
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Fall 2014

User-differentiated hierarchical key management
for the bring-your-own-device environments
Di Xie
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Xie, Di, "User-differentiated hierarchical key management for the bring-your-own-device environments" (2014). Open Access Theses.
462.
https://docs.lib.purdue.edu/open_access_theses/462

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/462?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F462&utm_medium=PDF&utm_campaign=PDFCoverPages

�������� �	
���
��� 30
�������� 08�14�

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

���� �� �� ������ ��!� ��� ������"#������!���$ %��%!��#

&

'$���(�#

)�� ��� #�*��� ��

+� !%%��,�# - ��� ��$!(�.!/�$�$* ��//�����0

1%%��,�# - 2!3�� 4��������5�60 777777777777777777777777777777777777

777777777777777777777777777777777777

1%%��,�# - 0

8��� �9 �
� Department �������� :��;��� <���

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,
Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation
adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of
copyrighted material.

Di Xie

USER-DIFFERENTIATED HIERARCHICAL KEY MANAGEMENT FOR THE
BRING-YOUR-OWN-DEVICE ENVIRONMENTS

Master of Science

Baijian Yang

John A. Springer

Samuel P. Liles

Baijian Yang

Eugene H. Spafford 09/22/2014

USER-DIFFERENTIATED HIERARCHICAL KEY MANAGEMENT FOR THE

BRING-YOUR-OWN-DEVICE ENVIRONMENTS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Di Xie

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2014

Purdue University

West Lafayette, Indiana

ii

.

For my parents and those who love me

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Baijian “Justin” Yang

for his continued support. This thesis would never be finished without him.

I would like to thank the rest of my thesis committee members: Dr. Samuel P. Liles

and Dr. John A. Springer, for their excellent guidance, patience, and tough questions that

make this thesis better.

I would like to thank Dr. Giuseppe Ateniese, who amiably permitted me to do the

research on the basis of his work.

I would like to thank Marlene Walls and Stacy Lane, who provide an extensive set

of help on the progress of finishing the thesis.

Last but not the least, I would like to thank the help from Deborah Schwarte, who

has been helpful during the proofreading and editing of my thesis. Besides her great work,

I also would like to thank for her encouragement all the time.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES...vii

LIST OF FIGURES.. viii

LIST OF ABBREVIATIONS..x

GLOSSARY... xi

ABSTRACT... xiii

CHAPTER 1. INTRODUCTION.. 1

1.1 Introduction..1

1.2 Problem Statement...2

1.3 Research Question... 7

1.4 Significance..7

1.5 Delimitations..8

1.6 Limitations... 8

CHAPTER 2. LITERATURE REVIEW... 10

2.1 Hierarchical Key Management Scheme...10

2.2 Time-Bound Hierarchical Key Management Scheme... 16

2.3 Evolutionary History of Hierarchical Key Management Schemes and Time-

Bound Hierarchical Key Management Schemes... 18

v

Page

2.4 Capabilities and Performances of Hierarchical Key Management Schemes and

Time-Bound Hierarchical Key Management Schemes..23

2.5 Requirements of Time-Bound Hierarchical Key Management Schemes in a

Bring-Your-Own-Device Environment... 26

2.6 Two-Level Encryption-Based Construction.. 27

CHAPTER 3. NEW SCHEME - UDTLEBC.. 30

3.1 User-Differentiated Two-Layer Encryption-Based Construction........................30

3.2 Capabilities of User Differentiation Through Use of UDTLEBC....................... 34

3.2.1 Add a new security class...34

3.2.2 Delete an existing security class... 35

3.2.3 Update one key... 35

3.2.4 Add a new user into the system.. 35

3.2.5 Delete an existing user from the system... 36

CHAPTER 4. UDTLEBC: SECURITY PROOF.. 38

4.1 Definitions of Security and the Security of TLEBC..38

4.2 Security of UDTLEBC.. 42

CHAPTER 5. PERFORMANCE TEST METHODOLOGY.. 47

5.1 Overview..47

5.2 Methodology..47

5.3 Independent Variables and Constants..53

5.4 Dependent Variables..54

5.5 Internal Validity... 54

vi

Page

5.6 External Validity..54

CHAPTER 6. RESULTS...56

6.1 Performance of Complexities and Storage Requirements................................... 56

6.2 Performance of Computation Overhead.. 59

6.3 Performance of Data Transfer..68

CHAPTER 7. CONCLUSION...75

REFERENCES.. 77

APPENDICES

Appendix A Definitions...83

Appendix B Theorems... 89

vii

LIST OF TABLES

Table Page

Table 2.1 Key Assignments for Users in Different Security Classes............................... 12

Table 2.2 Key Assignments and Derivations after Using Hierarchical Key Management

Scheme...14

Table 2.3 Key Generation, Assignments, and Key Derivation through the Use of a

Hierarchical Key Management Scheme...15

Table 2.4 Key Assignment and Derivation of Time-bound Hierarchical Key

Management Scheme for a Specific User..18

Table 6.1 Performance Comparison Table of TLEBC and UDTLEBC........................... 57

Table 6.2 Median Time of Data Transfer Performance Test.. 68

viii

LIST OF FIGURES

Figure Page

Figure 1.1 BYOD Security Structure..5

Figure 2.1 A Binary Relation between Two Security Classes..11

Figure 2.2 Partially Ordered Hierarchy Graphs G* and G... 12

Figure 2.3 Time Sequences...17

Figure 2.4 Example of a Transformation Graph for TLEBC..29

Figure 3.1 Example of a Transformation Graph for UDTLEBC......................................32

Figure 4.1 Relationships between Security Notions... 41

Figure 5.1 UDTLEBC Key Derivation Processes.. 49

Figure 5.2 TLEBC Key Derivation Processes.. 50

Figure 5.3 UDTLEBC Data Transfer Processes... 53

Figure 6.1 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of

Device GT-i9108 and CBC Encryption Mode...60

Figure 6.2 Non-parametric Test for Distribution of Time in the Case of Device GT-i9108

and CBC Encryption Mode..60

Figure 6.3 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of

Device GT-i9108 and CFB Encryption Mode... 61

Figure 6.4 Non-parametric Test for Distribution of Time in the Case of Device GT-i9108

and CFB Encryption Mode.. 61

ix

Figure Page

Figure 6.5 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of

Device GT-i9108 and OFB Encryption Mode...62

Figure 6.6 Non-parametric Test for Distribution of Time in the Case of Device GT-i9108

and OFB Encryption Mode..62

Figure 6.7 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of

Java SDK and CBC Encryption Mode...63

Figure 6.8 Non-parametric Test for Distribution of Time in the Case of Java SDK and

CBC Encryption Mode.. 64

Figure 6.9 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of

Java SDK and CFB Encryption Mode...64

Figure 6.10 Non-parametric Test for Distribution of Time in the Case of Java SDK and

CFB Encryption Mode...65

Figure 6.11 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case

of Java SDK and OFB Encryption Mode.. 66

Figure 6.12 Non-parametric Test for Distribution of Time in the Case of Java SDK and

OFB Encryption Mode...66

Figure 6.13 Data Transfer Performance for Data Length of 1Kbit...................................68

Figure 6.14 Data Transfer Performance for Data Lengths of 10Kbit............................... 69

Figure 6.15 Data Transfer Performance for Data Lengths of 100Kbit............................. 70

Figure 6.16 Data Transfer Performance for Data Lengths of 1Mbit................................ 71

Figure 6.17 Data Transfer Performance for Data Lengths of 10Mbit.............................. 72

x

LIST OF ABBREVIATIONS

IT Information Technology

BYOD Bring-Your-Own-Device

NAC Network Access Control

MDM Mobile Device Management

UDTLEBC User-Differentiated Two-Layer Encryption-Based Construction

TLEBC Two-Layer Encryption-Based Construction

AES Advanced Encryption Standard

poset Partially ordered Set

IND-ST Key Indistinguishability with respect to Static Adversaries

IND-AD Key Indistinguishability with respect to Adaptive Adversaries

REC-ST Key Recovery with respect to Static Adversaries

REC-AD Key Recovery with respect to Adaptive Adversaries

IND-P1-C0 Plaintext Indistinguishability against an adversary

CBC Cipher-Block Chaining

CFB Cipher Feedback

OFB Output Feedback

CTR Counter

ECB Electronic Codebook

xi

GLOSSARY

Advanced Encryption Standard - “... a FIPS-approved cryptographic algorithm that can
be used to protect electronic data. The AES algorithm is a symmetric block cipher
that can encrypt (encipher) and decrypt (decipher) information. Encryption converts
data to an unintelligible form called ciphertext; decrypting the ciphertext converts
the data back into its original form, called plaintext. The AES algorithm is capable
of using cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in
blocks of 128 bits.” [1]

Bring-Your-Own-Device - “the new mantra of employees who are empowered to
innovate the way they work, using the technology tools they prefer.”[2]

Hierarchical Key Management Scheme - a technique that provides access controls in
multi-user systems by cryptographic keys.[3]

Mobile Device Management - “emerged recently in response to the ubiquitous adoption
of handheld mobile devices in corporations. MDM focuses on the end device rather
than the network, using client software on the devices. By communicating with the
client software, the MDM server enables IT to manage these devices.”[4]

Mode of Encryption - “In cryptography, a mode of operation is an algorithm that uses a
block cipher to provide an information service such as confidentiality or authenticity.
A block cipher by itself is only suitable for the secure cryptographic transformation
(encryption or decryption) of one fixed-length group of bits called ablock. A mode
of operation describes how to repeatedly apply a cipher's single-block operation to
securely transform amounts of data larger than a block.” [5]

Network Access Control - “technology enables IT to define and control how devices and
users gain access to network resources.”[4]

Partially Ordered Set - “In mathematics, especially order theory, a partially ordered set
(or poset) formalizes and generalizes the intuitive concept of an ordering,
sequencing, or arrangement of the elements of a set.” [6]

Security Class - Disjoint groups that users are classified into and “employee the relation
of partial ordering, that is, a security class at higher level can derive from his own
cryptographic key the keys of other security class below him”.[7]

xii

Symmetric encryption scheme - “a class of algorithms for cryptography that use the same
cryptographic keys for both encryption of plaintext and decryption of ciphertext.”[8]

Time-Bound Hierarchical Key Management Scheme - Hierarchical Key Management
Scheme in which the cryptographic key of a class are different for each time
period”.[9]

xiii

ABSTRACT

Xie, Di. M.S., Purdue University, December 2014. User-Differentiated Hierarchical Key
Management for the Bring-Your-Own-Device Environments. Major Professor: Baijian
“Justin” Yang.

To ensure confidentiality, the sensitive electronic data held within a corporation is always

carefully encrypted and stored in a manner so that it is inaccessible to those parties who

are not involved. During this process, the specific manners of how to keep, distribute, use,

and update keys which are used to encrypt the sensitive data become an important thing

to be considered. Through use of hierarchical key management, a technique that provides

access controls in multi-user systems where a portion of sensitive resources shall only be

made available to authorized users or security ordinances, required information is

distributed on a need-to-know basis. As a result of this hierarchical key management,

time-bound hierarchical key management further adds time controls to the information

access process. There is no existing hierarchical key management scheme or time-bound

hierarchical key management scheme which is able to differentiate users with the same

authority. When changes are required for any user, all other users who have the same

access authorities will be similarly affected, and this deficiency then further deteriorates

due to a recent trend which has been called Bring-Your-Own-Device. This thesis

proposes the construction of a new time-bound hierarchical key management scheme

called the User-Differentiated Two-Layer Encryption-Based Scheme (UDTLEBC), one

xiv

which is designed to differentiate between users. With this differentiation, whenever any

changes are required for one user during the processes of key management, no additional

users will be affected during these changes and these changes can be done without

interactions with the users. This new scheme is both proven to be secure as a time-bound

hierarchical key management scheme and efficient for use in a BYOD environment.

1

CHAPTER 1. INTRODUCTION

1.1 Introduction

To ensure confidentiality, the sensitive electronic data that is maintained for

corporations is always carefully encrypted and kept out of bounds to parties who are not

involved. During this process, the specific steps of how to keep, distribute, use, and

update keys, which are all used to encrypt the sensitive data, become an important thing

to be considered. This total process is one of key management.

While users in corporations are naturally, or not artificially, organized into a

hierarchy, the scheme which is used for key management by these users is called the

hierarchical key management scheme [3]. The hierarchical key management scheme can

also be viewed as a technique that provides access controls in multi-user systems 0 where

a portion of sensitive resources is only available to authorized users or where security

ordinances require that “information is distributed on a need-to-know basis” [11]. To

fulfill such need-to-know requirements, users are categorized into different disjoint

groups. Each specific disjoint group represents a special type of users based on their

access authorities. These disjoint groups are called security classes [7]. The data in

maintained for the government is always categorized into four classes: “unclassified”,

“confidential”, “secret”, and “top-secret”. Following categorization, only limited people

are assigned the authority to access data which is categorized as either “secret” or “top-

2

secret” [9]. In another words, the senior officers have greater access authorities than do

those new staff members, who typically can only access the “unclassified” data.

The deficiency of the hierarchical key management scheme is that researchers fail to

consider those cases where users are provided with access for only a short time period.

Such constraints are common in real world practices. A company might frequently

provide a number of short-time jobs or internships to college students. When absorbing

these college students into the corporate structure, the company should ensure that these

college students do and can only have access to sensitive data during their specific time

of contract.

This demand for time constraints has given birth to the time-bound hierarchical key

management scheme. With the time-bound hierarchical key management scheme, access

is restricted both by the security class of the data and the purported “valid” time assigned

to said data. The concept of the time-bound hierarchical key management scheme was

first proposed by Tzeng in 2002 [9] and further developed thereafter [12][13][14][15][16].

1.2 Problem Statement

No existing hierarchical key management scheme or time-bound hierarchical key

management scheme can be employed to effectively differentiate between users who are

at the same level of authority. If varied users all have an identical access authorization,

they are then treated equally by their ability to share matching secret keys and private

data. A more detailed introduction of this topic shall be introduced in sections 2.1 and 2.2.

This level of similar or equal treatment will often cause problems when an organization is

handling personnel changes. A senior manager might leave a company in pursuit of other

3

business interests. The resignation may be quite unexpected, and the former employee

typically maintains privileges to access the sensitive data because of the fact that the

secret key and private data information which has been assigned to her/him have not yet

expired. In response to the resignation, the information technology (IT) department of the

company, which is the central authority of access control, is required to immediately

withdraw the senior manager’s accessibility in order to avoid a potential data leakage by

changing the keys. Since there is no differentiation among users, everyone who has been

assigned the same access authority as the person leaving the organization will be

similarly rejected to access at this time. The IT department is required to update and

reassign new secret keys and data to restore these users’ access authorities.

