli are very disappointing as shown in our earlier reports. 
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Results with Cordierite Glasses Indicate Need for Further Work 

Eighty-three new glass compositions were conceived, prepared, melted and 
partially characterized in this nine-month period increasing the number of 
original glass formulations studied under this program to three hundred and 
forty-nine. Compositions for all new glasses prepared are shown in Table I. 
Glasses 262 and 263 of Table Ia, 301, 305 and 306 of Table le and 319, 320 and 
321 of Table If below belong to the cordierite glass system with extensive 

additions of rare earths as major constituents. 'Cordierite or Mg 2Al4Si501 is 

a three-dimensional ring former, as discussed in earlier UARL reports (UARL 

E910373- 14 et seq.), and these glasses that include major quantities of one of 
the rare earths such as lanthana, ceria or yttria are delayed in devitrification 
by the additions (UARL G910373-11 and this report). Zirconia has been found to 

show a similar effect on the devitrification •rate for cordierite glasses. The 
rare earth additions and the zirconia addition also markedly increase the elastic 
modulus of the glasses of the cordierite family. As will be apparent later in 
this report (Table Iv) elastic moduli as high as 19. 23 million psi are obtainable 

for bulk specimens of the cordierite glass system without any toxic components 

such as beryllia. 

—Glasses_AnalogQ,2_"Inver t " Glasses Show Best Results to Date 

The very new UARL experimental glasses considered in this section of the 
report belong to a region of glass composition analogous to Stevels' "invert" 

glasses. 

The concept developed by J. M. Stevels and his associates from 195 4 on was 

that by a proper combination of oxides, stable metasilicate glasses could be 
obtained. A typical example cited by Stevels is 50 mol % Si0 2 and 12.5 mol % 

of the four materials Na 20, K20, CaO, BaO. Dr. Stevels explained this "anomalous" 
case of glass formation by saying that "by choosing a batch with a great number 
of network modifiers the 'glue' between the chains is so irregular that crystal-
lization is prevented." Obviously, by using a combination of alkali oxides and 
a combination of alkaline earth oxides as preferred by Stevels, the liquidus 
temperature can be lowered and the field of glass formation can be increased. 

Weyl (Ref. 3) states further that Trap and Stevels characterized the coherence 
of their silicate glasses by a structural parameter Y denoting the average number 

of bridging ions per Si014 tetrahedron. This parameter may be calculated from 

the expression

Y = 6 - 200 where P = mol % Si02 

so that when P = 33-1/3, Y = 0 and SiO1. 	 groups are isolated; when P = 140%, 

Y = 1 and on the average Si014 14 groups appear in pairs. Commercial silicate 

glasses, on the other hand, have Y values between 3.0 and 3.5 in agreement with 
the Zachareisen rules for stable glass formation which state that a stable 

4
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TABLE Is. 

New Experimental Glass Batches
Actual Ingredients in Grains 

262 263 2614 265 

29.4 
153.2 
359.0 

9.14 

3145.5 175.5 --- 128.5 
105.0 56.5 --- 65.14 
13.5 7.35 --- 25.9 
75.6 --- ---

514 2.0 --- 14142.0
80.3 
47.4 

Actual Ingredient 

Boric Acid (fused) 
Barium Carbonate 
Titanium Dioxide 
Sodium Carbonate 
Silica 
Alumina 
Magnesia 
Beryllium Carbonate 
Lanthanum Oxalate 
Zinc Carbonate 
Lithium Carbonate

5 
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TABLE lb 

New Experimental Glass Batches
Actual Ingredients in Grams 

Actual Ingredient 266 267 268. . 

Silica 122.3 168.8 114.8 16.3 107.0 97.14 
Alumina 1214.3 133.5 109.3 90.5 58.1 52.9 
Lithium Carbonate 90.6 98.0 79.2 65.8 79.2 72.2 
Calcium Carbonate 122.5 131.2 107.2 88.9 106.8 97.3 
Magnesia 149.14 52.8 143•0 35.8 143.1 39.2 
Yttrium Oxalate --- --- --- --- 301.0 
Lanthanum Oxalate --- --- --- --- --- 319.5 
Beryllium Carbonate --- 69.0 ---
Zinc Carbonate 1514.0 --- 1143.6 118.8 1314.3 122.2 
Zirconium Carbonate --- --- 53.0 1414.0 
Cerium Oxalate --- --- 2214.3 

272 273 2714 275 276 277 

Silica 85.8 177.0 132.3 183.0 202.0 129.7 
Alumina 120.14 1314.7 51.6 57.2 414.0 
Lithium Carbonate 63.5 87.2 97.3 46.6 33.1 
Calcium Carbonate 85.5 118.0 --- ---
Magnesia	 . 34.6 147.6 53.14 
Yttrium Oxalate --- --- ---
Lanthanum Oxalate 615.0 --- --- 358.0 395.0 303.0 
Beryllium Carbonate 1414.9 113.2 69.5 78.8 87.5 67.0 
Zinc Carbonate --- 158.0 70.2 ---
Zirconium Carbonate --- --- --- --- ---
Cerium Oxalate --- --- --- --- 305.0

6 
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TABLE Ic 

New Experimental Glass Batches 
Actual Ingredients in Grams 

278 279 280 

325 325 333.3 
23 

100
112.4 

1.6
38.6 

123.5 61.8 
42.8

Actual Ingredient 

Si02 

Boric Acid Fused 
Barium Carbonate 
Ti02 (not rutile) 
Zirconium Carbonate 
Calcium Carbonate 
Zinc Carbonate 
Lithium Carbonate 
Sodium Carbonate

281 282 

275 150 
222 

128.5 128.5

7 
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TABLE Id 

New Experimental Glass Batches
Actual Ingredients in Grams 

Actual Ingredient 283 2814 285 286 287 288 289 

Silica 92.14 92.14 79.9 96.5 63.14 80.2 79.5 
Aluminum Oxide 50.2 50.2 65.1 65.5 614.14 65.14 64.8 
Lithium Carbonate 68.2 68.2 147.2 45.6 46.7 4.4 46.9 
Calcium Carbonate 12.3 12.3 --- ---
Zinc Carbonate 116.0 61.7 80.0 80.6 78.9 140.3 79.5 
Magnesium Oxide 37.2 37.3 25.8 25.9 25.5 25.9 25.6 
Boric Acid Fused 80.0 79.7 99.0 66.1 130.2 98.8 58.9 
Lanthanum Oxalate 309.5 303.5 14142.0 1439.0 436.0 440.0 435.0 
Cerium Oxalate 21.9 21.7 --- ---
Zirconium Carbonate 17.7 17.8 --- ---
Cupric Carbonate --- 55.2 --- --- --- 141.1 40.6 

290 291 292 293 294 295 296 

Silica 104.2 90.5 79.9 1014.7 63.14 83.6 84.14 
Aluminum Oxide 56.6 73.9 65.2 56.8 57.14 56.7 57.2 
Lithium Carbonate 714.2 53.5 147.2 61.9 78.2 77.2 77.6 
Calcium Carbonate --- --- --- 1014.3 105.14 314.7 70.5 
Zinc Carbonate 126.0 90.6 79.9 1014.7 132.14 130.8 132.0 
Magnesium Oxide 142.0 29.2 25.8 33.7 42.6 42.1 142.4 
Boric Acid Fused 128.9 112.0 98.5 77.5 86.9 128.9 86.7 
Lanthanum Oxalate 293.0 --- 439.0 --- ---
Yttrium Oxalate --- 438.0 --- 2914.5 297.14 295.0 297.0 

297 298 299 300 301 302 303 

Silica 107.3 97.5 99.8 132.7 97.3 102.2 iO4.8 
Aluminum Oxide 58.2 52.9 514.1 --- 52.8 55.4 56.8 
Lithium Carbonate 79.1 72.1 73.4 97.1 71.8 140.3 77.2 
Calcium Carbonate 107.2 97.5 99.7 132.5 97.3 102.2 55.8 
Zinc Carbonate 71.5 65.2 --- 166.3 121.8 127.8 131.0 
Magnesium Oxide 143.2 39.3 40.2 53.14 39.2 41.1 142.2 
Boric Acid Fused --- --- 122.8 163.8 --- ---
Lanthanum Oxalate --- 320.0 328.0 --- --- ---
Yttrium Oxalate 305.0 --- --- --- --- 288.0 295.0 
Cupric Oxide 39.7 36.2 --- --- --- 38.9 38.8 
Rare Earth Oxalate --- --- --- --- 322.0 ---

F;' 



Table lé 

New Experimental Glass Batches 
Actual Ingredients in Grams 

283 284 285 286 281 

92.14 92.14 79.9 96.5 6.14 
50.2 50.2 65.1 65.5 614.14 
68.2 68.2 147.2 145.6 146.7 
12.3 12.3 

116.o 61.7 80.0 80.6 78.9 

37.2 37.3 25.8 25.9 25.5 
80.0 79.7 99.0 66.1 130.2 

309.5 303.5 1442.0 1439.0 1436.0 

21.9 21.7 

17.7 17.8 

55.2 

289 290 291 292 293 

79.5 1014.2 90.5 79.9 104.7 
614.8 56.6 73.9 65.2 56.8 

146.9 74.2 53.5 147.2 61.9 
io14 .3 

79.5 126.0 90.6 79.9 1014.7 

25.6 142.0 29.2 25.8 33.1 
58.9 128.9 112.0 98.5 11.5 

1435.0 293.0 ---- 1439.0

80.2 
65.4 
147.14 

4o.3 
25.9 
98.8 

14140.0 

141.1 

2914 
63.14 
57.14 
78.2 

105.14 
132.14 

142.6 

86.9 

H910373-13

Actual Ingredient 

Silica 
Aluminum Oxide 
Lithium Carbonate 
Calcium Carbonate 
Zinc Carbonate 
Magnesium Oxide 
Boric Acid (fused) 
Lanthanum Oxalate 
Cerium Oxalate 
Zirconium Carbonate 

(nominal) 
Titanium Dioxide 
Cupric Carbonate 
Yttrium Oxalate 
Cupric Oxide 
Rare Earth Oxalate 
Cobaltous Carbonate 

Silica 
Aluminum Oxide 
Lithium Carbonate 
Calcium Carbonate 
Zinc Carbonate 
Magnesium Oxide 
Boric Acid (fused) 
Lanthanum Oxalate 
Cerium Oxalate 
Zirconium Carbonate 

(nominal) 
Titanium Dioxide 
Cupric Carbonate 
Yttrium Oxalate 
Cupric Oxide 
Rare Earth Oxalate 
Cobaltous Carbonate

140.6	 ----	 ----

	

1438.0	 ----	 2914.5
	

297.14 



Table le (con'td) 

New Experimental Glass Batches 
Actual Ingredients in Grams 

295 296 297 298 299 

83.6 814.14 107.3 97.5 99.8 
56.7 57.2 58.2 52.9 54.1 
77.2 77.6 79.1 72.1 73.14 
34.7 70.5 107.2 97.5 99.7 

