1,183 research outputs found

    Crystal Structure and Chemistry of Topological Insulators

    Full text link
    Topological surface states, a new kind of electronic state of matter, have recently been observed on the cleaved surfaces of crystals of a handful of small band gap semiconductors. The underlying chemical factors that enable these states are crystal symmetry, the presence of strong spin orbit coupling, and an inversion of the energies of the bulk electronic states that normally contribute to the valence and conduction bands. The goals of this review are to briefly introduce the physics of topological insulators to a chemical audience and to describe the chemistry, defect chemistry, and crystal structures of the compounds in this emergent field.Comment: Submitted to Journal of Materials Chemistry, 47 double spaced pages, 9 figure

    Large Magnetoresistance in Compensated Semimetals TaAs2_2 and NbAs2_2

    Full text link
    We report large magnetoresistance (MR) at low temperatures in single-crystalline nonmagnetic compounds TaAs2_2 and NbAs2_2. Both compounds exhibit parabolic-field-dependent MR larger than 5×1035\times10^3 in a magnetic field of 9 Tesla at 2 K. The MR starts to deviate from parabolic dependence above 10 T and intends to be saturated in 45 T for TaAs2_2 at 4.2 K. The Hall resistance measurements and band structural calculations reveal their compensated semimetal characteristics. The large MR at low temperatures is ascribed to a resonance effect of the balanced electrons and holes with large mobilities. We also discuss the relation of the MR and samples' quality for TaAs2_2 and other semimetals. We found that the magnitudes of MR are strongly dependent on the samples' quality for different compounds.Comment: 26 pages, 11 figures, 2 table
    corecore