With an efficient time-bound hierarchical key management scheme, this process of

regeneration and reassignment does not lead to great inconvenience because personal

changes are not part of the daily routine. This problem has been found to be seriously

deteriorating as a result of a recently growing trend called Bring-Your-Own-Device

(BYOD).

Corporate organizations adopt BYOD to encourage and allow their employees who

are using personal devices to have access to privileged company data, information,

applications, and systems [2]. Currently, the security of BYOD is ensured by two major

techniques, named the (1) Network Access Control (NAC) and (2) Mobile Device

Management (MDM) [4]. NAC is a technique used to secure the corporate network

through user and device identification [4]. Mobile Device Management (MDM) is an

emerging technique that aims at securing the mobile device by means of a secure

container system and enforced security policies [4]. A secure container is an isolated,

4

partitioned, and secure environment applied to a device which may be used to run

corporate applications and to store related sensitive corporate data. Through the usage of

such containers the company works to build a more enhanced and secure corporate

infrastructure for specific devices and better isolate the corporate construct from

interference from personal usage [17].

A sketch is shown in Figure 1.1. The security of BYOD can be divided into three

layers [4]. The first layer is the security of mobile device network access control. This

layer is used to provide for safe networking based on the access policies, which will

categorize the users into specific groups, such as guest, limited, and full. Limited users

will have greater access authorities than do guest users, and full users shall have access to

the entire body of the system. The second layer is that of the security held by mobile

device management, the construct which provides the integrated mobile device

configuration and operation policies. The third layer is that of the security held by the

mobile device app stores. These app stores shall aim to provide safe and certified apps in

order to ensure that users avoid downloading malware or trojans. These three layers work

together to provide strong protection for the personal devices.

With recent developments in both hardware and software, these two elements are

becoming increasingly capable of protecting devices from potential attacks. The

measured success has been proven by passing the tests of the U.S. federal government.

The federal government has opened the department’s door to the next generation of

BlackBerry and Android devices on May 2 [18] and Apple’s iOS 6 devices on May 17,

2014 [19].

5

Figure 1.1 BYOD Security Structure

The core concept of BYOD produces a fact that companies no longer have the

proprietorship of a number of devices connected into their intranet. This change results in

significant influences to the application of the hierarchical key management scheme.

One consequence is that key updates and reassignments will be more frequent.

Personal devices are carried everywhere by their owners, so these devices have an

increased chance to be lost or stolen than do those devices which are managed by

companies under strong security policies. A recent study has discovered that “more than

7,000 devices were lost in seven airports over a twelve month period” and a growing

number of thefts occurred between 2007 to 2011 [20]. When a particular device is lost,

the older key which was stored on that device should then be abandoned and a relevant

new key must be updated and reassigned. We find that problems arise which are similar

to those when an employee should choose to leave the company; it is not only one key

6

that must be reassigned, but the keys for all users who have access to the same body of

information. This is an unfortunate result of the current BYOD security systems.

Another consequence is that the actual processes of key updates and reassignments

have become formidable in BYOD environment. Since companies no longer have the

proprietorship of some devices, companies cannot approach updates and reassignments

without seeking the direct permission of their employees. These companies have to

define an acceptance baseline of what security and supportability features a BYOD

device should support with their employees. The access control is now an awkward

combination of the authority an employee has to access corporate data and the authority

that company has to manipulate said employee’s device. New contracts between

companies and employees have to be carefully designed in order to avoid any potential

infringement related to privacy and personal property [21]. Extra costs may arise in the

design, management, and disposal of these contracts.

Faced with the frequency and formidability of these consequences, this author

desires that a new time-bound hierarchical key management scheme with a capability of

user differentiation could be built, one which permits that when some changes for a user

are required, no additional users shall be affected. It is the research goal that all of these

changes can be implemented without any direct interactions with users or their devices,

thereby permitting less efforts and costs to avoid any potential privacy infringements.

7

1.3 Research Question

The basic research question of this thesis is: Is it possible to build a truly provable

secure and efficient time-bound hierarchical key management scheme that is capable of

differentiating users in the BYOD environment?

1.4 Significance

This thesis proposes a new time-bound hierarchical key management scheme known

as the User-Differentiated Two-Layer Encryption-Based Construction (UDTLEBC) by

modifying an existing time-bound hierarchical key management scheme, the Two-Layer

Encryption-Based Construction (TLEBC). UDTLEBC is constructed with three

objectives.

First, the new time-bound hierarchical key management scheme has the capability of

user differentiation. When rejecting or accepting one user’s access to a security class in a

specific time period, other users in the same security class during the same time period

will not be affected. On this basis, all changes can be implemented without interactions

with users, so the problems of privacy and cost can be precluded.

Second, the new time-bound hierarchical key management scheme is assumed

provably secure, i.e., the adoption of this scheme shall not sway its original capacity for

security.

At last, he new time-bound hierarchical key management scheme is efficient. That is

to say, the performance of the scheme will be evaluated in order to show that the new

capability does not generate any significant decline in performance.

8

1.5 Delimitations

This research focuses only on building a new hierarchical key management scheme

with a capability of user differentiation and an ability to establish its security and

performance. The new scheme is considered relevant to key distribution and associated

access control, so this scheme shall only be used to ensure the confidentiality of data. The

BYOD environment will not be discussed in further detail in this thesis, because the

process of creating authentic real practices within a BYOD environment actually involve

even more complex problems, in which the privacy, efficiency, and cost concerns are

merely a few elements of the whole [21]. BYOD will be treated as a truly broad

background, and be dealt with in terms of only a few basic concepts in the realm of this

study. The security and performance of this scheme will be evaluated from a hierarchical

key management scheme perspective rather than by discussing the safety and

performance within a real BYOD case in which the environment is complex and where

the scheme used may be uncertain. For convenience, the symmetric encryption scheme

AES is to be used in all of the cases where a symmetric scheme is required, so that the

performance shall necessarily be affected if a different scheme should be used.

1.6 Limitations

This thesis works on building a time-bound hierarchical key management scheme

for access controls within a BYOD environment. Only confidentiality and accessibility

are considered in this thesis. Security concerns, such as integrity and availability, shall

not be considered. The performance of the device is tested by using one emulator and one

device, so that the actual performance obtained may be limited by the capability of the

9

emulator and the device. Detailed information of the emulator and the device shall be

provided in this paper to permit others to predict the possibilities of achieving different

(better or worse) results through the use of different equipment.

10

CHAPTER 2. LITERATURE REVIEW

This chapter first provides detailed definitions for both the hierarchical key

management scheme and the time-bound hierarchical key management scheme. Then, a

historical retrospect is approached to review the evolution of a hierarchical key

management scheme and the emergence of the time-bound hierarchical key management

scheme. Based on the evolutionary history, this thesis then illustrates that no existing

schemes provides the capability of user differentiation, which is believed to be required

within a BYOD environment. Further analyzing the capabilities and performance

required in a BYOD environment, this thesis explains why TLEBC is believed to be more

compatible to the BYOD environment. At last, the TLEBC is briefly introduced.

2.1 Hierarchical Key Management Scheme

This section briefly explains the concept of a hierarchical key management scheme,

which is summarized by the author (Relevant works were introduced in section 2.3). In a

multi-user system, assume that a set of users are divided into a set of disjoint classes

which are called security classes. If we assume that users in one security class have

greater access authority than do users in another security class, then a binary relation

symbol � is used to denote the relationship between these two classes. An example is

shown below to introduce such binary relations.

11

Figure 2.1 A Binary Relation between Two Security Classes

As shown in Figure 2.1, 1C and 2C are two security classes and 1C has more access

authority than does 2C . A relationship, 12 CC � , represents a binary relationship of how

users in class 1C can access data in class 2C , but not vice versa. Obviously, these users

can access data within their own security class, so the relationships 11 CC � and 22 CC �

are valid and such a binary relationship is valid for any security class iC .

If we put security classes in one set, then a hierarchy can be built according to the

concept of a partially ordered set (poset). Within the order theory, a partially ordered set

formalizes elements of a set by binary relationships which present the ordering of

elements. A binary relation indicates that one element can denote another element; for

example, security class 1C can indicate security class 2C within the previous example.

The term “partially” is used to denote that not every pair of elements within the set has a

binary relationship.

Such a poset hierarchy can be shown by a graph *G , in which security classes and

binary relations are shown. Each path in the graph *G presents a binary relation between

a pair of security classes and a reflexive of a security class. The graph *G can be reduced

to a graph G, where G denotes the minimal presentation of the graph *G . If we use V to

denote a set of security classes and *E or E to denote a set of binary relations, Figure

2.2 provides a direct view of *G and G by using an example of four disjoint security

12

classes C1, C2, C3, C4 with the following binary relationships: 11 CC � , 12 CC � , 22 CC � ,

13 CC � , 33 CC � , 14 CC � , 24 CC � , and 44 CC � .

Figure 2.2 Partially Ordered Hierarchy Graphs G* and G

Under the poset hierarchy, users in one security class are not allowed to access data

that belongs to another security class unless they already have the direct authority, i.e., a

user in security class iC can access data in security class jC if and only if there is a

binary relationship defined as ij CC � . To satisfy this requirement, data in different

security classes are encrypted by different secret keys in order to protect them. The secret

key of each security class is only assigned to those users belonging to that security class

and to users who are in other security classes but also have access to the data. By using

the same example presented in Figure 2.2, if ik is used to denote the secret key of

security class iC , then users are assigned secret keys by the following table:

13

Table 2.1 Key Assignments for Users in Different Security Classes

Users Key Assignments

Users in security class 1C 4321 ,,, kkkk

Users in security class 2C 42 , kk

Users in security class 3C 3k

Users in security class 4C 4k

The “higher” a security class within the hierarchy, the more keys which the users in

that security class are required to maintain. If users in the security class are “high” in the

hierarchy, they have will then have to maintain more keys for accessing data protected

the varied security classes which are “low” in the hierarchy. Since the number of keys

will expand as the number of security classes and binary relationships increases, storage

problems may emerge with hierarchical escalation because those users within the “high”

levels of security will need to maintain a large number of keys.

Accordingly, a hierarchical key management scheme is a cryptographic technique

designed to build relationships between keys. Such a process is called a key derivation.

The term “key derivation” means that a secret key can be used to compute other secret

keys. More precisely, a secret key of a particular security class can be used to compute

another secret key of another security class if, and only if, there is a binary relationship

within the poset hierarchy. This process of key derivation cannot be reversed. The

advantage of this technique is that users only have to store one secret key regardless

whether they are in a security class that is deemed “high” or “low” in the hierarchy and

14

regardless of the size of the hierarchy. When they need to access data in other security

classes, they can use the secret key assigned to their own security class with the purpose

to compute to secret keys which they require. By using the example as is found in Figure

2.2, the following table illustrates these result after using a hierarchical key management

scheme:

Table 2.2 Key Assignments and Derivations after Using
Hierarchical Key Management Scheme

Users Key Assignments Key Derivations

Users in security Class 1C 1k

41

31

21

kk

kk

kk

�

�

�

Users in security Class 2C 2k 42 kk �

Users in security Class 3C 3k None

Users in security Class 4C 4k None

From Table 2.2, it could be seen that users merely have to store one secret key

which belongs to the whole of their security classes, so that the total of the required

storage is strongly reduced by using the hierarchical key management scheme.

To enable such a key derivation, secret keys usually have to be generated by a

specific generation algorithm, so that the secret keys can be generated with some existent

and predetermined binary relationships amongst them. Different hierarchical key

management schemes have different generation algorithms which are designed to realize

the key derivation intended. The generation algorithm also generates both the private and

15

public data, which are then used to help with the key derivation. Private data may be sent

secretly to the individual users because of the fact that the leakage of such private data

might contribute to varied attacks. On the other hand, public data is typically made

available to the public because an adversary cannot obtain any particular advantages

through gaining this knowledge. With this information in hand, Table 2.2 can then be

extended as follows:

Table 2.3 Key Generation, Assignments, and Key Derivation through the Use of a
Hierarchical Key Management Scheme

Users Key Generation Key Assignments Key derivation

Users in security

Class 1C

pub

privpriv

kkkk

21

4321

,
,,,

11, privk

411

311

211

,,
,,
,,

kpubprivk

kpubprivk

kpubprivk

�
�
�

Users in security

Class 2C
22 , privk 422 ,, kpubprivk �

Users in security

Class 3C
3k None

Users in security

Class 4C
4k None

In such a case, then � �654 ,, ttt�� . The private data �,2s is assigned to the user in

order to ensure that the user can only generate the decryption key tjk , , whereby j

denotes a security class jC such that 2CC j � and t denotes the time periods 654 and ,, ttt .

Thus, as compared to a hierarchical key management scheme, the time-bound

16

hierarchical key management scheme further divides users in each security class into

more groups corresponding to different combinations of short time periods.

2.2 Time-Bound Hierarchical Key Management Scheme

This section briefly explains the concept of a time-bound hierarchical key

management scheme, which is summarized by the author (Relevant works were

introduced in section 2.3). A time-bound hierarchical key management scheme is a

special application of the hierarchical key management scheme. Within a hierarchical key

management scheme, time is not considered a factor and once a user is categorized into a

security class, the user would belong to that security class forever. To delete a user from a

security class, the central authority needs to change the secret key of the security class

and to reassign a new secret key to all of the users affected. But within a time-bound

hierarchal key management schemes, a user will merely belong to a security class for a

specified time period. When that time period expires, the user will be eliminated from the

security class and shall lose the access authority which he/she once had. This process can

be done automatically without regeneration, reassignment or any other participation from

the central authority.

To effectuate such a capability, a central authority will first decide the length of the

time period, i.e. the long time period. This time period usually extends over a period of

key updates. In some real world cases, such a time period could be a season, half a year,

or even a year. This long time period will be further divided into a sequence of short time

periods. The length of the short time period is also decided by the central authority. An

illustrative diagram is shown in Figure 2.3.

17

Figure 2.3 Time Sequences

The capital T is used to denote the long time period, and niti ,...,3,2,1, � are used to

denote the short time periods within the long time period T. Assume that the long time

period is the month of January and short time period is merely one day. There are 31 days

in January, so there will be 31 short time periods within the long time period. 1t denotes

the first day of the January, 2t denotes the second day of January, ..., and 31t denotes the

last day of the January.