130.8 132.0 71.5 65.2 

42.1 142.14 143.2 39.3 140.2 
128.9 86.7 ---- ---- 122.8

320.0	 328.0 

102.2 
55.14 
140.3 

102.2 
127.8 
41.1

303 

10)4.8 
56.8 
77.2 
55.8 

131.0 
142.2

30)4 

133.0 
96.6 

79.2 
76.14

305	 306 

	

133.0	 134.0 

	

96.7	 97.0 

	

76.5	 )4o.o 

77.0 

H910373-13

Actual Ingredient 

Silica 
Aluminum Oxide 
Lithium Carbonate 
Calcium Carbonate 
Zinc Carbonate 
Magnesium Oxide 
Boric Acid (fused) 
Lanthanum Oxalate 
Cerium Oxalate 
Zirconium Carbonate 

(nominal) 
Titanium Dioxide 
Cupric Carbonate 
Yttrium Oxalate 
Cupric Oxide 
Rare Earth Oxalate 
Cobaltous Carbonate 

Silica 
Aluminum Oxide 
Lithium Carbonate 
Calcium Carbonate 
Zinc Carbonate 
Magnesium Oxide 
Boric Acid (fused) 
Lanthanum Oxalate 
Cerium Oxalate 
Zirconium Carbonate 

(nominal) 
Titanium Dioxide 
Cupric Carbonate 
Yttrium Oxalate 
Cupric Oxide 
Rare Earth Oxalate 
Cobaltous Carbonate

300	 301 

	

132.7	 97.3 
52.8 

	

97.1	 71.8 

	

132.5	 97.3 
166.3 121.8 

	

53.14	 39.2 
163.8

322.0 

307	 308 

106.0 107.7 

	

57.6	 58.14 

	

67.6	 79.5 
105.8 107.2 

	

70.7	 54.o 

	

142.7	 143.14 

299.0 303.0 

	

39.14	 28.6 

	

22.7	 )46.i 

295.0	 297.0
	 305.0 

	

39.7
	

36.2 

	

288.0	 295.0	 381.0
	

384.14	 384.0 

	

38.9	 38.8
	

25.2

51.0 

10 
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TABLE If 

New Experimental Glass Batches 
Actual Ingredients in Grams 

Actual Ingredient 309 310 311 312 313 

Silica 170.9 146.7 124.1 102.8 82.1 
Aluminum Oxide 64.5 74.6 84.2 93.1 100.2 
Lithium Carbonate 46.7 54.2 60.9 67.2 72.4 
Calcium Carbonate 
Zinc Carbonate 
Magnesium Oxide 
Beryllium Carbonate 83.1 80.4 77.4 117 71.7 
Yttrium Oxalate 
Lanthanum Oxalate 446 473 1499 522 551 
Cerium Oxalate 
Zirconium Carbonate (nom.) 
Cupric Oxide

314 315 316 317 318 

Silica 140.0 147.0 141.9 142.6 238 
Aluminum Oxide 71.3 62.3 60.2 60.5 134.6 
Lithium Carbonate 52.0 145.2 143.7 143.9 
Calcium Carbonate 61.2 
Zinc Carbonate 74.o 
Magnesium Oxide 58.7 24.7 23.8 23.9 106.14 
Beryllium Carbonate 32.2 31.0 31.2 146.2 
Yttriinri Oxalate 
Lanthanum Oxalate 1453 1430 415 1418 
Cerium Oxalate 
Zirconium Carbonate (nom.) 
Cupric Oxide 147.2

11 



90.6	 70.9 

531 

10)4

106.0 
102.11 

115.3 

Silica 161.9 
Aluminum Oxide 109.7 
Lithium Carbonate 79.3 
Calcium Carbonate 
Zinc Carbonate 134.7 
Magnesium Oxide 86.8 
Beryllium Carbonate 117.1 
Yttrium Oxalate 
Lanthanum Oxalate 
Cerium Oxalate 
Zirconium Carbonate (nom.) 

Cupric Oxide

111.11	 84.)4
	

88.2 

124.11	 1)4)4.8	 189.7
70.3 81.9 62.0 
51.2 59.6 4.0 

86.6 100.7 76.11 
55.6 64.7 118.9 
36.2 112.2 

1117 ---- 368 

88.0 
119.7 
36.1 

61.2 
39.11 

29)4 
314)4 

76.4 
6)4.8 
147.0 

79.5 
51.1 

WE 
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TABLE If (Contd.) 

New Experimental Glass Batches 
Actual Ingredients in Grams

Actual Ingredient 319 320 321 

Silica 155.5 202.6 141.0 
Aluminum Oxide 88.0 1111.7 89.6 

322 

178.0 
129.7

323 

195.11 
1)42.0 

68.6 

112.3 
118.7 

Lithium Carbonate 
Calcium Carbonate 
Zinc Carbonate 
Mangesium Oxide 	 69.5 
Beryllium Carbonate 
Yttrium Oxalate 
Lanthanum Oxalate	 1104 
Cerium Oxalate 
Zirconium Carbonate (nom.) 
Cupric Oxide

32)4 325	 326	 327	 328
	

IM 
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Table Ig 

New Experimental Glass Batches
Actual Ingredients in Grams 

Actual Ingredient 330 331 332 

Silica 129.2 1148.8 123.8 

Aluminum Oxide (c.p.) 67.14 77.5 614.7 

Magnesium Oxide (c.p.) ---- 53•14 

Yttrium Oxalate 
Lanthanum Oxalate 1466 14147 

Zirconium Carbonate (nom.) 
Beryllium Carbonate 98,-3 113 

Zinc Carbonate (c. p .) 82.9 95.14 79.6 

Lithium Carbonate (c.p.) 
Calcium Carbonate (c.p.) 
Cupric Oxide 
Cobaltous Carbonate (c.p.) 
Cerium Oxalate 
Boric Acid Fused

335

Silica 1214.3 

Aluminum Oxide (c.p.) 90.14 

Magnesium Oxide (c.p.) 
Yttrium Oxalate 
Lanthanum Oxalate 1416 

Zirconium Carbonate (nom.) 
Beryllium Carbonate 121.8 

Zinc Carbonate (c.p.) 714.2 

Lithium Carbonate (c.p.) 
Calcium Carbonate (c.p.) 
Cupric Oxide 
Cobaltous Carbonate (c.p.) 
Cerium Oxaläte 
Boric Acid Fused

H910373-l3

1143.1 
814.2	 93.3 

336 

1140.7 

102.5 

1405

333 

1142.1 
714.0 
60.9 

439 

91.0

3314 

117.9 
85.8 

67.8 

395 

70.2 

339 

98.5 

83.5 

1480 

116.9 

85.5 

337 

107.6 
91.2 
72.1 

1450 

338 

93.8 

79.3 
62.8 

1459 

81.3 
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Tab1 Ig (Contd.) 

New Experimental Glass Batches
Actual Ingredients in Grams 

Actual Ingredient 3140 3141 3142 3143 3144 

Silica 106.2 109.5 127.14 111.6 181.0 
Aluminum Oxide (c.p.) 72.2 61.9 71.9 63.1 102.3 
Magnesium Oxide (c.p.) 56.8 148.9 28.14 214.9 140.5 
Yttrium Oxalate 1421 ---- 427 ---- 1405 
Lanthanum Oxalate ---- 1428 1435 
Zirconium Carbonate (nom.) ---
Beryllium Carbonate 75.3 142.7 100.7 88.1 71.8 
Zinc Carbonate (c.p.) 88.14 75.9 88.2 77.5 
Lithium Carbonate (c.p.) 52.2 145.0 52.1 145.6 
Calcium Carbonate (c.p.) ---- ----
Cupric Oxide ----  
Cobaltous Carbonate (c .p.) ---- ----
Cerium Oxalate ---- ----
Boric Acid Fused ---- ----

314 5 3146 347 3148 349 

Silica 156.9 78.0 190.9 182.9 190.9 
Aluminum Oxide (c.p.) 105.9 66.0 53.9 51.8 53.9 
Magnesium Oxide (c.p.) ---- 26.1 ----
Yttrium Oxalate 1418 391 ----
Lanthanum Oxalate ---- ---- 371 357 
Zirconium Carbonate (nom.) ---- 89.8 70.0 
Beryllium Carbonate 1148.0 92.2 113.3 108.3 113.3 
Zinc Carbonate (c-p.) ---- 81.1 66.5 ---- 66.5 
Lithium Carbonate (c.p.) 147.9 ---- ----
Calcium Carbonate (c.p.) ---- ----

Cupric Oxide ---- ---- ---- ----
Cobaltous Carbonate (c .p.) ---- ---- ____ 

Cerium Oxalate ---- ---- ---- ---- 371
Boric Acid Fused 
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silicate glass should consist of Si014 tetrahedra sharing at least three of 
their corners with other Si014 tetrahedra. On the other hand, the "invert" 
glasses developed by Trap and Stevels have Y values lower than 2.0 in direct 
contradiction of the accepted rules for stable glass formation. 

When the glass composition was changed to lower and lower Si0 2 concentra-
tions, Trap and Stevels (Ref. 3) found that some properties such as thermal 
expansivity, electrical deformation losses, and viscosity go through maxima or 
minima reaching extreme values as the parameter Y passes through the value 2.0. 
It is the feeling at this laboratory, UARL, that the modulus of elasticity may 
likewise achieve a decided maximum. However, extensive research with the 
"invert" glasses in the first eight quarters of this contract failed to yield 
any marked change in modulus. The ninth and tenth quarters, however, yielded 
a sixty percent increase in modulus while research in the eleventh quarter 
resulted in an invert glass with an elastic modulus in excess of twenty million 
psi as will be shown in a later section. 

Stevels' "invert" glasses comprised silica, two or more monovalent oxides, 
usually Na20 and 1(20 and two or more alkaline earth oxides. The UARL glasses, 
on the other hand, although analogous to Stevels' invert glasses, consist of 
silica, lithia, two or more divalent oxides or fluorides, one or more trivalent 
oxides, and may include a second tetravalent oxide or a pentavalent oxide. 
This combination of divalent and trivalent oxides has proven equally effective 
in blocking crystallization while yielding higher moduli. The glasses of 
Table I, compositions 266 through 217, 283 through 302, 309 through 318, 322 
through 3143, and 3146 through 349 may be considered typical UARL invert analog 
glasses. A brief glance at the subsequent Table IV shows that with these glass 
compositions values like a 20.19 million psi Young's modulus with a specific 
modulus of 5.68 for glass 325, and 20.1 million psi for Young's modulus with a 
specific modulus of 6.82 may be achieved for bulk specimens indicating the need 
for further intensive research in this area. 

