2,941 research outputs found

    A Diffie-Hellman based key management scheme for hierarchical access control

    Get PDF
    All organizations share data in a carefully managed fashion\ud by using access control mechanisms. We focus on enforcing access control by encrypting the data and managing the encryption keys. We make the realistic assumption that the structure of any organization is a hierarchy of security classes. Data from a certain security class can only be accessed by another security class, if it is higher or at the same level in the hierarchy. Otherwise access is denied. Our solution is based on the Die-Hellman key exchange protocol. We show, that the theoretical worst case performance of our solution is slightly better than that of all other existing solutions. We also show, that our performance in practical cases is linear in the size of the hierarchy, whereas the best results from the literature are quadratic

    Lazy updates in key assignment schemes for hierarchical access control

    Get PDF
    Hierarchical access control policies are used to restrict access to objects by users based on their respective security labels. There are many key assignment schemes in the literature for implementing such policies using cryptographic mechanisms. Updating keys in such schemes has always been problematic, not least because many objects may be encrypted with the same key. We propose a number of techniques by which this process can be improved, making use of the idea of lazy key updates, which have been studied in the context of cryptographic file systems. We demonstrate in passing that schemes for lazy key updates can be regarded as simple instances of key assignment schemes. Finally, we illustrate the utility of our techniques by applying them to hierarchical file systems and to temporal access control policies

    User-differentiated hierarchical key management for the bring-your-own-device environments

    Get PDF
    To ensure confidentiality, the sensitive electronic data held within a corporation is always carefully encrypted and stored in a manner so that it is inaccessible to those parties who are not involved. During this process, the specific manners of how to keep, distribute, use, and update keys which are used to encrypt the sensitive data become an important thing to be considered. Through use of hierarchical key management, a technique that provides access controls in multi-user systems where a portion of sensitive resources shall only be made available to authorized users or security ordinances, required information is distributed on a need-to-know basis. As a result of this hierarchical key management, time-bound hierarchical key management further adds time controls to the information access process. There is no existing hierarchical key management scheme or time-bound hierarchical key management scheme which is able to differentiate users with the same authority. When changes are required for any user, all other users who have the same access authorities will be similarly affected, and this deficiency then further deteriorates due to a recent trend which has been called Bring-Your-Own-Device. This thesis proposes the construction of a new time-bound hierarchical key management scheme called the User-Differentiated Two-Layer Encryption-Based Scheme (UDTLEBC), one which is designed to differentiate between users. With this differentiation, whenever any changes are required for one user during the processes of key management, no additional users will be affected during these changes and these changes can be done without interactions with the users. This new scheme is both proven to be secure as a time-bound hierarchical key management scheme and efficient for use in a BYOD environment

    An Efficient and Secure Key Management Scheme for Hierarchical Access Control Based on ECC

    Get PDF
    In a key management scheme for hierarchy based access control, each security class having higher clearance can derive the cryptographic secret keys of its other security classes having lower clearances. In 2006 Jeng-Wang proposed an efficient scheme on access control in user hierarchy based on elliptic curve cryptosystem. Their scheme provides solution of key management efficiently for dynamic access problems. However, in this paper, we propose an attack on Jeng-Wang scheme to show that Jeng-Wang scheme is insecure against our proposed attack. We show that in our proposed attack, an attacker (adversary) who is not a user in any security class in a user hierarchy attempts to derive the secret key of a security class
    • …
    corecore