On this basis, each security class no longer uses only one key to encrypt data but a

set of keys corresponding to the short time periods. If each key is denoted by tik , where i

denotes the security class the key assigned to and t denotes the short time period, key

1,1k is used by security class 1C to protect its data in short time period 1t , key 2,1k is used

by security class 1C to protect its data in time-period 2t , and so on. A time-bound

hierarchical key management scheme would generate a set of keys for each security class

for each short time period. Each security class will be assigned n keys, where n is the

number of short time periods within a long time period. Each user will be assigned a

specific piece of private data according to that security class in which the user exists and

the short time period the user is allowed to access the data. We denote such specific

private data by �,vs , where v stands for the security class the user is in and � stands for

18

the combination of short time periods in which the user is allowed to access the data. By

using the same poset hierarchy shown in Figure 2.2 and same time period shown in

Figure 2.3, assume that a user in security class 2C is allowed to access the data on days 4,

5, and 6; then process of key assignment and derivation are shown in the following table:

Table 2.4 Key Assignment and Derivation of Time-bound Hierarchical
Key Management Scheme for a Specific User

User Definition Key Assignment Key Derivation

A user belongs to security

class 2C and has access

authority on day 4 and 5

�,22 , sk , where � stands for

the combination of

654 and ,, ttt
6,45,44,4

6,25,24,2

,22

,,
,,,

,,

kkk

kkk

pubsk

�
�

In such a case, then � �654 ,, ttt�� . The private data 	,2s is assigned to the user in

order to ensure that the user can only generate the decryption key tjk , , whereby j

denotes a security class jC such that 2CC j
 and t denotes the time periods 654 and ,, ttt .

Thus, as compared to a hierarchical key management scheme, the time-bound

hierarchical key management scheme further divides users in each security class into

more groups corresponding to different combinations of short time periods.

2.3 Evolutionary History of Hierarchical Key Management Schemes and Time-Bound

Hierarchical Key Management Schemes

This section briefly reviews the contributions of other researchers. The first poset

hierarchical key management scheme was proposed in 1983 by Aki and Taylor [3]. In

19

their scheme, users are assigned both a prime and a secret key. Some public data is then

made available to the users in order to allow them to implement the key derivation. The

security of the scheme is based on a discrete logarithm problem, which is generally

believed to be difficult. As the first hierarchical key management scheme, it has been

found to have several deficiencies. One major problem is that this scheme requires a

significant amount of storage space. In 1985, Mackinnon et al. [22] proposed an

improved algorithm that could be used with the Aki-Taylor scheme [3]. This algorithm

reduces the amount of public data required by the original scheme, and the required

amount of public data was further reduced in 1990 by Harn and Lin [23]. In the original

Akl-Taylor scheme [3], the keys are generated in a single linear fashion, proceeding from

top to bottom. Harn and Lin [23] then changed this key generation process, so that it was

reversed from top-down to bottom-up, a method which requires less storage of the public

data.

Besides working to reduce the required amount of storage, many researchers have

also tried to make these schemes more “flexible”. This schematic flexibility can be

comprehended in two ways. First, the scheme is seen to be suitable for all kinds of

situations. Chick and Tavares [24] proposed a special usage of the scheme to enable

access control of a set of services, where these services are not necessarily organized

within a poset hierarchy. Ohta et al. [25] proposed a scheme especially designed for

membership authentication. In their scheme, users are allowed to prove their membership

without revealing any additional information (for example, the user’s actual name). Lin et

al. [26] proposed a scheme that could be utilized not only in a poset hierarchy but also

within more complicated circumstances. A second type of improved flexibility involves

20

the fact that the scheme, itself, is more flexible to change. Researchers have repeatedly

tried to make these changes convenient and fast by reducing the impact of said changes.

In 1993, Chang and Buehrer [10] improved the scheme proposed by Mackinnon et al. [22]

by importing a one-way trap door function into the scheme. It was discovered that the

step of adding a new security class into the poset hierarchy would not necessarily affect

most of the previously existing security classes. Hwang and Yang proposed another

scheme [27] in 2003, a scheme which provided two contributions. First, it was found that

fewer keys are required in their proposed scheme as compared to those existent in

previous schemes. Second, they discovered that the process of adding or deleting a

security class would affect only a minimal amount of security classes found within the

hierarchy.

Other researchers are also providing new schemes which are not based on the

research branches that were derived from the Akl-Taylor scheme [3]. Sandu [28] had

proposed a hierarchical key management scheme in 1988, using a totally different

algorithm. This scheme generates keys through use of a one-way function and the

assignment of IDs to each security class. The schematic security depends on the fact that

the process of a one-way function cannot be reversed. A large problem with this system

remains in the fact that the key derivation of the scheme cannot be approached directly.

By using the scheme, a secret key assigned to a security class can only be used to derive

secret keys of security classes which are immediate predecessors. To compute a secret

key of a security class which is lower in the hierarchy, the intermediate secret keys in the

chain must also be generated, thereby leading to many unnecessary computations.

21

The same problem is also evident in Chang et al.’s scheme [29], proposed in 1992,

and Liaw et al.’s scheme [7], proposed in 1993. Both of these research parties relied upon

Newton’s interpolation method and one-way functions to construct their schemes. Key

derivations of their schemes are also indirect. This deficiency was overcome by Hwang

[30] in 1999. Hwang subtly used the property of a discrete logarithm and proposed a

scheme with similar steps while computing the secret keys directly. Ray et al. [11]

provided another solution to this problem which was also found to solve this deficiency.

Zhong [31] proposed a scheme in 2002 through use of the Hash functions. This

scheme typically requires less storage than do most of previous schemes. Shen and Chen

[32] also proposed a new scheme in 2002 by combining the advantages of Akl-Taylor

scheme [3] and Sandu’s scheme [28], through their use of the Hash functions. This

scheme was then improved by Das et al. [33] in 2005, through a reduction in both its

computational overhead and security weaknesses. Tzeng et al. [34] continued with

improvements in 2010 in order to reduce the computational time required for key

generation and derivation. Sun and Liu [35] proposed another new scheme in 2004 and

worked to prove that their scheme required less communication, computation, and

storage.

Additional schemes have also been developed which focus more specifically on

satisfying particular objectives. Tsai and Chang [36] had proposed a scheme which was

based on such factors as: polynomial interpolation, the Chinese remainder, and the Rabin

public key system. This scheme was specially designed to provide its users with the

capability to freely change their secret keys and their positions within the hierarchy. The

scheme was further improved by Kuo et al. [37] by work which enabled an increased

22

flexibility to change both security classes and keys. The scheme of Kuo [37] was further

improved by Hwang [38] in 1999 and Chen and Chung [39] in 2002. First, Hwang was

able to reduce the computations required for key generation and derivation. Then, Chen

and Chung improved the scheme with regards to both the computation time and storage

size.

Birget et al. [40] and Zhang and Wang [41] both proposed schemes that were not

only related to the hierarchy of a set of users but also to the hierarchy of a set of data.

These researchers worked to develop and/or generate an integral poset hierarchy in which

the node in the hierarchy could be either a security class or a special category of data. Lin

[42] proposed a scheme that can be efficiently implemented with low cost chips. Chien

and Jan [43] presented a scheme similar to that of Lin’s [42] but then further reduced the

computational load and implementation costs. Ferrara and Masucci [44] designed their

scheme from an information-theoretic approach in order to ensure that their scheme was

unconditionally secure.

Tzeng [9] proposed the first time-bound hierarchical key management scheme in

2002. He used modular exponentiation, the Lucas function, and the one-way Hash

function to enable the capability of time restrictions. The scheme was not only too

complicated, but also vulnerable to collusion attacks [45]. Another time-bound

hierarchical key management scheme [15] was proposed later by Chen, but quickly

proved to be insecure against collusion attacks [46]. Bertino et al. [13] proposed another

time-bound hierarchical key management scheme in 2008 through use of a tamper-

resistant device, but this was again found to be vulnerable to collusion attack by Sun et al.

[46] in 2009. Wang and Laih [16] then worked to propose an efficient time-bounded

23

hierarchical key management scheme in 2006 beginning with the concepts in the Aki-

Taylor scheme [3]. Since they did not adequately formalize the definition of “security” in

their research, a question remained as to whether their scheme was provably secure. In

2012, a provably-secure time-bounded hierarchical key management scheme was

proposed by Ateniese et al. [12]. Ateniese et al. provided detailed steps for the security

proof of their scheme. In the same year, Chen et al. [14] proposed another scheme which

some believe to be efficient for defeating collision attacks without the necessity of a

tamper-resistant device. With the information that has been gathered and the lessons

learned regarding other time-bound hierarchical schemes, the security of Chen et al.’s

scheme [14] has been comprehended as having not been breached as of yet.

2.4 Capabilities and Performances of Hierarchical Key Management Schemes and

Time-Bound Hierarchical Key Management Schemes

From the evolutional history of both the hierarchical key management scheme and

the time-bound hierarchical key management scheme, it is easy to observe that previous

researchers had tried to improve the hierarchical key management scheme or time-bound

hierarchical key management scheme by offering new schemes with either additional

capabilities or a better performance rating. Among these previous efforts, the capabilities

and levels of performance which these previous researchers sought to pursue may be

summarized (by this Author) as follows:

1. Capabilities:

24

a) Capability of key derivation: the secret key assigned to a security class which

can be used to compute secret keys of another security class if a binary

relationship exists.

b) Capability of direct key derivation: if the secret key assigned to a particular

security class is used to compute a secret key assigned to another security class,

such key derivation can be done directly without generating any other secret

keys.

c) Capability of access control (security): by using the scheme, users should be

rejected from accessing data in those security classes in which they are not

allowed access according to either hierarchy or that point in time. Since the data

is protected by the secret keys, it requires that the process of key derivation

cannot be reversed.

d) Applicability of the scheme: which establishes whether the scheme can be used

under a more complicated policy protocol rather than a poset hierarchy.

2. Performance:

a) Complexity of key updates: involves the repercussion of key updates, including

the number of steps, time, and how many security classes would be affected by

the key updates.

b) Complexity of hierarchical change: involves the repercussion of adding or

deleting a class or adding or deleting a binary relation between two security

classes, including the number of steps, time, and how many security

classes would be affected by the hierarchical change.

25

c) Computation overhead: involves the computation amount or time needed for key

derivation.

d) Private storage requirement: involves the amount of storage required on the end

devices.

e) Public storage requirement: involves the amount of storage required on the

public servers.

The term “capabilities” works to describe those elements for which a hierarchical

key management scheme is required to be capable. There are no particular orders of

importance among the varying capabilities. Capabilities are known as the clear

requirements that a scheme should satisfy. Different schemes will have various

performance abilities when these schemes are compared with each other. According to

the varying situations, some performance requirements will then become viewed as more

important than others. If a scheme is implemented into an electronic library system, the

importance of the complexity of hierarchical change would be minimal because it is rare

to add or delete a new security class or a binary relation between two security classes in

such system.

No existing scheme provides for the capability of user differentiation. The

development of a new scheme is needed in order to overcome the challenges existent

within a BYOD environment. The next section shall provide an analysis to determine

which performance of the scheme shall be found to be most important in a BYOD

environment and to verify why TLEBC is currently believed to be the most compatible

scheme in a BYOD environment.

26

2.5 Requirements of Time-Bound Hierarchical Key Management Schemes in a Bring-

Your-Own-Device Environment

Two major changes can be observed in a BYOD environment. First, the devices are

no longer owned by the corporate companies. In the sense of a time-bound hierarchical

key management scheme, this change indicates that the central authority no longer has

full control over the end devices. Central authority has to cooperate with users in order to

proceed with necessary changes, such as key updates or hierarchical changes, so a decline

in the level of efficiency may be expected because permission from users must be sought

and gained. The complexity of key updates and hierarchical changes frequently become

more important when compared to the original working mode process.

Second, these devices are brought by individual users in a BYOD environment but

not through unified purchase process (when all devices were under corporate ownership),

which indicates that the quality of these devices cannot be guaranteed. To implement a

time-bound hierarchical key management scheme, the central authority has to ensure that

the scheme can operate efficiently even with the poorest devices. This requirement

indicates that the computation overhead and private storage requirements become more

important as compared to when the corporation owned all devices. A poorly designed

device might not be able both to efficiently support a large computation overhead and

meet private storage requirements.

The TLEBC is a time-bound hierarchical key management scheme proposed by

Ateniese et al. [12]. It is believed to be the most compatible to the requirements of a

time-bound hierarchical key management scheme within an BYOD environment by the

author of this thesis because it performs superbly when one considers the complexity of

27

key updates, complexity of hierarchical changes, computation overhead, and private

storage requirements. Through use of the TLEBC, whenever there is a need to change a

key or do any modification to the hierarchy, in most cases these processes can be

accomplished by changing the public data stored on the corporate server, which is owned

by the central authority. It is only when a new security class has been added into the

system, that the secret keys or private data must be updated. There is no need to change

any secret keys or private data on the end devices. These changes of keys and hierarchy

no longer require the corporation to gain permission from individual users. The scheme

requires only one piece of private data to be stored on the end device. Thus, the private

storage requirement is very small. The key derivation can be done in a single step of

decryption through use of a symmetric cryptographic algorithm, so the computational

overhead will also remain insignificant if an efficient symmetric cryptographic algorithm

is used.

Basing on the excellent performances of the TLEBC with regards to the complexity

of key updates, complexity of hierarchical changes, computation overhead, and private

storage requirements, this scheme is believed to be the one which is the most compatible

to the BYOD environment, for it merely lacks the capability of user differentiation.

2.6 Two-Level Encryption-Based Construction

This section briefly introduces the concept of the time-bound hierarchical key

management scheme TLEBC. Here we shall recall the concept of the time-bound

hierarchical key management scheme [12]. As was shown in section 2.2, assume that for

each security class uC and each short time period jt , a secret key
jtuk , is generated as an

28

encryption key in order to protect the data in said security class over a short time period.

Each user would belong to a security class and have the access to data only in several

short time periods. If i� is used to indicate a possible combination of such a short time

period, then a set � is established, such that ��i� is used to indicate such

combinations i� [12]. If the security class vC is used to indicate that designated security

class within which the user works, then a user can be identified by both the security class

vC and the combination i� . A private value
ivs �, could be used to indicate the access

authority by which that user is categorized in security class vC within a set of short time

periods i� [12].

TLEBC is built on a graph which presents the binary relationship between
ivs �, and

jtuk , [12].
ivs �, is listed in the superstratum and

jtuk , is listed in the substratum. For any

short time period jt and combination of short time periods i� , if ijt �� holds, then a path

from
ivs �, to

jtuk , will be constructed. Assume that there are three security classes R, M,

and N, and R is authorized to access data within both M and N. Also assume that only

two short time periods, 1t and 2t , are considered; then there exists three possible

combinations: i� such that 	
11 t�� ,
 �22 t�� , and � �213 , tt�� . Figure 2.4 shows the

resulting graph of the construction of the example.