Compositional Changes to Improve Workability 
of "Invert" Glasses 

The invert glasses of Table I, while yielding high moduli, proved difficult 
to fiberize. The available glass literature was scrutinized in an attempt to 
find those additions most likely to lower the liquidus, increasing the working 
range, and yield viscosity temperature relationships suitable for fiberization. 
Examination of books and patents by Weyl and Marboe (Ref. 3),. Rawson (Ref. 14), 
Stanworth (Ref. 5), Tiede et al (Ref. 6), Armistead (Ref. 7), Bastian (Ref. 8), 
and Labino (Ref. 9) yielded the following suggestions for additives to improve 
the fiberizability of the UAEL "invert" analogues. 
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1. B 2 0 3 - Add B2031 possibly as much as the amount of silica present but keep 

total of two at 140 mol % or less but probably more than 25 mol %. Effect on modulus 

in invert glasses is not easy to predict. At best, it will contribute slightly 

more than Si02 but at worst since it is known that in silica base glasses, the 

B203 contribution depends on (R20-Al203)/B203, it may contribute nothing. 

B20 3 in silica base glasses decreases the liQuidus and viscosity to a 

marked degree. In "inverts" it should still lower liquidus but should raise 

viscosity especially when substituted for CaO or MgO or ZnO. 

B20 3 content should be greater than 8 weight % to increase stability 
of glass and decrease devitrification tendencies but below 13 weight % to pre-

serve chemical durability. 

B203 should markedly decrease density thus increasing specific modulus. 

2. Bivalent Oxides MgO, ZnO, CaO, BeO, CuO 

MgO - Add MgO since it increases modulus and the greater the percentage 

of MgO the longer the working range of the composition and the lower the melting 

temperature and softening point of the fiber (8 to 15 weight % MgO). 

ZnO - Behaves like MgO as judged by refractive index, resistivity, 

fluorescence intensity, spectral band intensity. Does not enter holes like 

CaO but MgO and ZnO both enter network instead. 

Use at least 2 to 8 weight % bivalent oxides such as ZnO, CdO to reduce 
tendency of glass to devitrify. 

ZnO will improve durability but will generally increase liquidus. 

Do not use MgO in amount greater than 30% by weight to avoid devitri-

fication and, for same reason, ZnO must be less than 60% by weight. 

CaO - CaO and MgO are added to keep viscosity at a minimum and normally 

cannot be tolerated in low liquidus glasses. Do not let sum of CaO, BeO, and 

MgO exceed 55 weight %. CaO must be in range of 16 to 25% by weight to prevent 
devitrification but the lower the silica content, the lower this range. CaO 

enters holes and increases density. 

BeO - Use BeO in range of 10 to 12% by weight to increase modulus with-

out attendant devitrification problems. 

CuO - Add CuO in amount of 9 to 10.5 weight % while maintaining the 

ratio of the sum of MgO and CaO to CuO + Al 20 3 + Fe20 3 + Ti02 at approximately 

1 to 1 to secure low softening and yield a process capable of forming ultrafine 
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fibers in range of 10 to 20 millionths of an inch. It is expected to yield 

molten glass having very high interfacial tension (viscosity) and low surface 
tension and softening point. 

3. Al203 - Use Al20 3 to reduce tendency of glass to devitrify. Use Al203 
in place of Si02 to increase modulus. 

. Other Trivalent Oxides - Fe 2031 Mn203 . Up to 3 weight % Fe 203 is deemed 
beneficial to formation of continuous fibers but no one can state why. Use 3 
to 10 weight % to reduce tendency of glass to devitrify. 

5. Rare Earth Trivalent Oxides such as La203 and Y203 - Our own prior 

experience indicates that these ingredients markedly increase the modulus but 

that additions must be held to reasonable amounts so that the density of the 

glass does not become too high. Lanthana adds to glass forming characteristics 

markedly. Yttria is too costly to allow large additions if the glass is to be 
competitive commercially. 

6. CO203 - Add small amounts of cobalt oxide to reduce devitrification 
and to improve drawing properties. Preferred range of use seems to be 2 to 7% 
by weight. 

7. SiO - If anything, increase the S102 slightly to increase viscosity 
(hold in range 25 to 40 weight %). 

8. Other Tetravalent Oxides 

Ce02 - Add to each of the compositions to increase modulus, lower 

liquidus, promote continuous formation of fibers. But do not add really large 
amounts since it markedly increases density. Fe 2O3 is not the full equivalent 
of ceria since it does not have identical effects on the liquidus. 

ZrO2 - Add to increase modulus, improve durability, decrease rate of 
crystal formation, increase resistance to devitrification. Up to 11 weight % 
ZrO2 may be used. Zr02 wiliraise acceptable working temperature. Presumably 
the ZrO2 may be partially substituted for Al203. 

TiO2 - Add to allegedly enhance fiber formation but do not let ZrO 2 + 
TiO2 exceed 25% by weight and ZrO 2 and Ti02 must each alone be below 16 weight %. 

Ti02 and ZrO2 improve durability, liquidus, viscosity and decrease 
rate of crystal formation. 

9. R20's - Use Li 2O only. Possesses a much higher molal modulus contri-
bution. Use in presence of BeO to increase modulus. 
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The first few altered UARL invert analog glass compositions prepared in 

accordance with these suggestions are those of Table Id, glass compositions 283 
through 303, Table If compositions 309 through 318 and 322 through 329, and 
Table Ig 330 through 349. As will be seen from the subsequent Table IV, the 
results of these preparations have not yet been fully evaluated but it is already 

apparent that these rules based on experiences with glasses built on silica networks 

may not hold for the non-network "invert" glasses. In particular, substitution. of 

B20 3 for Si02 failed to decrease the density while the substitution of CuO for ZnO 
markedly lowers the density. In this respect the behavior of the CuO leads to 

further evidence that the CuO may actually enter the silica network as suggested 

by Ram et al (Ref. 10) based on viscosity measurements of copper ruby glasses. 
This suggestion that the CuO may be present in the actual silica network in the 

form of E Si-0-Cu just as water in glass is now believed to be present as ff Si-0-H 
thus forming smaller flow units than the bigger parent unit Si-0-Si so that 

the viscosity of glasses containing Si-0-H or E, Si-O-Cu units should be lower 
than that of the respective parent glasses. 

Mathematical Analysis in Search of Optimal Compositions 

Arrangements have been made with the UARL central computation laboratory 

for an examination of the results obtained for each glass composition prepared 

to date for which we also have modulus, density and liquidus data to see what 

trends may be evident. This type of analysis should be especially valuable 

with the invert analog glasses which in general have six to eight or more 

components. Data of the type that will be used in these computations is shown 

in Tables I through VI. 

Preliminary Exploration of Effect of Microstructure 

on Mechanical Properties of Two-Phase Glasses 

Up to the year 1952 it was customary to think of glass as a homogeneous 

material but the application of electron microscopy to glass research has greatly 

altered our concept concerning the homogeneity of glass (Refs. 10 through 29). 
For example, in opalescence due to the formation of small drop-shaped regions of 

a separation of this type has two aspects, namely, the equilibrium or decreasing 

compatibility of a substance and the rate of nucleation. According to Weyl 

(Ref. 3), the higher the temperature of a molten glass, the greater is its 

solvent power for noble metals such as Ag and Au, for sulfides and selenides 

like CdS and CdSe, and for oxides containing either cations with a higher charge 

than silicon ( P5k , w) or cations too large to fit into the tetrahedral structure 
of the glass (Sn 4 , Ti 4 ). The quantity of a compound that becomes compatible 
in the melting range of silicate glasses varies widely. It amounts to only a 

fraction of one percent for gold and copper; it is of the order of one to five 

percent for sulfides, selenides, phosphates and titanates, and yet in some alkali-

boric oxide-silica glasses the incompatibility utilized for making a Vycor glass 

18



H910313-13 

amounts to nearly half the volume of the total glass. These glasses, with phase-

separated droplets large enough to cause noticeable light scattering, are similar 

to colloidal solutions whose particles are detected and characterized by Faraday-

Tyndall effect or light-scattering measurements. 

A second group of glasses appear completely clear to the naked eye but, when 

examined by the electron microscope, they may be seen to have micelles or hetero-

geneities of the order of 200 to 600 Angstroms. In this respect, Weyl (Ref. 3) 
states that there is a strong resemblance between this description of the structure 

of a glass developing shrinkage voids on cooling and a liquid structure changing in 

the direction toward a Frenkel-type liquid on heating. Both structures are charac-

terized by fissures and by clusters or subcolloidal micelles. The permanency of 

the shrinkage voids cause the glass structure to approach that of a molecular liquid 

and one might compare the subcolloidal micelles and the walls of the matrix with 

molecules having strong intramolecular and weak intermolecular forces. Weyl (Ref. 3) 
feels that this picture explains why a fiber of a glass with a multitude of sub-
colloidal micelles such as the ternary eutectic in the system Li20-BaO-Si0 2 exhibits 
aflexibility or ductility resembling a molecular organic polymer. Vitreous silica 

with a much smaller number of flaws exhibits no ductility. This concept is also 

associated with the s;onic spectra of glasses where goblets of vitreous silica 

cannot be made to give a pleasant ringing sound but goblets of glasses incorporating 

large amounts of lead oxide do and the electron microscope readily reveals the two-
phase nature of the lead silicate glasses. 

Glasses also exist which are completely transparent in the quenched state but 

which readily develop crystal nuclei under suitable heat treatment. Such glasses 

have been termed neo-ceramic by Janakiramarao (Ref. 29). The resulting opaque or 
translucent "flea-ceramic" product acquires properties different from those of the 

parent glass, but still retains some of the properties of its vitreous state such as 

conchoidal fracture and freedom from porosity. The fact that a "flea-ceramic" glass 

in its quenched state is thoroughly transparent and homogeneous even when examined 

under an ultramicrescope and displays no Tyndall effect but develops myriads of 

uniformly distributed nuclei of considerable size when heat treated, indicates that 

crystallites existed in the parent glass. On heat treatment, the incompatibility of 

the structural groups and the relative freedom of ions favor the growth of the 

crystallites or heterogeneous regions to form nuclei or micelles of definite chemical 

composition at the expense of the surrounding parent glass. The nucleation and 

growth of finely dispersed crystals from the glass matrix, particularly if these 

crystals are not cubic but have one dimension appreciably larger than other dimen-

sions, allows the possibility of noteworthy amounts of crystal orientation or whisker 

growth in a glass fiber while being drawn from the melt. 

To summarize, then, UARL feels that the three types of microstructure demon-

strated as existing in glass (Refs. 10 through 29) have not been considered in con-

nection with the mechanical properties of such glasses even though studied in 

connection with other glass properties such as thermal expansion and electrical 

characteristics. It is proposed, therefore, that a basic investigation be carried 

out of the effect on mechanical properties such as elastic modulus and strength of 
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the three basic types of structure found in two-phase glasses, that is, colloidal or 
light-scattering structures which may be isolated droplets of a second phase or con-
tinuous interpenetrating two-phase structures, micellular or subcolloidal structures 
which may be isolated droplets or crystals, and two-phase glasses ' containing one com-
ponent in the crystalline and the other in the vitreous state. It is clear that such 
structures must definitely affect the mechanical properties of such glasses even 
though no prior systematic investigation of this nature has been carried out. It is 
not obvious, however, whether such structures strengthen glasses and enhance their 
moduli or act conversely although preliminary investigations at UARL reported below 
indicate a favorable trend. Such an investigation cannot be dismissed as academic in 
connection with the enhancement of the properties of glass fibers since R. J. Charles 
(Ref. 15) has shown that borosilicate glasses such as Vycor and Pyrex are fully phase-
separated when rapidly cooled from the melt. Since this is believed to be a typical 
spinodal decomposition, like - results would be anticipated for all spinodal decomposi-
tions and, indeed, preliminary experiments with fibers drawn from UARL experimental 
glass 278, whose composition is given below, confirm that two-phase separation as 
the fiber is drawn is indeed possible. 

