1,422,723 research outputs found

    Single crystal growth, structure and magnetic properties of Pr2Hf2O7 pyrochlore

    Get PDF
    Large single crystals of the pyrochlore Pr2Hf2O7 have been successfully grown by the floating zone technique using an optical furnace equipped with high power Xenon arc lamps. Structural investigations have been carried out by both synchrotron X-ray and neutron powder diffraction to establish the crystallographic structure of the materials produced. The magnetic properties of the single crystals have been determined for magnetic fields applied along different crystallographic axes. The results reveal that Pr2Hf2O7 is an interesting material for further investigations as a frustrated magnet. The high quality of the crystals produced make them ideal for detailed investigations, especially those using neutron scattering techniques.Comment: Accepted for publication in J. Phys.: Condens. Matte

    Predicting the Volumes of Crystals

    Get PDF
    New crystal structures are frequently derived by performing ionic substitutions on known crystal structures. These derived structures are then used in further experimental analysis, or as the initial guess for structural optimization in electronic structure calculations, both of which usually require a reasonable guess of the lattice parameters. In this work, we propose two lattice prediction schemes to improve the initial guess of a candidate crystal structure. The first scheme relies on a one-to-one mapping of species in the candidate crystal structure to a known crystal structure, while the second scheme relies on data-mined minimum atom pair distances to predict the crystal volume of the candidate crystal structure and does not require a reference structure. We demonstrate that the two schemes can effectively predict the volumes within mean absolute errors (MAE) as low as 3.8% and 8.2%. We also discuss the various factors that may impact the performance of the schemes. Implementations for both schemes are available in the open-source pymatgen software.Comment: 8 figures, 2 table

    Crystallizing the hypoplactic monoid: from quasi-Kashiwara operators to the Robinson--Schensted--Knuth-type correspondence for quasi-ribbon tableaux

    Get PDF
    Crystal graphs, in the sense of Kashiwara, carry a natural monoid structure given by identifying words labelling vertices that appear in the same position of isomorphic components of the crystal. In the particular case of the crystal graph for the qq-analogue of the special linear Lie algebra sln\mathfrak{sl}_{n}, this monoid is the celebrated plactic monoid, whose elements can be identified with Young tableaux. The crystal graph and the so-called Kashiwara operators interact beautifully with the combinatorics of Young tableaux and with the Robinson--Schensted--Knuth correspondence and so provide powerful combinatorial tools to work with them. This paper constructs an analogous `quasi-crystal' structure for the hypoplactic monoid, whose elements can be identified with quasi-ribbon tableaux and whose connection with the theory of quasi-symmetric functions echoes the connection of the plactic monoid with the theory of symmetric functions. This quasi-crystal structure and the associated quasi-Kashiwara operators are shown to interact just as neatly with the combinatorics of quasi-ribbon tableaux and with the hypoplactic version of the Robinson--Schensted--Knuth correspondence. A study is then made of the interaction of the crystal graph of the plactic monoid and the quasi-crystal graph for the hypoplactic monoid. Finally, the quasi-crystal structure is applied to prove some new results about the hypoplactic monoid.Comment: 55 pages. Minor revision to fix typos, add references, and discuss an open questio

    Solution Structures of \u3cem\u3eMycobacterium tuberculosis\u3c/em\u3e Thioredoxin C and Models of Intact Thioredoxin System Suggest New Approaches to Inhibitor and Drug Design

    Get PDF
    Here, we report the NMR solution structures of Mycobacterium tuberculosis (M. tuberculosis) thioredoxin C in both oxidized and reduced states, with discussion of structural changes that occur in going between redox states. The NMR solution structure of the oxidized TrxC corresponds closely to that of the crystal structure, except in the C-terminal region. It appears that crystal packing effects have caused an artifactual shift in the α4 helix in the previously reported crystal structure, compared with the solution structure. On the basis of these TrxC structures, chemical shift mapping, a previously reported crystal structure of the M. tuberculosis thioredoxin reductase (not bound to a Trx) and structures for intermediates in the E. coli thioredoxin catalytic cycle, we have modeled the complete M. tuberculosis thioredoxin system for the various steps in the catalytic cycle. These structures and models reveal pockets at the TrxR/TrxC interface in various steps in the catalytic cycle, which can be targeted in the design of uncompetitive inhibitors as potential anti-mycobacterial agents, or as chemical genetic probes of function
    corecore