29

Figure 2.4 Example of a Transformation Graph for TLEBC

The TLEBC will assign one piece of
ivs �, to each user to indicate their access

authorities and publish public data � �
jtuiv ksp

,,)(� that could be used to compute encryption

keys. If a user has access in all the security classes R, M, and N, and in both of the time

periods 1t and 2t , then the secret value
3,�RS will be assigned to the user to indicate that

the user can have access to all of the security classes, since RM � and RN � , and to all

of the time periods, since � 	213 , tt
� . To generate a specific key, for example
1,tMK , in

order to access data belonged to security class M within the short time period 1t , then the

user will have the capacity to obtain public data �
� �1,3, tMR ksp � and use both
ivs �, and

�
� �1,3, tMR ksp � to generate the specific key
1,tMK .

30

CHAPTER 3. NEW SCHEME - UDTLEBC

This chapter presents how the new scheme – that of the User-Differentiable Two-

Layer Encryption-Based Construction (UDTLEBC) – is built based on the basic concept

of the TLEBC. The UDTELBC follows the definition of time-bound hierarchical key

management � �DerGen, and requires a symmetric encryption scheme � �D,,��� as a

necessary building part (See Appendix A, and Definitions 1 and 2 for detailed definitions

of the time-bound hierarchical key management scheme and symmetric encryption

scheme). UDTLEBC had the capability of user differentiation. This capability is also

illustrated in this chapter.

3.1 User-Differentiated Two-Layer Encryption-Based Construction

Consider a minimal presentation graph � 	EVG ,
 of a poset hierarchy where V

indicates the nodes in the poset hierarchy and E indicates the links from nodes to a set of

various time combinations � , so that �
i� where i� is a possible combination of short

time periods it (introduced in section 2.6). A transformation graph � ������� � EVG , ,

which presents the binary relationships existent between
ivs �, and

jtuk , , can be built by

transferring the minimal presentation graph � 	EVG ,
 with the following criteria

introduced in Ateniese et al.’s work [12]:

31

1. For each class Vv� and each combination of short time periods ��� , a class �v is

put in a set called �V .

2. For each class Vu � and each short time period Tt � , a class tu is put in a set called

�V .

3. Let �		�
� VVV .

4. For each class Vv� , each combination of short time periods ��� , and each short

time period Tt � , if ��t , an edge between �v and tv is put in
�E .

5. For each pair of classes Vv � and Vu � , each time sequence ��� , and each short

time period Tt � , if there is a path between v and u in graph G and ��t , an edge

between �v and tu is put in
�E .

6. Construct � ������� � EVG ,

This transformation graph � ������� � EVG , presents the mappings from
ivs �, to

jtuk , .

Since each of these users can be categorized into a specific class ��Uv by assigning a

private data �,vs , thus, the mappings can be found between users and the private data

�,vs may be assigned to them too. Let ID denote each user and a set �V denote the users

so that ���VID , and let ��F denote the mappings so that � � ,vsIDf ! . From the view of

the transformation graph, another part of graph " #$%$%$% & FVG , could be added on the

basis of � ������� � EVG , and be used to enable the capability of user differentiation.

Assume that the hierarchy and time periods used in the example are those from

section 2.6 and the five users and five mappings, employed to offer the visual assistance

32

provided with in Figure 3.1, are � �
1,1 �MsIDf � , � �

1,2 �RsIDf � , 	

3,3 �RsIDf � ,

� �
1,4 �RsIDf � , and � �

3,5 �NsIDf � . Figure 3.1 then shows the combination of

 ������� � FVG , and � ������� � EVG , in UDTLEBC.

Figure 3.1 Example of a Transformation Graph for UDTLEBC

 ������� � FVG , presents the mappings from ID to
ivs �, . Thus, by assigning ID to

users, a user can first generate the secret value
ivs �, , which indicates its access authority,

and then computes the key
jtuk , by using the secret value

ivs �, generated. One the basis of

the construction of TLEBC [12], we modified the original algorithms and generated new

algorithms for UDTLEBC as following:

By the transformation graphs
 ������� � FVG , and � ������� � EVG , , the graph of a

poset hierarchy � �EVG ,� , time periods that are Tt � , combinations of time periods that

are ��i� , and a symmetric encryption scheme that is � D,,!"#$, the Gen and Der

algorithms of UDTLEBC is built as follows:

33

Algorithm. � �PGGen ,,1�

1. For each user, let � ��1��ID

2. For each class 	v in
V , let � �
� 1, ��vs ;

3. For each class tu in �V , randomly choose a secret value � ��1,0, �tuk ;

4. Let I and k be the sequences of private information ID and tuk , ;

5. For any pair of classes � � �� �� VVvID �, such that � � � ! FvID ", , padding or splitting

#,vs to the length of $ and compute the public information % & ' ()* ,)(, vIDsID SEp
v

+ ;

6. For any pair of classes , - ./ 01 VVuv t,2 such that 3 4 567 Euv t,8 , compute the public

information 9 : ; <tvsks kEp
vtuv ,)(,,, == > ;

7. Let pub be the sequence of public information computed in the previous step; and

8. Output ? @pubkID ,, .

Algorithm A BpubtIDvuPGDer i ,,,,,,,,1 CD

1. Extract the public value E FG,)(vsIDp from pub;

2. Calculate the value H IJ KL MNO ,, vsIDIDv pDs P ;

3. Extract the public value Q Rtuv ksp
,,)(S from pub; and

4. Output the key T UT UV W
tuvu ksstv pDk
,,,, XXY .

34

3.2 Capabilities of User Differentiation Through Use of UDTLEBC

Since each user is assigned a specific ID , each user can be differentiated from

others because these users are no long sharing the identical private keys or values. From

Figure 3.1 Example of a Transformation Graph for UDTLEBC we can now see that in

order to remove any access authority or change any encryption key used, only the middle

and bottom layer is required to be changed. Thus, all changes can be accomplished

without modification of those IDs which have already been assigned and are in use,

thereby permitting modifications to be done at the central authority side without

unnecessary interference with the users. Now, we shall discuss each type of change in

greater detail, in part by providing specific examples. The identical hierarchy and time

periods that were employed in section 2.6 shall still be the standard for the following

cases. The specific examples are as follows:

3.2.1 Add a new security class

Adding a new security class can be simply done by adding new secret values, keys,

and mappings to the transformation graph. Assume that a new security class O is added

into the hierarchy under security class M . Then, then the following modifications are

needed:

1. For security class O , generate � ��� 1, ��
iOs for 1� , 2� , and 3	 ;

2. For security class O , select
 ��1,0
1,
tOk and � ��1,0

2, �tOk ; and

3. Compute and publish � � � �
iiRitOiR tOsks kEp ,)(,,, �� � , � � � �

iiMitOiM tOsks kEp ,)(,,, �� � ,

� � � �
iiOitOiO tOsks kEp ,)(,,, �� � , and for all i� and all

itOk , .

35

3.2.2 Delete an existing security class

Deleting an existing security class can be simply done by deleting all secret values,

keys, and public data associated with the security class. Assume that the security class

M is deleted from the hierarchy. Then, the following modifications are needed.

1. Remove
iMs �, for 1� , 2� , and 3� ;

2. Remove
1,tMk and

2,tMk ; and

3. Remove � �
ituiM ksp

,,)(� for all
iMs �, and all

itMk , .

3.2.3 Update one key

Updating one key can be simply done by updating the key and relevant public data.

If one assumes that
1,tMk needs to be updated, then the following modifications are

needed:

1. Update
1.tMK : and

2. Update public data 	
1,,)(tMiv ksp � for all existing mappings from
ivs �, .

3.2.4 Add a new user into the system

Adding a new user into the system can be done simply by generating and assigning a

new ID to the new user and publishing public data according to that user’s access

authority. Assume a user is added to the security class and has access authorities R in

short time periods 1t and 2t . The following modifications are then needed to add this new

user into the system:

36

1. Generate a new � ��1��ID for the new user;

2. Assign ID to the user; and

3. Generate and publish � �3,)(�RsIDp .

3.2.5 Delete an existing user from the system

To delete a user from the system, all of the data that the user is able to obtain needs

to be updated. Assume that a user who is in security class R and has access authorities in

short time periods 1t and 2t is removed from the security class R and no longer has

these access authorities. We will show that no other users will be affected in the process

of doing such changes through the use of UDTLEBC. We now define the removed user

by 0ID and the other users who are in the security class R and have access authorities in

short time periods 1t and 2t by iID , so that ,...3,2,1	i . We will show that the removed

user 0ID would have no effect on each user iID and that the amendments can be done on

the central authority side without participation from affected users.

Since user 0ID previously had full accessibility to the entire system, the following

modifications are needed to remove user 0ID from the system:

1. For security class R , regenerate
 ��
 1
3, ��Ms ;

2. For security class R , M and N , reselect � ��1,0
1, �tRk , � ��1,0

2, �tRk , � ��1,0
1, �tMk ,

� ��1,0
2, �tMk , � ��1,0

1, �tNk , and � ��1,0
2, �tNk ;

3. Update ! " #
33, ,)($% RIDsID Sp

iRi
&' for each user iID ; and

37

4. Update � � � �tvsks kp
RtuR ,)(3,,3, �� �� for each new key.

Thus, no matter what the change is, the ID assigned to users shall not be required to

be updated and all changes can be accomplished from the side of central authority.

Interactions with users are only needed in those cases when new users are added into the

system. The users can obtain updated keys by using both the ID they once kept and all

of the updated public data, allowing for ease of access without confusion.

38

CHAPTER 4. UDTLEBC: SECURITY PROOF

This chapter is designed to offer evidence regarding the security of the UDTLEBC.

The chapter is organized as follows: First, this chapter presents definitions of security

with respect to time-bound hierarchical keys and symmetric encryption schemes. Then,

based on these definitions, the security level of TLEBC is introduced. After that, by

comparing the differences which arise between UDTLEBC and TLEBC, it will be shown

that UDTLEBC is as secure as TLEBC if the symmetric encryption scheme employed is

as secure with respect to plaintext indistinguishability.

4.1 Definitions of Security and the Security of TLEBC

This section introduces related definitions of security that are used in [12] to prove

the security of TLEBC, which might also be used to prove the security of UDTLEBC.

To ensure the security of access control, users should not be able to access a class

during a specific time period if they are not authorized. vA is used to denote the set that

� �vuVu �� : , for any Vv� , where V is the set of security classes. That is to say, for

every class Vu� and time period Tt� , the key tuk , should not be achieved by users in

class such that vAu� and users in class v’ such that 'vAu	 but authorized during a

combination of time periods
 such that ��t . The key tuk , should also be protected

39

against the coalition of these unauthorized users. The set � �� ��� ���� tAuPVu v or :, is

used to present these unauthorized users, denoted by tuF , .

When talking about the security of the time-bound hierarchical key management

scheme, two different security goals are being considered at this point: security with

respect to key indistinguishability and security against key recovery. These two security

goals describe the security of the time-bound hierarchical key management scheme. The

key indistinguishability postulates that an adversary can learn no information about a key

of which the adversary does not have access. The key recovery claims that an adversary

is not able to compute any key for which the adversary does not have access. The time-

bound hierarchical key management scheme achieves these two security goals with

respect to both static and adaptive adversaries, where static adversaries randomly choose

a security class to attack and adaptive adversaries choose a specific security class to

attack based primarily on that information the adversary actively sought or “jockeyed”

for before the attack.

More precisely, regarding the behavior of these varied adversaries, a static adversary

is allowed to access private information 	,vs such that
 � tuFv ,, �
 and public information.

An algorithm tuCorrupt , is used to denote the process that extracting secret values 	,vs

has been associated with pairs
 � tuFv ,, �
 . The corr is used to denote the output of

)(, sCorrupt tu , based on the private information s generated by Gen .

On the other hand, an adaptive adversary is allowed to access any number of users’

private information of it’s choice in advance and then chooses a security class u which it

desires to attack and the time period t in which it wants the attack to be approached.

40

There are two other notions associated to the definition of security. The first is the

idea of the probabilistic algorithm and experimentation. If � �.,.,...A is a probabilistic

algorithm, then � �,..., yxAa � denotes a running algorithm A with inputs x, y,... where

the probability of the outcome a is like the flipping of the coins of A. If X is a set, then

Xx� is a denotation that selects an element uniformly from set X and assigns the

value it to x. In another case, ""� denotes a simple assignment. The second is the

concept of negligibility. A function f is negligible if for every polynomial (.)p there

exists an N such that for the integer Nn � it holds that 	

	
np

nf
1

� .

Basing on the concepts illustrated above, the security level of the time-bound

hierarchical key management scheme can be categorized into four types (See Appendix A,

Definitions 3, 4, 5, and 6 for more detailed definitions of this security)[12]:

1. Security of key indistinguishability with respect to static adversaries (IND-ST),

2. Security of key indistinguishability with respect to adaptive adversaries (IND-AD),

3. Security against key recovery with respect to static adversaries (REC-ST), and

4. Security against key recovery with respect to adaptive adversaries (REC-AD).

Among these four definitions of security, some notions of security then apply to

others. Four theorems are proven in [12] with the purpose to illustrate the relationships

between these four notions of security, and they are organized in Figure 4.1.

Relationships between the four notions are proven by four theorems. (See Appendix B for

detailed introductions to the four theorems). It could be observed that adaptive

adversaries do not have more advantages than do their static adversaries, so if a key

41

management scheme is seen to be secure with respect to its static adversaries, it shall also

be secure with regards to its adaptive adversaries. It could also be observed that the

security of key indistinguishability implies security against key recovery, but not vice

versa. According to these two results, the security of IND-ST implies all of the other

three types of securities, so that any hierarchical scheme which has the security of the

IND-ST may be said to be secure in the sense of all four types of security.

Figure 4.1 Relationships between Security Notions

The security of a symmetric encryption scheme used in UDTLEBC is also important

because it is a core element to the construction of the UDTLEBC. The security for both

TLEBC and UDTLEBC depends on the plaintext indistinguishability of the symmetric

encryption scheme used in them. The plaintext distinguishability means that an adversary

cannot differentiate between two plaintexts after they are encrypted. In other words, the

encryption shall release no information regarding the plaintext that has been encrypted.

The definition of the security of a symmetric encryption scheme is given by Ateniese et

al.:

Definition 7 [IND-P1-C0]. Let � �D,,���� be a symmetric encryption scheme and

let � be a security parameter. Let � 	21, AAA
 be an adversary that has access to the

42

encryption oracle only during the first stage of the attack and never has access to the

decryption oracle. Consider the following two experiments:

� �
� � � �� �

� �
� �

d

stateyAd

xy

Astatexx

key

Exp

key

CPIND
A

key

return
,,1

1,,

1

)1(Experiment

2

1

.
110

101
,

�

�
�

�

�
	�

�

�

�

���

� �

� � � �� �
� �
� �

d

stateyAd

xy

Astatexx

key

Exp

key

CPIND
A

key

return
,,1

1,,

1

)1(Experiment

2

0

.
110

001
,

�

�
�

�

�
��

�
��

�

����

The advantage of A is defined as:

� � � � � �� �11Pr1)1(Pr1 001
,

101
,

01
, � �� !!!"!!!"!!" ### CPIND

A
CPIND

A
CPIND

A ExpExpAdv

The scheme is said to be secure in the sense of IND-P1-C0 (plaintext

indistinguishability against an adversary whose time complexity is the polynomial in

$) if the advantage function % &'101
,

CPIND
AAdv (() is negligible.