To examine the possibilities-of this type of approach, UARL has carried out a 
brief preliminary study in which five experimental two-phase glasses selected on the 
basis of a preliminary examination of the literature (Refs. 10 through 29) were 
melted, heat treated, examined by electron microscopic procedures, and in two cases 
Young's modulus was determined before and after heat treatment on circular rods 
formed by aspiration directly from the molten glass. The compositions of the five 
glasses are given in Table Ic in terms of the actual ingredients used in the batch. 

The modulus contained for these glasses is shown in Table IV and summarized 
directly below

278	 279	 280	 281	 282 

Modulus (millions psi) as formed	 13.29	 11.96	 5.56	 6.42	 5.114 

Modulus (millions psi) after heat treatment 	 15.23	 ---	 6.23 

Reference for Composition 	 11	 11	 28	 19	 19 

The results of the electron microscopic investigations of these glasses are 
shown in Figs. 1 through 14. For the most part, except where specifically noted 
otherwise, the electron micrographs are taken at 20,000 diameters and comprise 
platinum preshadowed carbon replicas of fresh fracture surfaces except for Fig.. 6, 
which is a replica of an "as cast" surface. Parlodion was flowed over the surface 
immediately upon fracture so that atmospheric exposure was held to a minimum. 

Figures 1 through 3 are of fracture samples of UARL glass 278. This glass and 

its companion glass, UARL 279, studied below were selected from an investigation 
originally carried out by Hummel, Tien, and Kim (Ref. ii) of the opaque white glasses 
that can be obtained in the systems Li 20-Ti02-Si02 and CaO-Ti02-Si02 from the sepa-
ration of immiscible liquids. Their work represents one of the early attempts to 
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exploit liquid opacification in place of the more usual practice of opacifying 
glasses, glazes, and enamels by the inclusion of gaseous or crystalline particles 
in the vitreous matrix. Figure 1 is an electron micrograph of a very dense opal 
glass successfully produced by liquid opacification incorporating droplets of a 
second immiscible glass in the first glass viewed as a vitreous matrix. This 
figure might well pass for the "classical" since 1956 phase separation photograph 
since it shows essentially only an abundance of droplets (spherical elevations) 
on an otherwise featureless background. Figure 2 is a fracture surface of the 
same glass after heat treatment at 8000c for.ten hours. The glass is again a 
dense opal glass and the electron micrograph shows droplets of glass 2 now greatly 
increased in size again a background of glass 1 which has now undergone further 
decomposition as represented by the multitude of much smaller droplets present. 
In Fig. 3 the heat treatment has become sufficiently extended to produce lath-
like crystals in a glassy matrix. The contrast of Fig. 1 with Fig. 2 would seem 
to confirm that phase separation of a second glass can enhance the modulus of 
the glass since, as noted in the table, glass 278 after heat treatment has a 
Young's modulus of 15.23 million psi incomparison to. its original value of 

13.29 million psi. 

Figures 14 through 7 are concerned with UARL experimental glass 279. This 
glass, also taken from Hummel, et al (Ref. 17), is very different from 278. The 
substitution of zirconia for titania in the composition results in a glass which 
is transparent after melting and cooling to room temperature in place of the very 
dense opal of UARL 278. Figure 14 confirms the true transparency of this glass 
since even at the increased magnification of 30,000 the micrograph is essentially 
featureless, representing only a homogeneous glass. In Fig. 5, taken of a freshly 
fractured surface of this glass after heat treatment at 900°C for 3 hours, it will 
be noted that again true glass immiscibility has developed, as evidenced by the 
isolated droplets of glass 2 in the vitreous matrix of glass 1 and, indeed, the 
glass is again a dense opal. Figure 6, the micrograph not based on a fractured 
surface, shows the as-cast surface of glass 279 after heat treatment for 3 hours 
at 900°C. In Fig. 7, the complete crystallization present in the outside surface 
of the heat treated specimen has resulted in an oriented array of massive lath-
form crystals. 

Figures 8 and 9 are based on UARL glass 280, a Vycor-like composition 
selected by Watanabe, Noake, and Aiba (Ref. 28) for investigation. This glass 
has the usual composition of the Corning Vycor-glass befbre the second phase is 
reached. As melted, the glass forms a completely homogeneous glass, as evidenced 
by the featureless micrograph of Fig. 8. After heat treatment for 3 hours at 650°C, 
the glass has lost its pristine brilliance and now appears slightly opalescent. 
This opalescence is completely explained by Fig. 9, which shows that a second glass 
phase is now present in the form of very tiny droplets in contrast to the droplets 
of glasses 278 and 279. This phase is believed to be due to a spinodal-type 
decomposition. While the modulus of this glass, a high borosilicate, is very low, 
the phase-separable second glass again raises the value of Young's modulus from 
5.56 million psi to 6.23 million psi.
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Figures 10 and 11 are from UARL glass 281, which, together with UARL glass 282, 

is selected from a study by Levin and Cleek (Ref. 19) of the "Shape of Liquid 
Immiscibility Volume in the System Barium Oxide-Boric Oxide-Silica." The composition 

for UARL glass 281 is selected from those in the center of the spinodal decomposition 

region while that for 282 is on the edge of the dome. Glass 281, as melted and after 

cooling to room temperature, is a dense opal similar to 278. As can be seen from 

Fig. 10, a slight phase separation is apparent. After heat treatment at 900°C for 
3 hours, it will be noticed from Fig. 11 that a marked growth of the isolated drop-
lets of phase 2 has resulted. 

Figures 12, 13 and 114 are based on glass 282. As already mentioned, this glass 
is chosen from the edge of Levin and Cleek's (Ref. 19) dome of spinodal immiscibility. 
As prepared, it is again a dense opal. The monstrous size of the separated liquid 

phase 2 is apparent in both Fig. 12 (1200X) and Fig. 13 (12,000X), as is the fact 
that we now have droplets in droplets in droplets. Figure 11 represents this glass 
after heat treatment for 3 hours at 650°C. Apparently the very large droplets have 
now gone into solution while the smaller droplets have continued to grow. 

Elements present in Figs. 5, 10 and 11 resulting from the fractography process 

itself may best be understood from the work of Ohlberg, Golob and Hollabaugh (Ref. 20), 

who showed that the tail-like structures emanating from the dispersed phase are 

related to the crack front propagation and are affected by the relative values of 

the cohesive strength of the dispersed phase and the adhesive strength between the 

dispersed phase and the matrix. The appearance of a single tail emanating from 

the dispersed phase indicates that the cohesive, strength of this phase is weaker 

than the adhesive strength at the droplet-matrix interface. A double tail emanat-

ing from a dispersed phase indicates its cohesive strength is greater than the 

adhesive strength between the matrix and the dispersed phase. Finally, if the 

dispersed phase is water soluble and special precautions are not taken, a fracture 

surface will evidence only depressions rather than the expected elevations and 

depressions characteristic of adhering droplets and complementary holes. 

Methods Used in Preparing Selected Glasses 

Just as in the case of our earlier experimental compositions, once a compo-

sition has been selected, 500 gram batches of the specified raw materials are 

melted in high purity (99.9%) alumina crucibles in air using kilns heated by 
Super-kanthal hairpin electrical resistance elements. Starting materials used 

are 5 micron particle size high purity silica, high purity alumina of 325 mesh, 

laboratory reagent grade magnesium oxide, 99.9% lanthanum oxalate, and other 
comparable materials such as reagent grade zinc carbonate or calcium carbonate. 

These materials customarily yield a water-white optical grade glass free of seed, 

stone and bubbles when properly compounded and held at temperatures of 1000-1650°C 

for at least two hours. Less commonly, glasses may be prepared in beryllia 

crucibles in air and in the same kilns, or in platinum crucibles in air in the 
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platform kiln which is heated by the high temperature variety of Super kanthal 
heating elements and can reach temperatures of 1700°C, or in tungsten crucibles 
in purified argon or vacuum atmospheres. Alumina crucibles of even very slightly 
lower purity, i.e. 99.3 to 99.7% have not proven useful for this type of glass 
research. 

DIRECT OPTICAL OBSERVATIONS OF THE KINETICS OF GLASS CRYSTALLIZATION 

Estimation of Liquidus and Working Range 

The direct microscopic observation of the kinetics of crystallization of 
molten oxides as well as the direct measurement of their liquidus and the 
estimation of their working range is readily possible by means of a microfurnace 
and is invaluable in deciding which experimental glass compositions are likely 
to fiberize readily. 

This UARL microfurnace design owes much to the earlier furnace constructed 
by Morley (Ref. 30) for exactly the same type research, namely, the study of 
crystallization kinetics in molten glass. The microfurnace consists essentially 
of a platinu-20% rhodium tube, 0.250 in. O.D. and with a wall thickness of 
3 mils, which is clamped between the two copper bars (0.187 in. x 0.750 in.). 
A circular shelf of platinum is welded to the inside of the tube, and the 
crucible is placed in a 0.128 in. hole in this shelf. Crucibles are fabricated 
by cutting platinum tubing (0.125 in. dia with 5 mil wall thickness) into pieces 
0.065 in. long and then pressing them in a die so that they form a 40-degree 
included angle. 

Figure 15 shows the microfurnace without radiation shielding. Subsequently, 
radiation shielding was found necessary and was added by welding two rings of 
0.057 in. Kanthal wire to the nichrome plates at the two ends of the heater 
tube. An inner shield of 4 mil platinum-rhodium sheet and an outer shield of 
5 mil nichrome sheet were were welded to the inner nichrome wire ring that is on 
the lower nichrome plate. Two 5 mil nichrome shields were welded to the outer 
nichrome wire ring on the upper circular nichrome plate. 

Figure 15 also shows the 1/8 in. dia copper tubing which is used to supply 
water-cooling to the copper electrical connectors. The power supplied the 
furnace comes from a filament transformer of 0.975 KVA capacity and a 20 ampere 
Variac. To attain a temperature of 1 1400°C a current of 110 amperes at 1.1 volts 
(60 cycle a-c). has proven adequate. 

The entire experimental arrangement with the exception of the power supply 
is shown in Fig. 16. It comprises the microfurnace, microscope and camera, 
micromanipulator used to weld and position the thermocouple, the x-y recorder 
used for plotting time-temperature response of the furnace, and the 3 mu 
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platinum-platinum 10% rhodium thermocouple carefully positioned in the center 
of the furnace. Experience has shown that the furnace temperature can be main-
tained to within + 14°C at 1250°C. 

