19,404 research outputs found

    Cast-as-Intended Mechanism with Return Codes Based on PETs

    Full text link
    We propose a method providing cast-as-intended verifiability for remote electronic voting. The method is based on plaintext equivalence tests (PETs), used to match the cast ballots against the pre-generated encrypted code tables. Our solution provides an attractive balance of security and functional properties. It is based on well-known cryptographic building blocks and relies on standard cryptographic assumptions, which allows for relatively simple security analysis. Our scheme is designed with a built-in fine-grained distributed trust mechanism based on threshold decryption. It, finally, imposes only very little additional computational burden on the voting platform, which is especially important when voters use devices of restricted computational power such as mobile phones. At the same time, the computational cost on the server side is very reasonable and scales well with the increasing ballot size

    A Case Study of Mobile Health Applications: The OWASP Risk of Insufficient Cryptography

    Get PDF
    Mobile devices are being deployed rapidly for both private and professional reasons. One area of that has been growing is in releasing healthcare applications into the mobile marketplaces for health management. These applications help individuals track their own biorhythms and contain sensitive information. This case study examines the source code of mobile applications released to GitHub for the Risk of Insufficient Cryptography in the Top Ten Mobile Open Web Application Security Project risks. We first develop and justify a mobile OWASP Cryptographic knowledgegraph for detecting security weaknesses specific to mobile applications which can be extended to other domains involving cryptography. We then analyze the source code of 203 open source healthcare mobile applications and report on their usage of cryptography in the applications. Our findings show that none of the open source healthcare applications correctly applied cryptography in all elements of their applications. As humans adopt healthcare applications for managing their health routines, it is essential that they consider the privacy and security risks they are accepting when sharing their data. Furthermore, many open source applications and developers have certain environmental parameters which do not mandate adherence to regulations. In addition to creating new free tools for security risk identifications during software development such as standalone or compiler-embedded, the article suggests awareness and training modules for developers prior to marketplace software release

    Device-Based Isolation for Securing Cryptographic Keys

    Get PDF
    In this work, we describe an eective device-based isolation approach for achieving data security. Device-based isolation leverages the proliferation of personal computing devices to provide strong run-time guarantees for the condentiality of secrets. To demonstrate our isolation approach, we show its use in protecting the secrecy of highly sensitive data that is crucial to security operations, such as cryptographic keys used for decrypting ciphertext or signing digital signatures. Private key is usually encrypted when not used, however, when being used, the plaintext key is loaded into the memory of the host for access. In our threat model, the host may be compromised by attackers, and thus the condentiality of the host memory cannot be preserved. We present a novel and practical solution and its prototype called DataGuard to protect the secrecy of the highly sensitive data through the storage isolation and secure tunneling enabled by a mobile handheld device. DataGuard can be deployed for the key protection of individuals or organizations

    Formal security analysis of registration protocols for interactive systems: a methodology and a case of study

    Full text link
    In this work we present and formally analyze CHAT-SRP (CHAos based Tickets-Secure Registration Protocol), a protocol to provide interactive and collaborative platforms with a cryptographically robust solution to classical security issues. Namely, we focus on the secrecy and authenticity properties while keeping a high usability. In this sense, users are forced to blindly trust the system administrators and developers. Moreover, as far as we know, the use of formal methodologies for the verification of security properties of communication protocols isn't yet a common practice. We propose here a methodology to fill this gap, i.e., to analyse both the security of the proposed protocol and the pertinence of the underlying premises. In this concern, we propose the definition and formal evaluation of a protocol for the distribution of digital identities. Once distributed, these identities can be used to verify integrity and source of information. We base our security analysis on tools for automatic verification of security protocols widely accepted by the scientific community, and on the principles they are based upon. In addition, it is assumed perfect cryptographic primitives in order to focus the analysis on the exchange of protocol messages. The main property of our protocol is the incorporation of tickets, created using digests of chaos based nonces (numbers used only once) and users' personal data. Combined with a multichannel authentication scheme with some previous knowledge, these tickets provide security during the whole protocol by univocally linking each registering user with a single request. [..]Comment: 32 pages, 7 figures, 8 listings, 1 tabl

    Securing dynamic itineraries for mobile agent applications

    Get PDF
    In this paper we present a novel mechanism for the protection of dynamic itineraries for mobile agent applications. Itineraries that are decided as the agent goes are essential in complex applications based on mobile agents, but no approach has been presented until now to protect them. We have conceived a cryptographic scheme for shielding dynamic itineraries from tampering, impersonation and disclosure. By using trust strategically, our scheme provides a balanced trade-off between flexibility and security. Our protection scheme has been thought always bearing in mind a feasible implementation, and thus facilitates the development of applications that make use of it. An example application based on a real healthcare scenario is also presented to show its operation

    A Forensically Sound Adversary Model for Mobile Devices

    Full text link
    In this paper, we propose an adversary model to facilitate forensic investigations of mobile devices (e.g. Android, iOS and Windows smartphones) that can be readily adapted to the latest mobile device technologies. This is essential given the ongoing and rapidly changing nature of mobile device technologies. An integral principle and significant constraint upon forensic practitioners is that of forensic soundness. Our adversary model specifically considers and integrates the constraints of forensic soundness on the adversary, in our case, a forensic practitioner. One construction of the adversary model is an evidence collection and analysis methodology for Android devices. Using the methodology with six popular cloud apps, we were successful in extracting various information of forensic interest in both the external and internal storage of the mobile device
    corecore