The state in the experiment is some state information that could help the

attack in the second stage. 0x and 1x are plaintext selected by the adversary and sent

to the central authority. One of these is then encrypted by the central authority, and

the ciphertext y relayed back to the adversary. The adversary will return 0 if the

adversary posits that ciphertext y is encrypted by 0x and 1 if the adversary posits

that ciphertext y is encrypted by 1x . [12]

4.2 Security of UDTLEBC

This section illustrates how UDTLEBC is secure in the sense of IND-ST if the

symmetric encryption scheme used is secure in the sense of IND-P1-C0. In order to

43

provide evidence for this statement, we will first prove that UDTLEBC is as secure as

TLEBC if the symmetric encryption scheme is secure in the sense of IND-P1-C0.

Theorem 5. If the symmetric encryption scheme � �DEK ,,�� is secure in the sense of

IND-P1-C0, then the UDTLEBC is as secure as TLEBC.

Proof.

By comparing the construction of TLEBC and UDTLEBC, it could be observed that

UDTLEBC has an extra element for the mapping from user identity ID to secret values

�,vs . In the algorithm � �PGGen ,,1� , when compared to TLEBC, UDTLEBC generates an

extra part of public information 	
 � �
� ,)(, vIDsID SEp
v

� , while the other parts are identical as

those found in TLEBC. In the algorithm � �pubtsvuPGDer v ,,,,,,,,1 ,�� � , UDTLEBC has

taken extra steps to compute the value �,vs by � �� �� ��� ,, vsIDIDv pDs � , while �,vs is stored

directly in TLEBC case. After obtaining the value �,vs , the concluding steps of

UDTLEBC are identical to those taken with TLEBC. The only difference between

TLEBC and UDTLEBC is found in the generation and usage of the public information

	
 � �
� ,)(, vIDsID SEp
v

� . The public information � � ,)(vsIDp is used to compute the value �,vs in

UDTLEBC. If the computation of �,vs in UDTLEBC does not have any effects on the

usage of the �,vs in the further elements of the UDTLEBC, which are identical to TLEBC,

then UDTLEBC must be regarded as a system which is as secure as TLEBC. In other

words, if the value �,vs in UDTLEBC, which is associated with the generation and usage

of))((,!vsIDp to generate �,vs , is not distinguishable from the value �,vs in TLEBC, then

44

UDTLEBC must be as secure as TLEBC. Since the value �,vs in TLEBC and UDTLEBC

is generated in an identical manner, then the previous statement implies that UDTLEC

must be found to be as secure as TLEBC if))((,�vsIDp similarly provides no information

with regards to �,vs .

If))((,�vsIDp were to provide any information regarding �,vs , then the value �,vs

could not be considered indistinguishable. Assume there is an adversary within two

stages: � �21, AAA � . Let the ID used to encrypt the value �,vs be hidden from the

adversary. The adversary is allowed to access to the encryption oracle � �.IDE during the

first stage. In this stage, the adversary could generate some state information state that

might be helpful and could then be allowed to choose two values, �,vs and '
,�vs . This

would require that the adversary could not encrypt �,vs or '
,�vs and store it in state

information state . Then, either one of the �,vs and '
,�vs will be chosen randomly and

encrypted by � �.IDE and a ciphertext y shall be generated as challenge. In the second

stage, the adversary will lose its access to the encryption oracle. The ciphertext y is sent

back to the adversary and the adversary has to decide whether the ciphertext y is

encrypted by �,vs or '
,�vs . If the adversary believes that the ciphertext y is encrypted by

�,vs , the adversary should reply 1. If the adversary believes that the ciphertext y is

encrypted by �,vs , the adversary should reply 0. If we continue these experiment many

times, the number of responses from the first should differ from the number of responses

45

from the second. Let � �DEK ,,�� be a symmetric scheme and � be the security

parameter which is used in UDTLEBC, considering the following experiment:

� �
� � � 	 � �

 �
�

d

statepAd

sp

Astatess

ID

Exp

v

v

ID

SID

vIDSID

vv

UDTIND
A

return

,,1

1,,

1

)1(Experiment

))((2

,))((

.
1

'
,,

1
,

,

,

�
�
�

�
���

�
�

�
��
�

��
�

���
� �

� � � � � �
� �

� �
d

statepAd

sp

Astatess

ID

Exp

v

v

ID

SID

vIDSID

vv

UDTIND
A

return

,,1

1,,
1

)1(Experiment

))((2

'
,))((

.
1

'
,,

0
,

'
,

'
,

�
�
�

�

���

�
�

!

"
#

$$%

The advantage of A is defined as:

& ' () & '()11Pr1)1(Pr1 0
,

1
,, *+** ,,-,,-,- ./. UDTIND

A
UDTIND

A
UDTIND

A ExpExpAdv

If the advantage of A that 0 12101
,

CPIND
AAdv 334 is negligible, then the value 5,vs should

be indistinguishable. This implies that the public information))((,6vsIDp shall also provide

no information regarding the value 5,vs . So, any usage of value 5,vs will not be affected

with the generation and usage of))((,6vsIDp to compute 5,vs . Since 5,vs is generated in

identical way in TLEBC and UDTLEBC, and there is no way to distinguish a value 5,vs

from another value 5,vs associated with public information))((,6vsIDp . The value 5,vs in

UDTLEBC is not distinguishable from the value 5,vs in TLEBC. In other words, the

computation of 5,vs in UDTLEBC does not have any effects on the usage of the 5,vs in

additional elements of UDTLEBC, which are identical to those found in TLEBC, so that

the system of UDTLEBC must be as secure as that operating within TLEBC.

46

Comparing our experiment to the experiment within Definition 7, it could be

observed that we have only changed the key to ID and the plaintext to value �,vs . The

process of our experiment is indistinguishable from the process of a plaintext experiment.

As long as the security of the symmetric encryption scheme with respect to plaintext

indistinguishability holds, the advantage of the adversary in our experiment will

necessarily be negligible. The theorem should be regarded as proven.

The security of TLEBC is proven by Ateniese et al. with the following theorem:

Theorem 6. If the encryption scheme � ����� ,, D is secure in the sense of IND-

P1-C0, then the TLEBC is secure in the sense of IND-ST.[12]

According to Theorem 6, since the TLEBC is secure in the sense of IND-ST if the

symmetric encryption scheme is secure in the sense of IND-P1-C0, then the UDTLEBC

will also be secure in the sense of IND-ST if the symmetric encryption scheme is secure

in the sense of IND-P1-C0 because UDTLEBC is as secure as TLEBC when the

symmetric encryption scheme is secure in the sense of IND-P1-C0. Thus, Theorem 7 is

obvious.

Theorem 7. If the encryption scheme � ����� ,, D is secure in the sense of IND-P1-C0,

then the TLEBC is secure in the sense of IND-ST.

Since security in the sense of IND-ST implies all other three types of security,

UDTLEBC is secure in the sense of all four types of security which we have defined in

section 4.1.

47

CHAPTER 5. PERFORMANCE TEST METHODOLOGY

5.1 Overview

In this chapter methods for testing the performance of UDTLEBC was demonstrated.

Since the UDTLEBC was built on the basis of TLEBC, the performance of UDTLEBC

was also compared with the performance of TLEBC in order to evaluate how the

proposed modifications would affect the performance. The all the results obtained were

discussed to judge whether the performance of UDTLEBC is acceptable.

5.2 Methodology

As was introduced in second portion of section 2.4, elements of performance were

observed with regard to five aspects: (1) complexity of key updates, (2) complexity of

hierarchical changes, (3) computation overhead or time requirements, (4) private storage

requirements, and (5) public storage requirements.

The private and public storage requirements were computed by the size of storage in

Ateniese et al.’s work [12], so at this point we used the same methods to measure the

comparison. Two elements may lead to failure in the storage requirements. The first

includes the security classes designed by the central authority. The second includes those

time periods decided by the central authority. To test these theories, we used V to

48

indicate the set of security classes and T to indicate the set of short time periods. The

size of the storage were shown by giving an expression of the mathematical formula.

Previous works had described the complexity of key updates and the complexity of

hierarchical change by providing examples as to how many steps and storage changes are

required. Specific to our scheme, all of the key updates and hierarchical changes are

about update storage and can be accomplished by the central authority. The complexity of

key updates and complexity of hierarchical change are directly doomed by the public

storage which is required to be changed. Because of this specialty, we used the size of

storage that was required to be updated and which was associated with the key updates

and hierarchical change to evaluate the complexity of the key updates and hierarchical

changes. The size of storage that should be updated shall similarly be designated by a

mathematical formula composited with a V and a T .

Experiments should test the computation overhead of UDTLEBC. Experiments are

proceeded with two main objectives. The first objective is that we want to see whether

the time cost of key derivation of UDTLEBC exceeded the simple human reaction time.

We would like to see whether the processes of key derivation could be noticed by users

and affected the user experiences. In this case we considered the simple human reaction

time only, in which only one stimulus and one response existed [47]. The mean simple

visual reaction time had been believed to be 180-200 msec by many researchers [48], so

we were going to observe that whether the time cost of key derivation of UDTLEBC will

bypass 180 msec. If not, the conclusion that UDTLEBC is efficient in the aspects of key

derivation could be confirmed because the time cost of the process is not noticeable by

users. The second objective is that we want to see how our modification, that building

49

UDTLEBC by adding new capabilities and steps to TLEBC, affected the computation

overhead. The computation overhead is the computation amount or time required for key

derivation. The following hypothesis is being considered:

0H : The computation overhead of the UDTLEBC is twice of the computation

overhead of TLEBC.

We had doubled the time costs in the TLEBC case and used non-parametric statistic

to determine whether the distribution of time in the UDTLEBC case was significantly

different to the distribution of time doubled in the TLEBC case, which provided answers

to our hypothesis.

To allow for the accuracy of the experiments with the UDTLEBC, a demo was built

to simulate the processes of key derivation from the UDTLEBC, and the time of such

processes was recorded in order to observe the necessary computation time. The

processes of key derivation for the UDTLEBC were introduced in section 3.1.

Figure 5.1 UDTLEBC Key Derivation Processes

Figure 5.1 illustrates the brief processes of key derivation for the UDTLEBC. When

a device or user requests a key from the server, the server will judge what information is

50

required in order to compute which key that the device or user actually requires, to obtain

the information from the database, and to then send such information back to the device

or user. At that point, the device or user shall be able to compute the key it requires by

using the ID and information it has received. The device or user has the advantages of the

ID, which is a secret and private value distributed to said device or user when it is added

into the system. (Results according to this process are shown from Figure 6.1 to Figure

6.12.)

To compare the performance of the UDTLEBC with the TLEBC, a demo of the

TLEBC was also built to simulate the processes of key derivation from the TLEBC. The

processes of key derivation from the TLEBC were introduced in section 2.6. Instead of an

ID, a secret value was stored on the personal device.

Figure 5.2 TLEBC Key Derivation Processes

Figure 5.2 illustrates the brief processes of key derivation from the TLEBC. Similar

to the processes of key derivation with a UDTLEBC, when a device or user requests a

key from the server, the server will judge what information is required, obtain such

information from the database, and send it back to the device or user. In this time, instead

of employing an ID as was done with the UDTLEBC, a secret value shall be stored on the

51

device and will be used to compute the key requested. This value is also distributed to the

device or user while the device or user is added into the system. This value is not private

but is shared with all users with the same access authorities. (Results according to this

process are shown from Figure 6.1 to Figure 6.12.)

As both the symmetric encryption scheme and the device used might be found to

affect the performance of the key derivation in this experiment, the following variables

had been considered: the chosen symmetric encryption scheme, the operation mode of

encryption, the chosen key size, and the testing environment or the configuration of the

device.

Two testing environments were used. The performance were test on both the real

device and the emulator. This scheme only used AES as the symmetric encryption

scheme since the AES was viewed as the most popular, easily obtained, and provably-

secure symmetric encryption scheme that existed. AES has three available key lengths.

Since we were going to perform these experiments on Android operation systems, a key

length of 128 bits had only been considered because many Android operation systems

would not support key lengths of 196 or 256 bits. Similarly, we had only tested the CBC,

CFB, and OFB modes of encryption, because the CTR mode was not supported by many

of the Android operation systems. We also abandoned the ECB mode due to security

concerns. These experiments were going to test the time required to run the processes of

key derivation for both the UDTLEBC and TLEBC. The processes of key derivation

were simulated 100 times with the purpose to avoid the influence of outliers.

52

Box-and-whisker plot diagrams were used for the results. Thus, the distribution of

the computation time (overhead) could be discovered directly and one could judge

whether the performance was acceptable.

We also tested the operation time of the entire processes of data transfer by using

UDTLEBC. This is designed to evaluate whether we can expand the usage of UDTLEBC

not only for key management but also for data transfer protection. In this case, a piece of

data was encrypted, transferred, decrypted, and, finally, displayed. Since the processes of

key derivation were also involved in the processes of data transfer, the same variables

and methods which were used for key derivation should also be used here. In this case we

only performed the simulation on the Samsung GT-i9108 device.

During experimentation, five lengths of data were considered: 1Kbit, 10Kbit,

100Kbit, and 1Mbit, and 10Mbit. Data lengths longer than 10Mbit were not tested

because these are too long to be transferred in one communication. The time required for

transfer of these data lengths were recorded in order to evaluate how the UDTLEBC

performs if it was used to transfer data. Working with control groups, the times required

to transfer data of the same length directly was also tested. With this method, we

determined how much extra time was needed to provide protection to data transfer

through use of the UDTLEBC.

Figure 5.3 illustrates the processes of the data transfer which we have simulated.

When a device or user requests data from the server, the server will judge the specific

encryption key that should be used to encrypt the data and determine what information is

needed for the device or user to compute the encryption key by key derivation. Then, the

server will obtain that data, encryption key, and information required in order to compute

53

the encryption key from the database. After encrypting the data with the encryption key,

the server will send the encrypted data and relevant information for key derivation to the

device or user. After receiving the encrypted data and the information of key derivation,

the device or user will first proceed with the key derivation to obtain the key and will

then proceed with decryption through use of the computed key to obtain the data required.

(Process results are illustrated in Figure 6.3, Figure 6.4, Figure 6.5, Figure 6.6, and Figure

6.7).

Figure 5.3 UDTLEBC Data Transfer Processes

5.3 Independent Variables and Constants

The independent variables were of different configurations during the experiments.