In actual use, the crucible is inserted into the furance, a large fragment 
of glass is placed in the crucible and the crucible then heated. Smaller glass 
fragments are later added to completely fill the crucible. The glass is then 
heated until all of the bubbles disappear and then cooled to the temperature 
selected for crystal growth observation. The thermocouple is then lowered into 
the melt and photographs are taken of the crystals growing on the thermocouple 
at selected time intervals. Seed crystals can be grown on the thermocouple by 
placing it in the melt and then withdrawing it to a cooler part of the furnace, 
a step that may or may not be necessary, depending on the composition of the 
glass under investigation. High-speed film is used (Polaroid-ASA 3000) and 
good quality pictures are readily obtainable. The actual sizes of the crystals 
in the photographs can readily be obtained by calibrating the optical system 
employed. 

During this report period, many of the new experimental glasses were char-
acterized by optical examination in UARLs microfurnace. These characterizations 
essentially consisted of evaluating those properties of the glasses which are of 
importance in forming fibers. The properties consisted of the liquidus temperature, 
and the temperature at which the viscosities of the glasses were equal to 1000 and 
100 poises. The rate of crystallization was also noted at a temperature of 500 

below the liquidus temperature. This temperature was selected on the basis of 
our earlier examinations, which revealed that at such a temperature a fairly high 
rate of crystal growth would occur. 

• The liquidus temperature was determined by filling the crucible with the 
glass in the same manner as used in the determinations of the rate of crystal 
growth. The glass was heated until homogenized by convection currents, and 
then cooled to allow crystals to nucleate and grow to a few tens of microns in 
diameter. The crucible is then reheated until the crystals disappear, the 
temperature is noted and the process is then repeated until a satisfactory liquidus 
temperature is obtained. The viscosities of the experimental glasses were 
estimated by comparing their behavior when stirred with th thermocouple with 
that of a. standard glass. "E" glass was used as the standard, and the viscosity 
versus temperature data of Tiede (Ref. 31) were used to obtain the temperatures 
at which the viscosity of E glass was 1000 and 100 poises. The viscosities 
which are estimated in this manner are not exact measurements, of course, but 
should be of value in drawing fibers of these glasses. The rates of crystal 
growth are also important in these glasses, and these were obtained by heating 
the glass above the liquidus temperature until all of the crystals were melted, 
and then lowering the temperature to 50 0 below the liquidus temperature and noting 
the rate of crystal growth which occurred in a 10 minute interval. This rate is 
reported in semiquantitative terms, such as slow, moderate, and rapid. A rapid 
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growth rate would be measured in hundreds of microns per minute and a slow rate 
would be measured in a few tens of microns per minute, or less. 

The data thus collected are listed in tabular form in Table II. The upper 
temperature limit for the operation of the microfurnace has been arbitrarily 
set at 15 1400C. This is because at temperatures appreciably higher than this, 
the lifetime of the platinum rhodium heater tubes is seriously decreased. 
Because of this temperature limitation, the temperature at which the viscosity 
equals 100 poises could not be determined for some of the experimental glasses. 
An examination of the data would indicate, for example, that UARL glasses 267, 

275, 276, 286, 287, 29 0 , 291, 292 and 2914 should be readily fiberizable. Using 
the "poor man's" bushing described in the previous section experiment would 
indicate that fibers could readily be drawn at high, rates of speed from 275, 276, 

290 , and 291. However, preliminary trials with 286, 287 and 2914 were unsuccess-

ful due to the high fluidity. 

Role of Lanthana in Kinetics of Crystallization 
of UARL Cordierite Based Glasses 

In the quarterly status reports, rates of crystal growth of cordierite have 
been presented as functions of temperatures for various glasses. The compositions 
of some of these glasses consist of MgO, Al203 , and Si02, and in other glasses 
about 5 weight % of a rare earth-oxide. These glass compositions and the 
maximum rates of growth of cordierite are listed below: 

Batch 1 1-B 62 63 614 

wt % MgO 18.9 15.0 15.36 17.214 17.20 

wt % Al203 29.7 30.0 25.06 23.08 27.92 

wt % Si02 51.1 55.0 53.141 53.50 51.66 

wt % R203 0 0 5.6 Ce203 5.6 La203 3.12 Y203 

growth rate, max. 1485 300 117 66 190 

If these compositions are recalculated so as to consider only the MgO-Al203-Si02 
ratios, the results are as listed below: 

Batch 1 1-B 62 63 614 

wt % MgO 18.9 15.0 16.3 18.3 17.8 

wt % A103 29.7 30.0 26.7 214.6. 28.8 

wt % Si02 51.0 55.0 57.2 57.1 53.3

It can be seen from these tabulations that the much lower rate of devitrification 
in batch 63 is not due to the high silica content, because batch 62 has nearly the same 
silica content, less magnesia and more alumina. Further, batch 1-B has similar MgO-
Al203-Si02 ratios as does batch 63, but has a maximum rate of crystal growth of 300 
microns per minute as compared to 66 microns per minute in batch 63. As a consequence 
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Table II 

Liquidus Temperature and Working Characteristics of 
Several UARL Invert Analog Glasses

Rate of Growth 

Liquidus 500 below Liquidus 

Sample No. Temperature 100 Poises 1000 Poises Temperature 

102 1301 11414 1296 very slow 

247 1292 14147 1153 slow 

249 1256 1279 1176 slow 

250 1447 1500 1297 very slow 

251 1330 1439 13114 slow 

252 11405 1500 1259 very slow 

253 1510 1500 1376 rapid 

256 1)4)47 1500 1338 rapid 

257 114614 >1500 1407 rapid 

265 1435 1500 1372 rapid 

267 1390 >1500 1281 very slow 

273 1435 1470 13140 moderate (2 types) 

275 1322 1500 1281 slow 

276 13146 11498 1272 no crystals 

285 1276 1443 12143 moderate 

286 1343 11422 1297 no crystals 

287 1158 1473 1276 no crystals 

290 1220 11440 1280 no crystals 

291 1231 114114 1247 no crystals 

292 1260 1385 1156 slow 

293 1290 >1500 1372 rapid 

294 1414 1473 1291 no crystals 

295 1185 11426 1206 no crystals 

296 1310 11431 1227 no crystals 

299 1206 11406 1174 no crystals 

300 ---- 1268 1055 no crystals 

311 11475 1500 11410 few crystals 

316 1435 1477 1310 few isolated crystals 

318 11490 >1500 1443 no crystals 

319 1515 111.95 1290 moderate to slow 

322 1500 11435 1290 no crystals 

325 11444 1322 1481 few large crystals 

331 1483 111.56 1381 rapid 

335 111.90 1510 1380 moderate
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of these observations it was decided to use the electron microprobe to determine 
if the mechanism by which the, devitrification rate is so altered could be found. 
Specifically, it was desired to determine if the large lanthanum ions in batch 63 
could be incorporated into the cordierite crystals in any manner and, if not, to 
determine if the lanthana would be concentrated in an area surrounding that part 
of the crystal which is growing the fastest. Accordingly, a sample of glass from 
batch 63 was placed in a crucible in the microfurnace, and a cluster of hollow 
cordierite crystals (Fig. 17a) were grown at a temperature of 1290 + 5°C, which 
corresponds to a rate of growth of about 5 microns per minute. The crucible was 
then removed from the microfurnace, embedded in bakelite, and then sectioned and 
polished so that the crystals were exposed on the polished surface. In order to 
be certain that the crystals were exposed on the polished surface, it was 
necessary to etch the sample (as shown in Fig. lTb), and then repolish it for 
the electron microprobe analysis. 

This specimen preparation is necessary because the electron microprobe 
analyzer can sample the specimen only to a depth of about two microns. The 
microprobe utilizes a high energy (20 kv) electron beam which can be focused 
to a spot one micron in diameter on the surface of the specimen. This spot 
can be viewed with an optical microscope so that the specimen can be analyzed 
in the desired area. The high energy electrons impinging upon the specimen cause 
the constituent elements to emit characteristic X-rays. These X-rays may be 
analyzed with respect to wavelength and intensity to yield spectra from which 
qualitative and quantitative analyses may be made. This is accomplished by 
diffracting the X-rays with a crystal and measuring them with an appropriate 
detector. The output of the detector is channeled through electronic signal 
processing equipment to a strip chart recorder. The record from the strip 
chart recorder thus contains peaks whose location and amplitude are proportional 
to the elements present in the sample. By tuning the spectrometer to a specific 
spectral line, sweeping the beam across the sample and displaying the detector 
output on an oscilloscope, a picture of the elemental distribution can be shown. 
This can then be photographed to provide a permanent record, as shown in Figs. 18a 
and l8b for lanthanum and aluminum. Specimen current images may also be photographed 
from the oscilloscope. In this measurement, that portion of the electron beam which 
penetrates into the sample gives rise to a current flow which is proportional to 
the atomic number of the elements upon which the beam is impinging. In this 
measurement, the darker areas are composed of elements having a lower atomic 
number than are the lighter areas, as shown in Figs. 18a and 18b. The electron 
microprobe analyses of the cordierite crystals grown in batch 63 consisted of 
specimen current, lanthanum X-ray, and aluminum X-ray images which were recorded 
on polaroid film, and lanthanum distribution scans across selected areas which 
provided a more accurate measurement of the lanthanum distribution than could be 
obtained from the pictorial representation. The paths which were scanned are 
shown in Fig. 19 and the scans are shown in Figs. 20a, b, c, d, e, and f. 

The specimen current images show that the elements comprising the crystals 
are of lower atomic numbers than the elements constituting the matrix. This is 
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because the crystals contain more alumina and silica and less magnesia than 
does the glass matrix, and also because, as shown in Fig. 18a, the crystals 
contain very little, if any, lanthanum. Figures 18a and 18b also show the enrich-
ment in aluminum in the crystals as compared to the glass matrix. The area shown 
in Fig. 18b is the area in which scans were made in order to determine the 

lanthanum distribution, and Fig. 19 is a schematic representation of the paths 
scanned by the electron beam so as to get the distribution of lanthanum in and 

surrounding the crystals. Figure 19 is drawn accurately with respect to scale 
so that the separation between scans is 12.7 microns. The scans were concen-
trated-,near the end of the hollow crystal, which was, of course, the area where 
the fastest rate of growth was occuring. The results of the scans are shown 
in Figs. 20a, b, c, d, e, and f. Scans 1 and 2 in Fig. 20a show that the crystal 
contains very little, if any, lanthanum while the center portion is enriched 
in lanthanum up to about 7 or 8 wt %. Scan 3 contains only one side of the 
crystal, and shows about 7 or 8 wt % La20 3 immediately adjacent to the crystal 
and a linearly decreasing amount as the beam scanned out into the matrix. The 
distance scanned by the beam from the edge of the crystal to the end of the 

scan is about 60 microns, which means that the beam passed by the end of the other 
side of the crystal about 3 microns away from the end, without showing any 
increase in the concentration of lanthanum. Scan 14 is nearly the same as scan 3, 

and shows about 7-8 wt % La203 very near the tip of the crystal which decreases 

linearly away from the crystal edge. Scans 5 and 6 show no variation in the 
La203 content throughout the scan. 

The results show that the lanthanum is diffusing away from the crystal-glass 
interface at the ends of the growing crystal and that if a lanthanum enriched 
zone is present, it is less than one micron in thickness. The analyses do show 
that there is a lanthanum enriched zone within the hollow protion of the crystal, 
in which the only diffusion path is toward the open end of the crystal. The 
mechanism by which the lanthanum ion alters the rate of crystal growth may be 
an adsorption of lanthanum ions on the growing crystal face, and apparently is 
not due to a thicker lanthanum enriched zone within the glass. 

CHARACTERIZATION OF EXPERIMENTAL GLASSES BASED ON BULK SPECIMENS 

Density Measurements 

Density of the experimental glasses has been determined for UARL by the 
Glass Testing Laboratory of the Hartford Division of the Emhart Corporation. 

For samples with densities less than 3.00 gins/cm3 the heavy-liquid of known 
density comparison procedure was used while for samples with densities greater 
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than 3.00 gins/cm3 the Archimedean method served. The results of density measure-
ments are shown in Table III. The observed densities range from 2.57 
to 5.22 gms/cm3 . Noteworthy is the density for a copper containing glass such 
as number 284 where a partial substitution of copper for zinc lowers the density 
from 3.52 gins/cm3 to 3.23 gins/cm3 . Again for glass 286 the substitution of 
10 mol % B203 for an equal molar percentage of Si02 raises the density from 
3.7271 gins/cm3 (glass 257) to 3.7951 gins/cm3 while the substitution of 5 

additional molar percent of B203 (glass 285) results in partial devitrification 
and lowers the density to 3.6569 gins/cm3. 

Young's Modulus for Glass Rods Aspirated Directly from Melt 

Samples for modulus measurement are prepared using the simple and inexpen-
sive technique of drawing samples directly from the crucibles of molten glass 
into fused silica tubes previously dusted lightly with powdered magnesia. 
Controlled suction for pulling the sample into the fused silica tube, is supplied 
by a hypodermic syringe. The fact that most glasses have higher thermal expan-
sion coefficients than the fused silica results in the shrinking of the drawn 
bar away from the silica tube on cooling to room temperature allowing the ready 
recovery of the sample. Since the rods drawn in this manner represent a glass 
of higher fictive temperature than the former procedure employed at UABL when 
the Samples were prepared by precision machining from massive cast and annealed 
slabs, the results are not directly comparable with the earlier results reported 
for bulk samples. 

All data available for modulus determinations on glass rods pulled directly 
from the melt is shown in Table IV. Comparative data are supplied on rods 
prepared from Owens-Corning Fiberglass Corporation "E" glass marble, glass 83 
prepared from the teachings of example 4 of Tiede's U.S. Patent 3,122,277 and 
Schott Optical Glasses SFS1, SF6, LaSF3, LaSF6. In direct comparison with 
these known materials are the values for UARL's experimental glasses, it will 
be noted that experimental glasses 231, 233, 270, 325, and 329 have values 
for Young's modulus greater than 20 million psi while glasses 233, 273, 323, and 
329 have specific moduli of 6.5 or greater expressed in hydrid units (millions of 
psi per gin per cubic centimeter). 

The extent to which the data of Table IV can be relied on as well as 
some precautions in its interpretation is best shown by an examination of Table V 
which shows the reproducibility of individual determinations of Young's modulus on 
rods pulled directly from the melt. It will be noted that the reproducibility of 
this Is high, for example, for sanp1e 257 the individual values are 17.85, 18.65, 18.28 
17.143, 18.28, 16.82, 17.88, 18.97 and 18. 147 for an average value of 18.35 million 
psi or for sample 288 - 14.27, 114.148, 1)4.1)4, 13.99, 14.149, and 14.142 for an 
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Density 
Number gms/cm3 

25 2.5672 
38 2.61415 

140-3 2.95714 

56 2.14368 
62-3 2.714014 

63-1 2.68147 
614-1 2.6818 
65-1 2.7197 
66 2.6112 
66-1 2.67814 

67-3 2.61499 
68-2 2.6295 
69 2.5910 
69-3 2.5952 
70-1 2.7526 

71 2.6627 
72-2 2.8877 
73-2 3.0152 
714 2.9983 
75 2.63142 

82-3 2.5875 
83 2.8376 
93 3.1167 
96 2.9676 
97 2.81426 

98 2.9168 
99 3.186 

102 2.9188 
103 2.9089 
106 3.6859 

107 3.3799 
108 3.11140 
110 2.6128 
113 3.5298 
1114 3.2237

H9l0373-l3

Table III 

Summary of all Density Determinations for Bulk Specimens
of UABL Experimental Glasses 

Densit 
Number gms/cm Number 

125 2.7818 1914 
126 3.146314 195-2 
127 3.2557 200 
131 3.1386 201 
1314 3.0671 202 

135 2.6303 203 
136 2.8035 205 
137 3.08314 210 
138 3.51498 212 
114o 3.678 2114 

151 3.25141 215 
155 3.51452 219 
157 2.6962 222 
159 3.2216 223 
160 3.2211 2214 

235 3.3261 
237 3.3335 
238 3.01462 
214 14 3.63 
2147 2.9870 

2148 3.0906 
2149 3.01114 
250 14.3226 
251 3.0660 
252 3.0680 

225 
231 
232 
233 
2314

3.14523 

3.6150 
3.1876 
4.0593 
3.3o88 

2.6295 
3.4o85 
3.2o47 
3.6355 
4.202 

3.810 
3.9314 
4. 525 
3.472 
3.189

Number 

258 
259 
260 
261 
262 

263 
265 
266 
267 
268 

269 
270 
271 
273 
2714 

275 
276 
277 
278 
279 

280 
281 
282 
283 
2814 

285 
286 
287 
288 
289

Density 
gms /cm3 

2.7232 
2.8988 
2.6191 
2.5783 
2.3180 

14.0091 
3.9818 
3.1872 
2.7162 
3.1986 

3.14357 
3.5259 
3.7692 
2.7472 
2.9926 

3.61460 
3.3983 
3.9086 
2.6073 
2.6941 

2.0556 
2.14152 
2.2126 
3.6391 
3.3233 

3.6569 
3.7951 
3.62o6 
3.6110 
3.9026 

161 
162 
163 
1614 
165 

166 
167 
168 
169 
170 

171 
172 
173 
1714 
175 

176 
177 
178 
179 
188

Density 
ginsJcm3 

14. 

14.167 
3.584 
3.550 
3.769 

3. 1490 
4.0576 
3.8972 
3.0360 
2.5854 

3.1277 
2.9689 
4.4871 
5.2235 
5.15814 

14.6850 
3.4337 
3.5892 
3.0314 
3.7081 

3.151 253 3.25314 290 3.21423 
14.196 2514 3.6307 291 3.3225 
3.613 255 14.1231 292 3.66114 
14.331 256 3.5838 293 3.2873 
3.25 148 257 3.7271 2914 3.37145
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Table III (Cont'd) 

Density 
Number gins/cm3 

295 3.19142 
296 3.2892 
297 3.51426 
298 3.9106 
299 3.19014 

300 2.8883 
301 3.8131 
302 3.76814 
303 3.7256 
3014 3.62148 

305 3.6629 
306 3.66514 
307 3.6950 
308 3.5651 
309 3.5951 

310 3.6864 
311 3.7008 
312 3.2789 
31 14 3.7178 
315 3.5831 

316 3.8017 
317 3.8051 
318 2.7173 
319 3.6270 
320 2.9286 

321 3.6319 
322 2.9967 
323A 2.7111 
32 14A 2.9708 
325A 3.514146 

326 3.0939 
327 3.69114 
328 14.310 
329 3.0380 
330

331	 3.6638 
332	 14.2390 
333	 3.7066 
3314 
335

31 
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Table V 

Reproducibility of Values of Young's Modulus Measured 
on Rods Aspirated Directly from Melt 

Glass No. Individual Determinations(106pSi) Average Modulus (106 psi) 

40-3 15.6 15.1 15.6 15.5 15.5 
62-3 13.59 14.77 ---- ---- 14.18 
67-3 14.5 14.6 14.24 ---- 14.43 
68-3 114.14 13.8 13.7 14.6 14.1 
69-3 14.11 14.37 14.00 ---- 14.16 

72-2 114.14 13.9 13.8 ---- 14.0 
83 16.0 16.0 16.o 16.0 16.0 
96 15.8 15.9 15.7 15.5 15.1 
99 10.7 10.5 io.14 10.5 10.5 

102 15.00 114.97 14.61 15.13	 15.50 15.014 

108 14.79, 14.67, 14.84, 14.68, 14.69, 15.16 14.81 
110 14.69 14.07 14.73 14.99 14.62 
114 16.4 16.7 16.8 16.7 16.7 
125 16.2 15.8 16.2, 16.2, 16.3 16.14 
126 16.5 17.1 16.7 ---- 16.8 

127 15.49, 16.1o, 1.51, 16.06, 15.81, 16.75 16.13 
129 16.9 16.1 16.3 16.6 16.5 
131 13.99 13.66 13.93 13.80	 14.61 14.00 
134 15.3 1.4 ---- ---- 15.14 
135 14.6, 114., 14.6, 14.o, 14.6, 14.3,	 114. 2 14.3 

136 14.6 14.2 14.14 ---- 14.4 
137 13.3 13.6 13.3 13.0 13.3 
138 15.3 15.2 15.4 15.3 15.3 
14o 15.1 15.7 15.5 16.2 15.6 
155 15.6 15.7 15.7 15.7 15.7 

157 13.3 13.6 13.3 13.0 13.3 
159 16.5 15.9 16.o 16.4 16.2 
166 12.9 12.1 12.6 ---- 12.53 
179 14.6 14.8 114.6 114.9 14.7 
194 114.0 114.9 14.6 15.2 114.7 

219 114.87 114.6 14.8 ---- 14.80 
222 15.3 15.0 114.2 ---- 14.8 
231 20.37 20.26 18.63, 21.43, 19.08, 20.95 20.12 
232 20.11 17.10 17.46 17.87	 18.09 18.13 
233 21.68 25.61 26.59 20.34	 17.58 22.36 

234 17.95 17.87 18.14 18.22, 17.95, 18.16 18.05 
237 18.00, 11.99, 18.43, 18.47, 18.61, 18.36, 16.93 18.16 
247 15.0 15.2 15.0 ---- 15.07 
248 20.5 16.0 15.42 14.03 16.48 
249 15.9 15.6,	 16.0, 16.o, 15.8 15.86 

250 14.35 14.86 15.27 14.82 14.83 
251 16.08 15.48 16.05 15.82 15.86 
252 14.65 15.32 14.63 ---- 114.87
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Table V (Cont'd 

Individual Determinations Average Modulus 
Glass No. (millions psi)	 - (millions psi) 

253 12.28 12.28 

256 17.35, 17.140, 18.05, 17.10, 17.68, 15.95, 

17.70, 18.30, 17.92, 17.78 17.88 

257 17.85, 18.65, 18.28, 17.143, 	 17.95, 18.28, 
16.82, 17.881, 18.97, 18.147 18.35 