We expected to observe how the performances are going to be affected. Though many

factors were considered during the experiments, according to the capability of both the

Android and the device or emulator used, those factors which varied during the

experiments were merely partial, while the rest of the factors had remained as constants.

For the experiments of key derivation, varied configurations included: the different time-

bound hierarchical key management scheme, the different operation mode of encryption,

54

and the testing environment or the configuration of the device. The encryption scheme

AES and key length of 128bit were both treated as constants by this author as they had

not varied during these experiments. For the experiments of data transfer, varied

configurations included: the different operation mode of encryption and the different data

length transferred. The device Samsung GT-i9108, the AES encryption scheme, and the

key length of 128 bit were treated as constants for these did not vary during the

experiments.

5.4 Dependent Variables

The dependent variables were the computation times observed in varied

configurations of the experiment. These computation times demonstrated directly how

UDTLEBC performs in each varied configuration for either the key derivation or data

transfer.

5.5 Internal Validity

Unmanipulated factors, such as noise, might override the influence of the

manipulated variables. It was still apparent that one may consider how UDTLEBC

performs by observing the computation time with these factors. With regard to

unmanipulated factors, such as noise, the manipulated variables which had a significant

influence on performance would still exist, and such influences could be considered more

trustworthy because these influences existed even in situations involving the

unmanipulated factors, such as noise.

5.6 External Validity

All of the results had been obtained by using a convenient emulator and a

convenient device, so that additional threats to external validity should be considered.

55

Detailed information regarding the emulator and the device had been mentioned, so if one

uses different configurations one can predict the results by comparing the capability of

the emulator or device one is using. The emulator and the device used in this thesis was

set to be at a level far lower when compared to the average level of devices used in 2014,

so better results could be expected if different emulators or devices were used. So, if the

performance levels established in this thesis were found to be acceptable, it was expected

that said levels should be acceptable in most cases.

56

CHAPTER 6. RESULTS

6.1 Performance of Complexities and Storage Requirements

The Table 6.1 provides a summary of the performance of UDTLEBC on

complexities and storage requirements. The results and expression of mathematical

formula of TLEBC is obtained from Ateniese et al.’s paper [12]. Specifically, V is used

to indicate the set of security classes, N is used to indicate the set of users, and T is used

to indicate the set of short time periods.

From the construction of UDTLEBC, it is obvious that only one piece of private

storage is required for this system. The private storage requirements of UDTLEBC are

identical to those of TLEBC. When compared with TLEBC, UDTLEBC only demands

extra public information in order to successfully realize the mapping from users to secret

values. Each user has one mapping to one specific secret value, so N extra public

storage is necessary. As compared to 32 TV � , the N extra public storage is actually

rather small. If one imagines a small system with just 10 security classes, 10 short time

periods, and 10 users, the percentage of N extra public storage may be seen as merely:

%01.0
101010

10
3232 �

��

�

�� NTV

N

57

Table 6.1 Performance Comparison Table of TLEBC and UDTLEBC

Scheme

Complexit

y of key

updates

Complexity of hierarchical

change Private

storage

requirement

Public

storage

requirement
Change one

security class

Change one

binary

relation

TLEBC[12]

At most

TV �

public

storage

At most

affects T

keys, 3T

public

storage, and

� �1� private

storage

At most

affects 3T

public

storage

O(1)
At most

32 TV �

UDTLEBC
Is the same

as TLEBC

Is the same as

TLEBC

(Needs no

interactions

with users)

Is the same

as TLEBC

Is the same

as TLEBC

At most

NTV ��
32

58

Even though UDTLEBC requires the N extra public storage, this does not appear

to greatly affect its performance in terms of public storage requirements when compared

to those of the TLEBC. By using the formula of public storage, one could also observe

that neither UDTLEBC nor TLEBC performs very well from this perspective. For

instance, according to the example shown above, a small system with merely 10 security

classes, 10 short time periods, and 10 users would require, at most, 1001032
��� NTV

public records to be stored. This is a deficiency for both UDTLEBC and TLEBC. This

deficiency requires improvements in future work. As the author of this thesis has noted,

within a BYOD environment, the performance of public storage is not interpreted as an

important factor, although it still may have significant implications for the future usage of

UDTLEBC.

The complexities of key updates and hierarchical change both depend upon the

existent relationships between secret values and keys. According to the construction of

UDTLEBC, it becomes obvious that the extra layer of users simply adds to the number of

relationships between users and secret values and does not affect the actual relationships

between secret values and keys. So the complexities of key updates and hierarchical

change in UDTLEBC may be viewed as quite similar to the complexities of key updates

and hierarchical change in TLEBC. UDTLEBC has one distinct advantage when it is

compared to TLEBC in that it does not require actual interactions with the users while

performing all of these changes. Changes to the size of TV � due to the complexity of

key updates and to 3
T as a result of the complexity of hierarchical change seem to be

great, but they are only those changes which occur in the worst cases. That situation in

59

which TV � would arise assumes that a root key has changed and 3
T assumes that the

changes are being made to top security classes within the partial order hierarchy. Once

we add the advantage where all of the changes can be made on server’s side, without any

unnecessary interactions with the users, so that all changes can be achieved within

predefined policies, it then becomes fair to expect that the key updates and hierarchical

changes can be accomplished efficiently within our real world parameters.

6.2 Performance of Computation Overhead

The time distributions of TLEBC and UDTLEBC were recorded and compared to

see the computation overhead of the UDTLEBC. We considered 3 encryption modes

including CBC, CFB and OFB. Two devices were considered. One device was the

SAMSUNG GT-i9108 with the operating system Android 2.3.5, I9108ZMKI5 and CPU

Samsung S5PV310, Cortex-A9, and a RAM of 1GB. Another testing environment was

simulated by the Java SDK. The Java SDK simulated a platform of a 3.2" QVGA ADP2

with an operating system for an Android 2.2, the CPU ARM (armeabi), and a 512 MB

RAM. In total the time distribution of TLEBC and UDTLEBC were considered in 6 cases.

Figure 6.1 shows the time distribution of key derivation of TLEBC and UDTLEBC

in the case of using encryption scheme AES, key length of 128 bits, device GT-i9108,

and CBC encryption mode. One can observe that the average time of key derivation of

UDTLEBC is 30-40 msec, which is far from the simple human visual reaction time 180

msec. It can be confirmed that the computation overhead of UDTLEBC in this case is

efficient because the time cost of the processes could not be noticed by users. The result

of the non-parametric test is shown in Figure 6.2. Our Null hypothesis was retained.

60

Figure 6.1 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of
Device GT-i9108 and CBC Encryption Mode

Figure 6.2 Non-parametric Test for Distribution of Time in the Case of Device GT-i9108
and CBC Encryption Mode

Figure 6.3 shows the time distribution of key derivation of TLEBC and UDTLEBC

in the case of using encryption scheme AES, key length of 128 bits, device GT-i9108,

and CFB encryption mode. One can observe that the average time of key derivation of

UDTLEBC is also 30-40 msec, which is far from the simple human visual reaction time

61

180 msec. It can be confirmed that the computation overhead of UDTLEBC in this case

is efficient because the time cost of the processes could not be noticed by users. The

result of the non-parametric test is shown in Figure 6.4. Our Null hypothesis was rejected.

Figure 6.3 Time Distribution of key derivation of TLEBC and UDTLEBC in the
Case of Device GT-i9108 and CFB Encryption Mode

Figure 6.4 Non-parametric Test for Distribution of Time in the Case of Device GT-i9108
and CFB Encryption Mode

Figure 6.5 shows the time distribution of key derivation of TLEBC and UDTLEBC

in the case of using encryption scheme AES, key length of 128 bits, device GT-i9108,

62

and OFB encryption mode. One can observe that the average time of key derivation of

UDTLEBC is also 30-40 msec, which is far from the simple human visual reaction time

180 msec. It can be confirmed that the computation overhead of UDTLEBC in this case

is efficient because the time cost of the processes could not be noticed by users. The

result of the non-parametric test is shown in Figure 6.6. Our Null hypothesis was retained.

Figure 6.5 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of
Device GT-i9108 and OFB Encryption Mode

Figure 6.6 Non-parametric Test for Distribution of Time in the Case of Device GT-i9108
and OFB Encryption Mode

63

Figure 6.7 shows the time distribution of key derivation of TLEBC and UDTLEBC

in the case of using encryption scheme AES, key length of 128 bits, emulator Java SDK,

and CBC encryption mode. One can observe that the average time of key derivation of

UDTLEBC is 200-350 msec, which exceed the simple human visual reaction time 180

msec. It can be confirmed that the computation overhead of UDTLEBC in this case is not

efficient because the time cost of the processes could be noticed by users. The result of

the non-parametric test is shown in Figure 6.8. Our Null hypothesis was retained.

Figure 6.7 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of
Java SDK and CBC Encryption Mode

64

Figure 6.8 Non-parametric Test for Distribution of Time in the Case of Java SDK and
CBC Encryption Mode

Figure 6.9 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of
Java SDK and CFB Encryption Mode

Figure 6.9 shows the time distribution of key derivation of TLEBC and UDTLEBC

in the case of using encryption scheme AES, key length of 128 bits, emulator Java SDK,

and CFB encryption mode. One can observe that the average time of key derivation of

UDTLEBC is also 200-350 msec, which exceed the simple human visual reaction time

65

180 msec. It can be confirmed that the computation overhead of UDTLEBC in this case

is not efficient because the time cost of the processes could be noticed by users. The

result of the non-parametric test is shown in Figure 6.10. Our Null hypothesis was

rejected.

Figure 6.10 Non-parametric Test for Distribution of Time in the Case of Java SDK and
CFB Encryption Mode

Figure 6.11 shows the time distribution of key derivation of TLEBC and UDTLEBC

in the case of using encryption scheme AES, key length of 128 bits, emulator Java SDK,

and OFB encryption mode. One can observe that the average time of key derivation of

UDTLEBC is 200-350 msec, which exceed the simple human visual reaction time 180

msec. It can be confirmed that the computation overhead of UDTLEBC in this case is not

efficient because the time cost of the processes could be noticed by users. The result of

the non-parametric test is shown in Figure 6.12. Our Null hypothesis was retained.

66

Figure 6.11 Time Distribution of key derivation of TLEBC and UDTLEBC in the Case of
Java SDK and OFB Encryption Mode

Figure 6.12 Non-parametric Test for Distribution of Time in the Case of Java SDK and
OFB Encryption Mode

It could be observed that the Java SDK emulator performs much less effectively

than does the Samsung GT-i9108 device. While the performance of UDTLEBC is

efficient in the case of Samsung GT-i9108, the performance of UDTLEB is not efficient

in the case of using the emulator Java SDK. It could also be observed that the standard

67

deviation (SD) of the computation overhead for the Java SDK emulator is quite large. In

the case of the OFB mode, the deviation is even greater than half of the mean. So one

could conclude that the results generated through the use of the Java SDK are not

trustworthy. From the other side, the Samsung GT-i9108 is a “real” device while the Java

SDK is considered an “emulator”, so the results gathered by the GT-i9108 are more

likely to reflect the real performance of the computation overhead. From this perspective,

we shall abandon the results gathered from the Java SDK and select the results obtained

from the GT-i9108 device. In addition, the Samsung GT-i9108 is a device that came on

the market at end of 2011, so it may already be viewed by many as an “old and used”

device. For devices which have entered the market after 2011, a better performance ratio

could be expected. With this fact in mind, confidence may also be generated that the

performance of UDTLEBC will be even more acceptable on phones that have appeared

on the market after 2011. Thus, the performance of UDTLEBC in the aspect of

computation overhead is believed efficient.

With the results gathered in the non-parametric test, we have failed to reject our

hypothesis in the CBC and OFB encryption mode cases, and we have succeeded to reject

our hypothesis in the CFB encryption mode case. Thus, our results support our

hypothesis that the computation overhead of the UDTLEBC is twice the computation

overhead of TLEBC in both the CBC and OFB encryption mode cases, while they do not

similarly support the hypothesis in the OFB encryption mode case.

68

6.3 Performance of Data Transfer

The results of performance of the entire processes of data transfer are shown from

Figure 6.13 to Figure 6.17. Table 6.2 illustrates the varied median times of data transfer

performance.

Table 6.2 Median Time of Data Transfer Performance Test

No Encryption CBC Mode CFB Mode OFB Mode

1Kbit 14 ms 45.5 ms 43.5 ms 45 ms

10Kbit 16 ms 47 ms 49 ms 52 ms

100Kbit 50 ms 105 ms 102 ms 104 ms

1Mbit 322 ms 456 ms 432.5 ms 444 ms

10Mbit 7.23 s 10.81 s 10.84 s 10. 30 s

Figure 6.13 Data Transfer Performance for Data Length of 1Kbit

69

Figure 6.13 shows the data transfer performance for a data length of 1Kbit on the

Samsung GT-i9108 device. These results have been achieved by following the processes

in Figure 5.3. The time to transfer the data directly is around 14 ms. To transfer data by

using UDTLEBC for protection, the median time is 45.5 ms for the CBC mode, 43.5 ms

for the CFB mode, and 45 ms for the OFB Mode.

Figure 6.14 Data Transfer Performance for Data Lengths of 10Kbit

Figure 6.14 shows the data transfer performance for a data length of 10Kbit on the

Samsung GT-i9108 device. The results are achieved by following the processes

illustrated in Figure 5.3. The calculated time to directly transfer the data is approximately

16 ms. In order to transfer data by using UDTLEBC for protection, the median time

increases to 47 ms increases to with the CBC mode, 49 ms with the CFB mode, and 52

ms with the OFB Mode. When one compares the results of this figure with the results of

Figure 6.13, one should notice that although the data length has been extended by 10

70

times, the time of data transfer has only slightly increased, with the multiple nowhere

near that of 10. One possible explanation is that most of the time involved is the actual

costs of the embellishment of the communication, so that a mere increase in the data

length itself should not affect the actual time of data transfer.

Figure 6.15 Data Transfer Performance for Data Lengths of 100Kbit

Figure 6.15 shows the data transfer performance for data lengths of 100Kbit on the

Samsung GT-i9108 device. These results are achieved by following the processes shown

in Figure 5.3. In this case, the time to transfer the data directly is around 50 ms. In order

to directly transfer the gathered data by using UDTLEBC for protection, the median time

is 105 ms for the CBC mode, 102 ms for the CFB mode, and 104 ms for the OFB Mode.

When one compares the results gathered from this case to the results from the previous

two cases, one could observe that the time required to transfer data increases a great deal.

71

With this information in hand, we can conclude that this data length is long enough to

affect the time of data transfer.

It is interesting to mention that the ratio of transferring data by using UDTLEBC as

a protection measure as opposed to transferring data directly is decreased with the

increase of data length. This trend can be better observed by viewing Table 6.2. For data

lengths of between 1Kbit and 10Kbit, it could be observed that the time to transfer data

while using UDTLEBC as a protection becomes tripled in relationship to the time

required to transfer the data directly. But for data lengths of 100Kbit, the time to transfer

data through the use of UDTLEBC as a protection is only twice as the length of time

required for direct data transfer.