258 13.5 13.5 

259 13.08 13.21 114.0	 12.67 13.214 

263 114.85 114.22 15.08	 114.30 114.00 114.149 
265 16.58 16.68 16.17	 15.67 16.28 
266 16.62 16.97 17.12	 16.22 16.73 
267 114.62 15.70 15.140	 15.6 15.314 
268 17.00 17.03 16.75	 ---- 16.93 

269 17.8 17.1 16.95	 16.8 17.18 
270-2 20.2 20.8 19.9	 20.1 20.25 

273-2 16.57 17.73 17.88	 17.80 17.35,	 17.14 

273-1 ---- ---- 17.90	 18.28 18.97 18.39 
273-D 17.25 17.13 17.38	 17.90 16.23 17.18 

27 14 21.2, 17.3, 18.142, 18.32, 17.75, 17.57, 
16.148, 17.47, 16.70, 18.25 17.23 

275-0 16.148, 16.614, 16.52, 16.65, 17.21, 16.14 16.67 

275 16.65 17.21 16.514 16.80 
276 15.147 15.0 15.82	 16.148 16.32, 15.82 15.82 

277-2 17.143, 17.143, 17.55, 18.32, 18.66, 17.93, 
17.57, 17.80, 17.143 17.91 

283 15.58, 15.36, 15.20,	 15.62, 15.62, 15.39, 15.67 15.147 

2814 114.o8, 114.87, 15.33, 15.07, 114.87 
285 15.13, 15.31, 15.0, 15.17, 114. 91, 114.89 15.07 
286 16.86, 15.148, 114.81, 1.614, 15.149, 15.28, 16.146 15.6o 
287 114.53, 15.50, 114.79, 114.65, 15.26, 15.63 15.114 

288 114.27, 14.148, 114.14, 13.99, 114.149, 114.142 114.30 

289 114.714, 114.75, 15.19, 15.21, 114.86 114.95 

290 114.147, 114.27, 14-72,,14.26, 14.0, 14.89 114.52 

291 16.12, 15.32, 15.96, 15.67, 15.59, 15.37 15.67 
292 15.46, 15.08, 15.73, 15.17, 114.78, 15.77 15.36 

293 16.28, 16.15, 17.18, 114.93, 15.30, 15.86, 16.04 15.96 
2914 17.62 

295 15.22 
296 16.709, 15.12, 18.51, 15.149, 16.4, 16.87 16.53 
297 17.174, 17.998 , 18.082, 16.996, 16.1483, 16.749 17.o8 

299 114.74, 114.35, 14.60, 14.63, 14.84, 114.28 14.57 
300 14.36, 14.4o, 14.8, 14.58, 14.147, 14.22, 14.68 14.45 
302 17.23, 16.73, 17.58, 17.24, 17.04 17.16 
3014 24.06, 18.53, 18.45, 18.30, 19.12, 18.21, 17.91 19.23 

305 17.1, 18.1, 17.7, 17.8, 17.9, 16.8 17.72
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Table v (Cont'd)

Individual Determinations 
Glass No. (millions psi) 

306 18.8, 18.9, 18.6, 18.7, 19.14,	 18.7 
309 16.92, 16.143, 16.91, 18.12, 16.59, 16.21 
310 16.o14, 19.58, 16.59, 15.88, 16.20, 15.65 
311 16.31, 114.71, 114.9 8 , 15.98, 16.149, 16.91 
312 17.26, 15.81, 16.77, 16.25 

Average Modulus 
(millions psi) 

18.85 
16.86 
16.66 
15.90 
16.52 

31 14 16.39, 17.23, 16.68, 17.07, 17.19, 17.147,	 16.89 16.99 
315 16.89, 17.04, 16.17, 16.97, 16.114 16.63 
316 16.55, 16.57, 16.18, 16.37, 16.52, 16.26, 16.39 16.146 
317 15.814, 16.32, 16.87, 16.78, 16.614, 15.53 16.33 
318 15.26, 15.68, 18.08, 15.91, 15.57, 15.1414 15.97 

319A 17.9, 18.02, 17.83 
319 15.96, 15.03, 15.86, 15.26, 15.01 15.142 
320A 16.05, 15.98, 15.90, 16.12, 15.72, 16.00 15.96 
320B 17.23, 19.33, 16.32, 16.31, 16.23, 16.79 17.03 
321A 18.20, 17.92, 19.83, 18.09, 18.97, 19.07 18.7 

322 17.56, 16.85, 17.18, 17.11, 16.71 17.o8 
322A 18.52, 18.11, 18.63, 18.72, 19.76, 18.87 18.60 
323A 18.57, 18.114, 17.92, 20.05, 18.05, 17.79 18.142 
3214A 18.o1., 17.99, 17.141, 17.25, 18.35, 17.62 17.78 
325A 18.92, 19.75, 20.16, 21.17, 20.59, 20.55 20.19 

325 19.82, 19.09, 19.05, 18.97, 19.87, 20.12 19.149 
326A 16.53, 17.28, 17.05, 17.23, 16.79 16.98 
326 16.89, 16.68, 17.83, 15.62 16.76 
327 18.69, 17.99, 17.88, 18.314, 18.88 18.36 
328 

329 20.68 20.68 

E 12.142, 12.614, 12.114, 12.06, 11.98, 11.93 12.2 
LaSF6 17.28, 17.23, 17.63, 17.55 17.142 
LaSF3 13.08, 13.55, 13.72 1, 13.01 13.314 
SFS1 7.18, 6.714, 7.06, 6.92 6.98 
SF6 7.314, 6.90,	 6.58, 6.82 6.91
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average of 14.30 million psi. Accordingly when values as discordant as the 

first value of 21.2 for 27 4 which has an average Young's modulus of 17.23 
million psi or 24.06 for glass 304 whose average value is 19.23 million psi are 
found, it can usuallybe.shown that the discrepancy arises from a pronounced 
degree of crystallization present in the sample and such values could, therefore, 

safely be discarded.

FIBERIZABILITY STUDIES 

Young's Modulus for Mechanically Drawn Experimental
Glass Fibers Evaluated by Mechanical Tests 

As described in our earlier reports F910373-7, F910373-8, F910373-9, 
G910373-10, and G910373-11, UARL prepares mechanically drawn fibers by the 
use of a "poor man's bushing". The bushing consists of a 20 cm 3 platinum 
crucible with reinforced bottom and central hole which is formed by starting 
with a normal platinum crucible and welding several thicknesses of platinum 
foil to the bottom until a bottom thickness of 3/16 in. is obtained and then 
taper reaming a central orifice 0.088 in. at top, 0.063 in. at bottom and 
3/16 in. long in bottom of crucible. The crucible is then filled with glass 
and introduced into the platform furnace with high temperature Super-kanthal 
hairpin heating elements (furnace temperatures in excess of 17000C are obtainable) 
together with a ring orifice providing water cooling immediately below the 
crucible as well as a second ring orifice for cooling the fiber as it forms 
with helium jets. The equipment has now been extensively used and has proven 
satisfactory for the production of very nearly circular glass fiber having 
approximately one mil diameter at pulling rates of 4000 to 8000 ft/mm. 

Experimental glass fibers prepared as described above are evaluated for 
UARL by the Lowell Institute of Technology. Lowell Institute of Technology 
uses an Instron CRE tester operated with a machine speed of 0.2 in. per minute, 
achart speed of 20 in. per minute, a gage length of 5 in., and a full scale 
capacity of 1.0 lb. The specimens were held in air actuated clamps with flat 

rubber coated faces. 

For each fiber for which we give results in the table, a minimum of 20 
specimens were taken from approximately the center portion of each spool. The 

specimens were 8 in. long with about one yard of fiber being discarded between 
each specimen. It was not always possible to select fibers in exactly this manner 
because many of the spools had discontinuous odd lengths of fiber, but in general, 
the specimens selected represent the middle 20 yds of the fiber supplied for 
testing. Three fiber diameter measurements were made in the middle three-inch



H910373-13 

portion of each eight-inch. specimen. These measurements were made using a monocu-
lar microscope equipped with an eyepiece reticule and operated with a magnification 

of 774 (18x eyepiece, 43x objective). Each reticule division was equal to 
0.092 mils. 

The average of the twenty determinations for each fiber is shown in Table 
VI together with the standard deviation for most of the fibers tested. In our 

earlier report F910373- 8 it was shown in detail that the standard deviation 
for glass 126 was 1.82 million psi so that one could say with 99% probability that 
the tabulated average value of 16.4 million psi for this glass actually lies 
between 15.2 and 17.6 million psi. This degree of reproducibility or-slightly 
worse may be ascribed to most of the fiber data entered in this table. It 
will be noted, however, that a few of the glasses such as 275, 276, 176, and 237 
show a very much larger standard deviation. 

Glasses 176, 237, 275, and 276 showed not only a much larger standard deviation 
than normal but in some cases showed individual modulus determinations greater 
than thirty million psi. The urgent question was whether any significance 
could be attached to these phenomenally high moduli. For example, had we 
developed a second phase in the glass during the drawing process, crystalline 
or second-glass, which could account for such values of moduli. Because of 
the importance of this question, much time was spent in the twelfth quarter 
seeking the answer to this question. The very first approach was to attempt 
to reduce the experimental scatter but greatly increasing the number of tests. 

The worst offender was obviously UARL 275. Here, increasing the number of tests 
from twenty to one hundred not only failed to decrease the standard deviation 
but yielded 42 determinations with values in excess of twenty million psi. 

The next attempt to determine the significance of these high standard devia-
tions and the accompanying excessively high values for Young's modulus 
consisted of attempting to correlate the range in diameter of fiber tested with 
the standard deviation for this fiber. Typical results of this investigation 
are shown in Table VII. It is immediately obvious that no correlation between 
standard deviation in diameter and/or range of diameter and standard deviation 
in Young's modulus exists. 

Next approach was to consider that we had again encountered non-circular 
fibers of the type which had given us anomalous values on our early modulus 
measurements in which hand-drawn fibers were employed. However, both optical 
microscopy and electron microscopy quickly proved that these mechanically drawn 
fibers were indeed very nearly perfectly circular even in comparison with - 
mechanically drawn wires such as tungsten, platinum, and piano wire. A typical 
electron micrograph of this series of examinations is shown in Figure 21. It 
will be noted that not only are these fibers circular but that they are structure-
less without any evidence of a second phase. 
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Measured	 Standard 

	

Modulus	 Deviation 

	

x 106 psi	 Millions psi 

12.5 
13.3 
13.5	 ) 
13.9 
12.2 

15.0 
114.7 1.9 
13.1 2.8 
15.7 5.0,	 2.2 
114 .6 3.0 

114.3 1.8 
13.6 
13.1 2.9 
16.7 9.9 
13.1 

14.6 3.3 
13.2 
15.0 2.0 
12.9 1.6 
13.3 3.0

Glass
No. 