Figure 6.16 Data Transfer Performance for Data Lengths of 1Mbit

Figure 6.16 illustrates the data transfer performance for a data length of 1Mbit on

the Samsung GT-i9108 device. These results are achieved by following the processes

72

shown in Figure 5.3. With this case, the time to transfer the data directly is approximately

322 ms. When one shifts to transferring data by using UDTLEBC for protection, the

median time increases to 456 ms for the CBC mode, 432.5 ms for the CFB mode, and

444 ms for the OFB Mode. As compared to the previous three figures, we can now see

that the increase of data length has caused an even greater impact on time costs. More

importantly, the ratio of transferring data through the use of UDTLEBC as a protection

for direct data transfer has further decreased.

Figure 6.17 Data Transfer Performance for Data Lengths of 10Mbit

Figure 6.17 illustrates the data transfer performance for a data length of 10Mbit on

the Samsung GT-i9108 device. These results have been achieved by following the

processes shown in Figure 5.3. The time to transfer the data directly is approximately

7.23 seconds. In order to transfer data by using UDTLEBC as a protection device, the

median time further increases 10.81 seconds for the CBC mode, 10.84 seconds for the

73

CFB mode, and 10.30 seconds for the OFB Mode. In this case it could be observed that

the time cost is much increased when compared to the previous results. The time required

to transfer a data length of 10Mbit is over 20 times more than that required for a data

length of 1Mbit, so additional factors (beyond data length) should be considered. One

possible answer is the flow control of the device. In communication, flow control is used

to manage the rate of transmission between two nodes. When a package is lost, the rate of

transmission may be poorly controlled, thereby requiring extra time to transfer the data.

Another possible answer is the computation capabilities of the device. To manage a data

length of 10Mbit in one communication requires that a device has extra memory, which

may add to the burdens on that device or may be something that the device does not have

available.

One can observe the differences existent between the direct transfer of data and the

choice to transfer data by using UDTLEBC as protection device becomes gradually

reduced with the gradual increase of the data length. While transferring a data length of

1Kbit, the time costs of transferring this data through the use of UDTLEBC triples the

cost of transferring the data directly.By increasing this data length to 10Mbit, the ratio

then decreases to less than 1.5.

One reasonable answer to this factor is that the ratio of the time spent on the

encryption to that of the time spent on the data transfer has decreased. More precisely, the

time costs for transferring the data directly can be divided into two categories, i.e. (1) the

time to establish the communication and (2) the time to transfer the data. The time

required to establish the communication is similar in all instances, but the time necessary

to transfer the data increases with the increase of the data length. On the other hand, the

74

time costs of transferring the data by UDTLEBC as a protection device can be divided

into three categories, i.e. (1) the time to establish the communication, (2) the time to

transfer the data, and (3) the time to encrypt and decrypt the data. The time to establish

the communication is also a stable element, but the times required to transfer, encrypt,

and decrypt the data will be increased with the increase of data length. If we set the data

length to be x , the average time to establish a communication to be c , the time cost to

transfer data to be � �xf , and the time to encrypt and decrypt data to be � �xg , the ratio r

of transferring data by using UDTLEBC as protection to transferring data directly will be:

� � � �
� �xfc

xgxfc
r

�
��

�

Since r is decreased with the increase of x , it means that � �xf increases faster than

� �xg , and it means that with the increase of the data length, on the ratio perspective, the

influence of using UDTLEBC as a protection will be necessarily decreased.

In our experiments we have tested data length up to 10Mbit, which is a little higher

than that required to transfer a file the size of 1Mbyte. Thus, in order to transfer any files

which are less than 1Mbyte, we may expect a reduction in at least 50% of the extra time

if UDTLEBC is used to protect the data transfer. At last, with good network conditions

or through the use of a more powerful device, for any file of more than 1Mbyte, this ratio

is expected to decrease further.

75

CHAPTER 7. CONCLUSION

Results had proven that a provably-secure and efficient new time-bound hierarchical

key management scheme with the capability of user differentiation could be built to

circumvent the problems of privacy and costs that the current time-bound hierarchical

key management schemes faced in the BYOD environment. The proof had been

accomplished by constructing the new scheme: the User-Differentiated Two-Layer

Encryption-Based Scheme (UDTLEBC) and by proving its capability for user

differentiation and security of key indistinguishability and against key recovery with

respect to both static and adaptive adversaries. With its capability of user differentiation,

it had been shown that when changes were required to be done for one user, no other

users would be affected and all processes would be completed on the server’s side

without interactions with users so that a personal devices used in a BYOD environment

would no longer cause potential privacy and cost issues.

The efficiency of the UDTLEBC had been evaluated by comparing its performance

with that of a prototype, the time-bound hierarchical key management scheme Two-Layer

Encryption-Based Scheme (TLEBC). It had been shown that, in the perspectives of the

complexity of key updates and the complexity of the hierarchical change, the UDTLEBC

performed better than does the TLEBC because it did not require interactions with users

to proceed with the changes, and its performance in these two perspectives were believed

76

acceptable. In the private storage requirement, UDTLEBC is noted to perform as well as

TLEBC and required only one piece of private storage. In the perspectives of public

storage requirement, UDTLEBC also performed as well as TLEBC, but neither

UDTLEBC nor TLEBC performed particularly well in this perspective because they both

required a great deal of public storage. The public storage was not believed to be

providing a great influence in a BYOD environment by the author of this thesis, so this

deficiency was considered bearable. Improvements were required in future work. In the

perspective of computation overhead, UDTLEBC required as twice as much time on

average as did the TLEBC to do the key derivation, but it was still very efficient in terms

of usage because it only required an additional 20-30 milliseconds to proceed with the

key derivation. According to the results gathered in this thesis, the UDTLEBC was

believed to be both capable and efficient for usage within a BYOD environment.

This thesis had further tested whether we could expand the usage of UDTLEBC into

data transfer protection. These results indicated that for data lengths less than 10Mbits,

transferring data by using UDTLEBC as protection device required at least 1.5 to 3 times

the time required to transfer the data directly. Under good network conditions or through

use of a more powerful device, for any file larger than 1Mbyte, this ratio was expected to

decrease.

77

REFERENCES

77

REFERENCES

[1] Pub, N. F. 197: Advanced Encryption Standard (AES) (2001), Federal Information
Processing Standards Publication 197, US Department of Commerce/NIST,
November 26, 2001. Available from the NIST website.

[2] J. Loucks, R. Medcalf, L. Buckalew, and F. Faria. (2013) The Financial Impact of
BYOD. A Model of BYOD’s Benefits to Global Companies [online]. Available:
http://www.webtorials.com/content/2013/06/the-financial-impact-of-byod-a-model-
of-byods-benefits-to-global-companies.html

[3] S. G. Akl and P. D. Taylor, "Cryptographic solution to a problem of access control
in a hierarchy," ACM Transactions on Computer Systems (TOCS), vol. 1, pp. 239-
248, 1983.

[4] Network World. (2011). BYOD Deluge: Network Access Control and Mobile Device
Management Tools Work Together To Create A Blueprint For BYOD Success
[online]. Available: http://infosightsol.com/wordpress/wp-
content/uploads/2013/03/Managing_the_BYOD_Deluge_with_a_BYOD_Blueprint.
pdf

[5] Wikipedia. Block cipher mode of operation [online]. Available:
http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

[6] Wikipedia. Partially ordered set [online]. Available:
http://en.wikipedia.org/wiki/Partially_ordered_set#cite_note-1

[7] H. Liaw, S. Wang, and C. Lei, "A dynamic cryptographic key assignment scheme in
a tree structure," Computers & Mathematics with Applications, vol. 25, pp. 109-114,
1993.

[8] Wikipedia. Symmetric-key algorithm [online]. Available:
http://en.wikipedia.org/wiki/Symmetric_encryption

[9] W.-G. Tzeng, "A time-bound cryptographic key assignment scheme for access
control in a hierarchy," Knowledge and Data Engineering, IEEE Transactions on,
vol. 14, pp. 182-188, 2002.

78

[10] C. Chang and D. Buehrer, "Access control in a hierarchy using a one-way trap door
function," Computers & Mathematics with Applications, vol. 26, pp. 71-76, 1993

[11] I. Ray, I. Ray, and N. Narasimhamurthi, "A cryptographic solution to implement
access control in a hierarchy and more," in Proceedings of the seventh ACM
symposium on Access control models and technologies, 2002, pp. 65-73.

[12] G. Ateniese, A. De Santis, A. L. Ferrara, and B. Masucci, "Provably-secure time-
bound hierarchical key assignment schemes," Journal of cryptology, vol. 25, pp.
243-270, 2012.

[13] E. Bertino, N. Shang, and S. S. Wagstaff, "An efficient time-bound hierarchical key
management scheme for secure broadcasting," Dependable and Secure Computing,
IEEE Transactions on, vol. 5, pp. 65-70, 2008.

[14] C.-M. Chen, T.-Y. Wu, B.-Z. He, and H.-M. Sun, "An efficient time-bound
hierarchical key management scheme without tamper-resistant devices," in
Computing, Measurement, Control and Sensor Network (CMCSN), 2012
International Conference on, 2012, pp. 285-288.

[15] H.-Y. Chen, "Efficient time-bound hierarchical key assignment scheme,"
Knowledge and Data Engineering, IEEE Transactions on, vol. 16, pp. 1301-1304,
2004.

[16] S.-Y. Wang and C.-S. Laih, "Merging: an efficient solution for a time-bound
hierarchical key assignment scheme," Dependable and Secure Computing, IEEE
Transactions on, vol. 3, pp. 91-100, 2006.

[17] C. Rose, "BYOD: An Examination Of Bring Your Own Device In Business,"
Review of Business Information Systems (RBIS), vol. 17, pp. 65-70, 2013.

[18] M. B. Walker. (2013, May 08). DoD okays Blackberry 10, Samsung Knox for
Android [online]. Available: http://www.fiercemobilegovernment.com/story/dod-
okays-blackberry-10-samsung-knox-Android/2013-05-08

[19] M. B. Walker. (2013, May 21). DoD clears iOS 6 for use [online]. Available:
http://www.fiercemobilegovernment.com/story/dod-clears-ios-6-use/2013-05-21

[20] Avotus. The Cost of Lost Smartphones and Stolen Tablets: Beware of
BYOD[online]. Available: http://www.avotus.com/blog-bring-your-own-device-
byod.asp

[21] Advanced Network System. (2012). BYOD Best Practice, Requirements and
Challenges[online]. Available: http://www.getadvanced.net/byod-more-info

[22] S. J. MacKinnon, P. D. Taylor, H. Meijer, and S. G. Akl, "An Optimal Algorithm
for Assigning Cryptographic," IEEE Transactions on computers, vol. 100, 1985.

79

[23] L. Harn and H.-Y. Lin, "A cryptographic key generation scheme for multilevel data
security," Computers & Security, vol. 9, pp. 539-546, 1990.

[24] G. C. Chick and S. E. Tavares, "Flexible access control with master keys," in
Advances in Cryptology—CRYPTO’89 Proceedings, 1990, pp. 316-322.

[25] K. Ohta, T. Okamoto, and K. Koyama, "Membership authentication for hierarchical
multigroups using the extended fiat-shamir scheme," in Advances in Cryptology—
EUROCRYPT’90, 1991, pp. 446-457.

[26] I.-C. Lin, M.-S. Hwang, and C.-C. Chang, "A new key assignment scheme for
enforcing complicated access control policies in hierarchy," Future Generation
Computer Systems, vol. 19, pp. 457-462, 2003.

[27] M.-S. Hwang and W.-P. Yang, "Controlling access in large partially ordered
hierarchies using cryptographic keys," Journal of Systems and Software, vol. 67, pp.
99-107, 2003.

[28] R. S. Sandhu, "Cryptographic implementation of a tree hierarchy for access control,"
Information Processing Letters, vol. 27, pp. 95-98, 1988.

[29] C.-C. Chang, R.-J. Hwang, and T.-C. Wu, "Cryptographic key assignment scheme
for access control in a hierarchy," Information Systems, vol. 17, pp. 243-247, 5//
1992.

[30] M.-S. Hwang, "A new dynamic key generation scheme for access control in a
hierarchy," Nordic Journal of Computing, vol. 6, pp. 363-371, 1999.

[31] S. Zhong, "A practical key management scheme for access control in a user
hierarchy," Computers & Security, vol. 21, pp. 750-759, 2002.

[32] V. R. Shen and T.-S. Chen, "A novel key management scheme based on discrete
logarithms and polynomial interpolations," Computers & Security, vol. 21, pp. 164-
171, 2002.

[33] M. L. Das, A. Saxena, V. P. Gulati, and D. B. Phatak, "Hierarchical key
management scheme using polynomial interpolation," ACM SIGOPS Operating
Systems Review, vol. 39, pp. 40-47, 2005.

[34] S.-F. Tzeng, C.-C. Lee, and T.-C. Lin, "A Novel Key Management Scheme for
Dynamic Access Control in a Hierarchy," IJ Network Security, vol. 12, pp. 178-180,
2011.

[35] Y. Sun and K. R. Liu, "Scalable hierarchical access control in secure group
communications," in INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, 2004, pp. 1296-1306.

80

[36] T. Hui-Min and C. Chin-Chen, "A cryptographic implementation for dynamic access
control in a user hierarchy," Computers & Security, vol. 14, pp. 159-166, 1995.

[37] F. Kuo, V. R. Shen, T.-S. Chen, and F. Lai, "Cryptographic key assignment scheme
for dynamic access control in a user hierarchy," IEE Proceedings-Computers and
Digital Techniques, vol. 146, pp. 235-240, 1999.

[38] M.-S. Hwang, "An improvement of novel cryptographic key assignment scheme for
dynamic access control in a hierarchy," IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol. 82, pp. 548-550, 1999.

[39] T.-S. Chen and Y.-F. Chung, "Hierarchical access control based on Chinese
remainder theorem and symmetric algorithm," Computers & Security, vol. 21, pp.
565-570, 2002.

[40] J.-C. Birget, X. Zou, G. Noubir, and B. Ramamurthy, "Hierarchy-based access
control in distributed environments," in Communications, 2001. ICC 2001. IEEE
International Conference on, 2001, pp. 229-233.

[41] Q. Zhang and Y. Wang, "A centralized key management scheme for hierarchical
access control," in Global Telecommunications Conference, 2004. GLOBECOM'04.
IEEE, 2004, pp. 2067-2071.

[42] C.-H. Lin, "Hierarchical key assignment without public-key cryptography,"
Computers & Security, vol. 20, pp. 612-619, 2001.

[43] H.-Y. Chien and J.-K. Jan, "New hierarchical assignment without public key
cryptography," Computers & Security, vol. 22, pp. 523-526, 2003.

[44] A. L. Ferrara and B. Masucci, "An information-theoretic approach to the access
control problem," in Theoretical Computer Science, ed: Springer, 2003, pp. 342-354.

[45] X. Yi, "Security of Chien's efficient time-bound hierarchical key assignment
scheme," IEEE Transactions on Knowledge and Data Engineering, vol. 17, pp.
1298-1299, 2005.

[46] X. Yi, "Security of Chien's efficient time-bound hierarchical key assignment
scheme," IEEE Transactions on Knowledge and Data Engineering, vol. 17, pp.
1298-1299, 2005.

[47] R. D. Luce, Response Times: Their Role in Inferring Elementary Mental
Organization3: Oxford University Press, 1986.

[48] Robert J. Kosinski (Sep 2013). A Literature Review on Reaction Time. Available:
http://biae.clemson.edu/bpc/bp/lab/110/reaction.htm

81

[49] H.-M. Sun, K.-H. Wang, and C.-M. Chen, "On the security of an efficient time-
bound hierarchical key management scheme," Dependable and Secure Computing,
IEEE Transactions on, vol. 6, pp. 159-160, 2009.

[50] Aberdeen Group. (2011). Prepare Your WLAN for the BYOD Invasion [online].
Available: http://research.aberdeen.com/internetcontent/somoclo/0161-7262-AI-
WLAN-BYOD-AB-08.pdf

[51] R. Ballagas, M. Rohs, J. G. Sheridan, and J. Borchers, "Byod: Bring your own
device," in Proceedings of the Workshop on Ubiquitous Display Environments,
Ubicomp, 2004.

[52] C.-C. Chang, I.-C. Lin, H.-M. Tsai, and H.-H. Wang, "A key assignment scheme for
controlling access in partially ordered user hierarchies," in Advanced Information
Networking and Applications, 2004. AINA 2004. 18th International Conference on,
2004, pp. 376-379.

[53] J.-S. Chou, C.-H. Lin, and T.-Y. Lee, "A novel hierarchical key management
scheme based on quadratic residues," in Parallel and Distributed Processing and
Applications, ed: Springer, 2005, pp. 858-865.

[54] Cisco. (2012). Cisco Study: IT saying Yes to BYOD [online]. Available:
http://newsroom.cisco.com/release/854754/Cisco-Study-IT-Saying-Yes-To-BYOD

[55] Cloud Security Alliance. (2013) How secure is mobile device management anyway
[online]? Available: https://blog.cloudsecurityalliance.org/2013/04/25/how-secure-
is-mobile-device-management-anyway/

[56] J. Crampton, K. Martin, and P. Wild, "On key assignment for hierarchical access
control," in Computer Security Foundations Workshop, 2006. 19th IEEE, 2006, pp.
14 pp.-111.

[57] A. De Santis, A. L. Ferrara, and B. Masucci, "Cryptographic key assignment
schemes for any access control policy," Information Processing Letters, vol. 92, pp.
199-205, 2004.

[58] M. He, P. Fan, F. Kaderali, and D. Yuan, "Access key distribution scheme for level-
based hierarchy," in Parallel and Distributed Computing, Applications and
Technologies, 2003. PDCAT'2003. Proceedings of the Fourth International
Conference on, 2003, pp. 942-945.

[59] H.-F. Huang and C.-C. Chang, "A new cryptographic key assignment scheme with
time-constraint access control in a hierarchy," Computer Standards & Interfaces, vol.
26, pp. 159-166, 2004.

[60] M. Iron, "Building “Bring-Your-Own-Device”(BYOD) Strategies," BYOD
Strategies, pp. 1-8, 2011.

82

[61] A. Joch. (2012). BYOD: A Cost Saver or a Curse?[online] Available:
http://www.business2community.com/tech-gadgets/byod-a-cost-saver-or-a-curse-
0166377

[62] T. Kaneshige. (2012). BYOD - Five hidden costs to a bring-your-own-device
progamme [online]. Available: http://www.computerworlduk.com/in-
depth/mobilewireless/3349518/byod--five-hidden-costs-to-a-bring-your-own-
device-progamme/

[63] S. M. Kerner (2013). Cisco Reduces Support costs with BYOD [online]. Available:
http://www.enterprisenetworkingplanet.com/netsysm/cisco-saves-support-costs-
with-byod.html

[64] J. Lee, Y. Lee, and S.-C. Kim, "A White-List Based Security Architecture (WLSA)
for the Safe Mobile Office in the BYOD Era," in Grid and Pervasive Computing, ed:
Springer, 2013, pp. 860-865.

[65] D. McCafferty (2013). With BYOD, Enterprise Matches Device to Employee[online].
Available: http://www.cioinsight.com/it-news-trends/slideshows/with-byod-
enterprise-matches-device-to-employee-10/

[66] R. S. Sandhu, "On some cryptographic solutions for access control in a tree
hierarchy," in Proceedings of the 1987 Fall Joint Computer Conference on
Exploring technology: today and tomorrow, 1987, pp. 405-410.

[67] U.S. Department of Defense. (2013). Officials Approve Guide for Government-
issued iOS 6 Devices[online]. Available:
http://www.defense.gov/news/newsarticle.aspx?id=120073

[68] J. Wu and R. Wei, "An access control scheme for partially ordered set hierarchy
with provable security," in Selected Areas in Cryptography, 2006, pp. 221-232.

[69] A. Zych, J. Doumen, P. Hartel, and W. Jonker, "A Diffie-Hellman based key
management scheme for hierarchical access control," 2005.

APPENDICES

83

Appendix A Definitions

All below definitions are intercepted from the work of Ateniese et al.[11]:

Definition 1. A time-bound hierarchical key management scheme for � is a pair of

algorithms � �DerGen, satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial time. It takes as

inputs the security parameter �1 , a graph � �EVG ,� in � , and the interval-set � over a

sequence of distinct time periods T, and produces as outputs:

a) A private information 	,us , for any class Vu
 and any time sequence �
� ;

b) A key tuk , , for any class Vu
 and any time period Tt
 ;

c) A public information pub .

We denote by � �pubks ,, the output of the algorithm Gen where s and k denote the

sequence of private information and of keys, respectively.

2. The key derivation algorithm Der is deterministic polynomial time. It takes as inputs

the security parameter �1 , a graph � �EVG ,� in � , and the interval-set � over a

sequence of distinct time periods T, two classes u and v such that uAv� , a time sequence

�
� , a private information 	,us assigned to class u for the time sequence � , a time

84

period ��t , and the public information pub , and produces as output the key tvk ,

assigned to the class v at time period t. We require that for each class Vu� , each class

uAv� , each time sequence ��� , each time period ��t , each private information �,us ,

each key tvk , , each public information pub which can be computed by Gen on inputs �1 ,

G, and 	 , it holds that

 � tvu kpubtsvuGDer ,, ,,,,,,,,1 �
 �� �

Definition 2. A symmetric encryption scheme is a triple � �D,,��� of algorithms

satisfying the following conditions:

1. The key-generation algorithm � is probabilistic polynomial time. It takes as input the

security parameter �1 and produces as output a string key.

2. The encryption algorithm � is probabilistic polynomial time. It takes as inputs �1 , a

string key produced by � ��1� , and a message � �*1,0�m , and produces as output the

ciphertext y.

3. The decryption algorithm D is deterministic polynomial time. It takes as inputs �1 , a

string key produced by � ��1� , and a ciphertext y, and produces as output a message m.

We require that for any string key which can be output by � ��1� , for any message

� �*1,0�m , and for y that can be output by !mkey,,1"# , we have $ % mykeyD &,,1' .

85

Definition 3 [IND-ST]. Let � be a family of graphs corresponding to partially ordered

hierarchies, let � � ��� EVG , be a graph, let T be a sequence of distinct time periods, let

� be the interval-set over T, and let � 	DerGen, be a time-bound hierarchical key

assignment scheme for � . Let tuSTAT , be a static adversary which attacks a class Vu

in a time period Tt� . Consider the following two experiments:

�

� � �

� �
�

d

kcorrpubGSTATd

sCorruptcorr

GGenpubks

GExp

tutu

tu

IND
STAT tu

return
,,,,,1

,,1,,

,,1 Experiment

,,

,

1
,

��
�

��
��

�

�
� � �

� � � �
� �

� � � �

� �
d

kcorrpubGSTATd

sCorruptcorr

GGenpubks

GExp

tutu

klength

tu

IND
STAT

tu

tu

return
,,,,,1

1,0

,,1,,

,,1 Experiment

,,

,

0

,

,

��
�

�
��

��

�

�
�

The advantage of tuSTAT , is defined as

! " ! "# $! "# $1,,1Pr1,,1Pr,,1 01
,,,

%&'%&%& ((GExpGExpGAdv IND
STAT

IND
STAT

IND
STAT tututu

)))

The scheme is said to be secure in the sense of IND-ST (key indistinguishability against a

static adversary whose time complexity is polynomial in *) if the function

+ ,-,,1
,

GAdvIND
STAT tu

. is negligible

Definition 4 [IND-AD]. Let � be a family of graphs corresponding to partially ordered

hierarchies, let � � ��� EVG , be a graph, let T be a sequence of distinct time periods, let

� be the interval-set over T, and let � 	DerGen, be a time-bound hierarchical key

assignment scheme for � . Let / 021, ADAPTADAPTADAPT 1 be an adaptive adversary

86

that is given access to the oracle � �.s� during both stages of the attack, where s is the

private information computed by Gen. Consider the following two experiments:

� �
� � � �

� 	� �
� 	� �

d

kstatetupubGADAPTd

pubGADAPTstatetu

GGenpubks

GExp

tu

IND
ADAPT

s

s

tu

return
,,,,,,,1

,,,1),,(

,,1,,

,,1 Experiment

,
.

2

.
1

1
,

�

�

�

�
�

�
�

�
� � �

� � � �
� �� �

� � � �
� � � �

d

statetupubGADAPTd

pubGADAPTstatetu

GGenpubks

GExp

s

tu

s

tu

klength

IND
ADAPT

return
,,,,,,,1

1,0

,,,1),,(

,,1,,

,,1 Experiment

.
2

.
1

0

,

,

�
�

�

�
�

�

��
�

��
��

�

�

�

�

(.)sO is a oracle which can provide the adversary knowledge associated with a pair � tu, .

It is required that the 1ADAPT can only output pair � tu, belongs to tuF . and 2ADAPT

cannot query a pair ! "#,v such that vAu $ and %&t . The advantage of the scheme is

defined as

' (' () * ' () *1,,1Pr1,,1Pr,,1 01 +,-+,+, .. GExpGExpGAdv IND
ADAPT

IND
ADAPT

IND

ADAPT

///

The scheme is said to be secure in the sense of IND-AD (key indistinguishability against

an adaptive adversary whose time complexity is polynomial in 0) if the function

1 23,,1 GAdvIND
ADAPT

4 is negligible.

Definition 5 [REC-ST]. Let 5 be a family of graphs corresponding to partially ordered

hierarchies, let 6 7 89: EVG , be a graph, let T be a sequence of distinct time periods, let

; be the interval-set over T, and let < =DerGen, be a time-bound hierarchical key

assignment scheme for 5 . Let tuSTAT , be a static adversary which attacks a class Vu >

in a time period Tt & . Consider the following two experiments:

87

� �
� � � �

� �
� �

'
,

,
'
,

,

return

,,,,1

,,1,,

,,1 Experiment
,

tu

tutu

tu

REC
STAT

k

corrpubGSTATk

sCorruptcorr

GGenpubks

GExp
tu

��
�

��
�

�

�
�

The advantage of tuSTAT , is defined as

� 	
 �tutu
REC
STAT kkPGAdv

tu ,
'
,Pr,,1

,
��

The scheme is said to be secure in the sense of REC-ST (against key recovery with

respect to a static adversary whose time complexity is polynomial in �) if the function

� �PGAdvREC
STAT tu

,,1
,

� is negligible.

Definition 6 [REC-AD]. Let � be a family of graphs corresponding to partially ordered

hierarchies, let � � ��� EVG , be a graph, let T be a sequence of distinct time periods, let

� be the interval-set over T, and let � �DerGen, be a time-bound hierarchical key

assignment scheme for � . Let � �21, ADAPTADAPTADAPT � be an adaptive adversary

that is given access to the oracle � �.s during both stages of the attack, where s is the

private information computed by Gen. Consider the following two experiments:

! "
$! "

% &! "
% &! "

'
,

.
2

'
,

.
1

1

return

,,,,,,1

,,,1),,(

,,1,,

,,1 Experiment
,

tu

tu

IND
ADAPT

k

statetupubGADAPTk

pubGADAPTstatetu

GGenpubks

GExp

s

s

tu

'(
'(

'(
'

)
)

*

+
+

+
+

88

It is required that the 1ADAPT can only output pair � �tu, belongs to tuF . and 2ADAPT

cannot query a pair � ��,v such that vAu� and ��t . The advantage of the scheme is

defined as

	
 � �tutu
REC
ADAPT kkPGAdv ,

'
,Pr,,1

�

The scheme is said to be secure in the sense of REC-AD (against key recovery with

respect to an adaptive adversary whose time complexity is polynomial in �) if the

function � �PGAdvREC
ADAPT ,,1� is negligible.

89

Appendix B Theorems

All below theorems are intercepted from the work of Ateniese et al.[11]:

Theorem 1 [IND-ST� IND-AD] Let � be a family of graphs corresponding to partially

ordered hierarchies. A time-bound hierarchical key assignment scheme for � is secure in

the sense of IND-ST if and only if it is secure in the sense of IND-AD.

Theorem 2 [REC-ST�REC-AD] Let � be a family of graphs corresponding to

partially ordered hierarchies. A time-bound hierarchical key assignment scheme for a

family of graphs � is secure in the sense of REC-ST if and only if it is secure in the

sense of REC-AD.

Theorem 3 [IND-ST�REC-ST] Let � be a family of graphs corresponding to partially

ordered hierarchies. If a time-bound hierarchical key assignment scheme for � is secure

in the sense of IND-ST, then it is secure in the sense of REC-ST.

Theorem 4 [REC-ST�>IND-ST] Let � be a family of graphs corresponding to partially

ordered hierarchies. If there exists a time-bound hierarchical key assignment scheme for

� which is secure in the sense of REC-ST, there exists a time-bound hierarchical key

assignment scheme for � which is secure in the sense of REC-ST but which is not secure

in the sense of IND-ST.

	Purdue University
	Purdue e-Pubs
	Fall 2014

	User-differentiated hierarchical key management for the bring-your-own-device environments
	Di Xie
	Recommended Citation

	untitled