131 
135 
136 
137 
138 

1140 
155 
157 
159 
i6o 

161 
166 
175 
176 
193 

200 
201 
210 
2114 
215 

235 
237 
238 
260 
261 

215-0 

275-I 
275-Il 
275-I 
275-Il

	

15.3
	

1.9 

	

18.8
	

7.9 

	

15.2
	

3.2 

	

10.14
	

1.5 

	

11.5	 1.8 

	

27.6
	

17.8 

	

114.9	 .6.3 
16.7 

	

21.5
	

8.7 

	

19.7
	

6.8 

H910373-13

Table VI 

Values for Young's Modulus on Mechanically Drawn Fibers of UARL Experimental Glasses 
as Determined by Measurements on Tensile Test Equipment 

Measured Standard 
Glass Modulus Deviation 
No. x 106 psi Millions psi 

25 12.3 1.9 
1c 16.2 14.6 
56 10.1 
62 l4.0 
63 13.0 

614 114.7 
65 13.8 
66 114.6 2.0 
67 12.7 
68 13.7 

69 13.6 
70 13.14 
71 13.7 
72 12.5 
73 15.1 

714 13.8 
75 9.8 

10.14 
77 11.0 
82* 13.3 

83* 15.35 2.14,	 1.95 
97 10.14 1.7 
98 10.8 2.5 

102 13.3 
108 12.5 2.7 

110 13.8 2.2 
15.1 

126 16.15 1.82,1.65 
127 15.2 
129 16.7 2.7,	 2.6

140 



Measured Standard Measured 

Glass Modulus Deviation Glass Modulus 

No. x 106 psi Millions psi No. x 106 psi 

275-3-3 13.7,	 114.2 1.8,	 2.1 2814 13.0 
275-3-5 13.8,	 114.o 3.0,	 1.8 285 12.9 
275-3- 6 15.6, 16.5 2.7,	 3.6 288-3 11.9 
275-3-7 17.3, 16.2 7.2,	 14 .3 289 13.1 
275-3- 8 16.3, 16.14 3.8,	 3.1 290-5 114.3 

276 17.0 6.2 290-6 13.0 
278 11.3 1.8 291 13.6 
279 6.2 3.3 299 12.8 
280 14.6 0.14 300 13.14 
281 5.7 0.5 309 114.8 

E 11.8

Standard
Deviation

Millions Dsi 

2.14 

2.8 
1.5 
5.8 

/
3.7 
3.2 
3.6 
3.14 
1.9 

3.9 

H9l03T3l3

Table VI (Contd.)

All tabulated observations are the average of 20 observations except that 
the results for 140, 83, 126, 129 are averages of 60 observations and the 
result for 70 is the average of forty. 

*82 - Houze Glass - U.S. 3,01414,888 
*83 - Owen-Corning - U.S. 3,122,277

141
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Table VII 

Correlation Between Standard Deviation in Young's Modulus 
for Mechanically Drawn Fibers Measured on Tensile 
Equipment and. Standard Deviation in Diameter 

Standard 

Measured Standard Mean Deviation Minimum Maximum 

Glass Modulus Deviation Diameter in Diameter Diameter Diameter 

Number (million psi) (millions psi) (mils) (mils) (mils) (mils) 

201 13.2 14.3 2.71 0.62 1.41 3.74 

210 15.0 2.0 1.33 0.32 0.89 1.8 

2114 12.9 1.6 1.20 0.23 1.01 2.12 

215 13.3 3.0 1.38 0.09 1.20 1.56 

235 15.3 1.9 1.37 0.23 1.01 1.81 

237 18.8 7.9 1.25 0.25 0.64 1.63 

238 15.4 3.2 1.61 O.43 0.92 2.39 

276 17.0 6.2 1.148 0.39 0.89 2.35
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The exceptionally high values for Young's modulus obtained for the glass 
fiber samples showing the large standard deviations in modulus measurements 
must, therefore, be considered an artifact. This artifact arises from the 
non-uniform diameter present in some of the experimental glasses and caused 
by crystalline inclusions. These inclusions are randomly scattered along the 
fiber and when present in sufficient quantity give rise to fictitious diameter 
measurements. No credence at this time can be placed in mechanical measurements 
made on fibers unless the fibers are free from defects causing bulges in the fiber 
which is fortunately true for most of the experimental glasses as may be 
seen from the standard deviations tabulated in Table VI. 

The best solution to obtaining a meaningful measurement of the elastic 
modulus for those glasses where mechanical testing gave a large standard deviation 
would seem, therefore, to resort to methods independent of diameter measurements. 

Young's Modulus for Mechanically Drawn Experimental Glass Fibers 
Evaluated By Ultrasonic Pulse Techniques 

In our earlier report F910313-7 and F910313-8 we have given in detail our 
experiences in measuring Young's modulus using equipment manufactured by 

H. M. Morgan Co. Inc., Cambridge, - Mass. These experiments carried out at 
several locations (Fabric Research Laboratories, H. M. Morgan Co. & UARL) 
using several models of the Morgan Dynamic Modulus Tester RPM-5R did not yield 
data consistent with either UARL sonic measurements on bulk samples or 
mechanical measurements on mechanically drawn glass fibers. This approach 
was, therefore, discarded even though it possessed the marked advantage of 
not requiring a diameter measurement. 

At this time, therefore, a different approach to sonic modulus measurements 
on glass fibers was taken. This method in contrast to the Morgan Co. method 
is not a resonance technique but uses a measurement of the transit time of 
ultrasonic pulse and requires only a time measurement, a length measurement, and 
a density measurement. The measurements were made for us by Panametrics, 
Inc. of Waltham, Mass. using a modification of their ultrasonic thermometer, 
the Pana-therm Model 5000. Using selected specimans as free as possible from 
bulges due to inclusions, measurements were made on UARL 215 glass fibers with 

the following results.

43



H910373-13

Ultrasonic Pulse Modulus Measurements - Glass 275 

Specimen Number	 Young's Modulus (Millions psi) 

1 15.77, 15.96, 15.50, 16.27 
3 15.67, 15.77 
5 15.98, 16.33 
Ta 16.00, 16.09 
7b 15.91, 16.11 
9 15.95, 16.19 

11 15.77, 16.12

It is apparent, therefore, that the correct modulus for this g1.ss is approx-
imately 16.0 million psi instead of the 20.0 million psi obtained by averaging 
the first hundred mechanical measurements on these glass fibers. 

Selected fiber specimens were also sent to Lowell Institute of Technology for 
check modulus evaluations by mechanical testing but this work is not yet complete. 

Purchase of Single Hole Platinum Bushings for 
Improving Fiberization Processes 

The work described in the two previous sections made it obvious, that just 
as for accurate strength determinations so for some glasses for accurate modulus 
measurements, a defect-free fiber is essential. 

In the future this method of drawing fibers will be supplemented through 
the use of a single-hole glass bushing of the more conventional type as shown 
in Fig. 24. This design is a UARL design combining hopefully the best features 
of single-hole bushings described by Tiede (Ref. 32) and the National Bureau of 
Standards (Ref. 33). Two bushings of this design are scheduled for delivery in 
late December with installation in January. 

CONCLUSIONS 

1. This contract to-date, has produced three promising directions in which 
to move in search of high-modulus high-strength glass fibers. 

a. The cordierite glass system with rare earths and/or zirconia as 
major constituents has yielded bulk glass specimens with values 
for Young's modulus as high as 19.23 million psi. 
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b. The UARL development of invert analog glass systems has produced 

bulk glass specimens with values for Young's modulus of 20.7 million 

psi and specific moduli in hybrid units of 6.82 to 7 million psi 

per gram per cubic centimeter. 

c. A preliminary exploration of two phase glass systems has indicated 

that the second phase develops so rapidly that it can be produced 

as the glass fiber is drawn with subsequent pronounced improvement 

in modulus. 

2. The UARL invert analog glass systems include six to fifteen components 

so that it is likely that finding the optimum modulus in such systems will 

require mathematical analysis to relate choice of composition to modulus, density, 

liquidus, and working range. More data of this type is needed to improve the 

application of a computer program. 

3. The making of glass fiber sufficiently free of defects to provide 

consistent strength measurements required a conventional type single-hole 

glass bushing. Such a bushing will be incorporated in the program in the next 

quarter. 

4 • For glass fibers of non-constant diameter due to occasional crystalline 

inclusions the ultrasonic pulse technique of modulus measurement is capable of 

yielding consistent data.

PERSONNEL ACTIVE ON PROGRAM 

Personnel active on the program throughout the eleventh, twelfth, and 

thirteenth quarters have been, James F. Bacon, Principal Investigator. 

Throughout the eleventh quarter and most of the twelfth quarter Norman S. 

Chamberlain, Senior Experimental Technician was intimately connected with the 

program. In the final month of the twelfth quarter and the first two months of 

the thirteenth quarter, Robert B. Graf, rejoined the program and resumed the 

optical studies of crystallization kinetics. The electron microprobe analysis 

was carried out for us by Archie Manzione. Liaison throughout the program has 

been furnished by Peter A. Stranges of the UARL Washington Office. Throughout 

the program the UARL personnel have reported progress to and received advice from 

James Gangler of NASA Washington Headquarters and Michael DeCrescente of UARL. 

At the end of the twelfth quarter Michael DiPerno and Francis Hale joined the 

program as experimental technicians and have continued throughout the thirteenth 

quarter.
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Various services have been carried out for us in connection with the program 
by the metallography, electron microscopy, and chemical analysis groups of UARL, 
by the Glass Testing Laboratory of Emhart Corporation, by the Textile Research 
Foundation of Lowell Institute of Technology, and by Panametrics, Inc. of Waltham, 
Massachusetts. To all concerned we say thanks.

( 
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FIG. 2 

STRUCTURE IN GLASS 
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FIG. 3 

STRUCTURE IN GLASS
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FIG. 4 

STRUCTURE IN GLASS 
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FIG. 5 

STRUCTURE IN GLASS
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STRUCTURE IN GLASS
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FIG. 7 

STRUCTURE IN GLASS
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FIG. 8 

STRUCTURE IN GLASS 
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STRUCTURE IN GLASS
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FIG. 10 

STRUCTURE IN GLASS 
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FIG. 11 

STRUCTURE IN GLASS 
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FIG. 12 

STRUCTURE IN GLASS 
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STRUCTURE IN GLASS 
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FIG. 14 

STRUCTURE IN GLASS 
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AREA 1 

AREA 2

17 B REFLECTED LIGHT	 ETCHED CONDITION
	 100 X 

LIGHT PHOTOMICROGRAPHS SHOWING THE APPROXIMATE LOCATIONS OF BEAM 

SCAN ANALYSES.
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FIG. 19 

THE LANTHANUM DISTRIBUTIONS ACROSS THESE PATHS ARE GIVEN IN FIGS. 4a-4f 

SCHEMATIC REPRESENTATION OF THE PATHS SCANNED BY THE 

ELECTRON BEAM
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FIG. 20a 
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FIG. 20c 
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DEMONSTRATION OF CIRCULARITY OF MECHANICALLY DRAWN FIBERS 

ELECTRON MICROGRAPH, 4500X 

UARL 275-3 EXPERIMENTAL GLASS
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