124 research outputs found

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversary‘s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    Steganography: a class of secure and robust algorithms

    Full text link
    This research work presents a new class of non-blind information hiding algorithms that are stego-secure and robust. They are based on some finite domains iterations having the Devaney's topological chaos property. Thanks to a complete formalization of the approach we prove security against watermark-only attacks of a large class of steganographic algorithms. Finally a complete study of robustness is given in frequency DWT and DCT domains.Comment: Published in The Computer Journal special issue about steganograph

    Covert communication over VoIP streaming media with dynamic key distribution and authentication

    Get PDF
    Voice over Internet Protocol (VoIP) is widely embedded into commercial and industrial applications. VoIP streams can be used as innocuous cover objects to hide the secret data in steganographic systems. The security offered by VoIP signaling protocols is likely to be compromised due to a sharp increase in computing power. This article describes a theoretical and experimental investigation of covert steganographic communications over VoIP streaming media. A new information-theoretical model of secure covert VoIP communications was constructed to depict the security scenarios in steganographic systems against the passive attacks. A one-way accumulation-based steganographic algorithm was devised to integrate dynamic key updating and exchange with data embedding and extraction, so as to protect steganographic systems from adversary attacks. The theoretical analysis of steganographic security using information theory proves that the proposed model for covert VoIP communications is secure against a passive adversary. The effectiveness of the steganographic algorithm for covert VoIP communications was examined by means of performance and robustness measurements. The results reveal that the algorithm has no or little impact on real-time VoIP communications in terms of imperceptibility, speech quality, and signal distortion, and is more secure and effective at improving the security of covert VoIP communications than the other related algorithms with the comparable data embedding rates

    Secure Framework for Cyber Data Using Cryptographic and Steganographic Algorithms

    Get PDF
    The e-commerce industry has recently seen enormous growth on a global scale. Due to the rising popularity of online shopping, consumers, businesses, and depository financial institutions are extremely worried about debit/credit card fraud and the protection of personal information. It is essential to prevent unwanted access to and use of the information since it is disseminated over insecure channels. Cryptography and steganography are most frequently employed to avoid unauthorized access to sensitive data. However, the combined qualities of these two approaches are not secure enough in the modern world. It might lead to some vulnerability. It is possible to add additional layers of protection and achieve high levels of information security if visual cryptography is used in conjunction with the abovementioned combination. This research work proposed a multi-level information security framework for cyber data using random public key cryptography for the secret text, color image steganography for concealing secret encrypted text in the cover image, visual cryptography for slicing the cover image into two shares, and image steganography again to hide both the shares into two color images, respectively. These security processes significantly increase the confidentiality, dependability, and efficiency of secret messages. While there isn't a parameter to demonstrate the level of security achieved using cutting-edge techniques, the accuracy of the received text data is calculated in terms of MSE and correlation coefficient by comparing the sent and received text data. To evaluate the effectiveness of the suggested strategy, the time required at the transmitter and receiver ends is also calculated. The MATLAB environment is utilized in the implementation, demonstrating that the suggested system has improved robustness when considering steganalysis

    An Enhanced Approach of Image Steganographic Using Discrete Shearlet Transform and Secret Sharing

    Get PDF
                   في الآونة الأخيرة، جعل الإنترنت المستخدمين قادرين على نقل الوسائط الرقمية بطريقة أسهل. على الرغم من هذه السهولة للإنترنت، إلا أنه قد تؤدي إلى العديد من التهديدات التي تتعلق بسرية محتويات الوسائط المنقولة مثل مصادقة الوسائط والتحقق من تكاملها. لهذه الأسباب ، يتم استخدام أساليب إخفاء البيانات والتشفير لحماية محتويات الوسائط الرقمية. في هذه الورقة البحثية ، تم اقتراح طريقة معززة لإخفاء المعلومات بالصور مع التشفير المرئي. يتم تشفير الشعار السري (صورة ثنائية) بالحجم (128 × 128) عن طريق تطبيق التشفير البصري (2 out 2 share) لتوليد مشاركتين سريتين. أثناء عملية التضمين ، يتم تقسيم الصورة غطاء RGB بحجم (512 × 512) إلى ثلاث طبقات (الأحمر والأخضر والأزرق). يتم تحويل الطبقة الزرقاء باستخدام التحويل Shearlet المتقطع للحصول على معاملاتها. يتم تضمين المشاركة السرية الأولى في معاملات الطبقة الزرقاء المحولة للحصول على صورة الاخفاء. في عملية الاستخراج ، يتم استخراج المشاركة السرية الأولى من معاملات الطبقة الزرقاء لصورة الاخفاء وثم يتم تطبيق عملية XOR عليها مع المشاركة السرية الثانية لإنشاء الشعار السري الأصلي. وفقًا للنتائج التجريبية ، فإن الطريقة المقترحة قد حققت افضل نسبة من عدم الوضوح لصورة الاخفاء بقدرة الحمولة الصافية تساوي (1 bpp). أصبح الشعار السري أكثر أمانًا باستخدام التشفير المرئي (2 out 2 share)  والمشاركة السرية الثانية كمفتاح خاص ايضاً.  Recently, the internet has made the users able to transmit the digital media in the easiest manner. In spite of this facility of the internet, this may lead to several threats that are concerned with confidentiality of transferred media contents such as media authentication and integrity verification. For these reasons, data hiding methods and cryptography are used to protect the contents of digital media. In this paper, an enhanced method of image steganography combined with visual cryptography has been proposed. A secret logo (binary image) of size (128x128) is encrypted by applying (2 out 2 share) visual cryptography on it to generate two secret share. During the embedding process, a cover red, green, and blue (RGB) image of size (512x512) is divided into three layers (red, green and blue). The blue layer is transformed using Discrete Shearlet Transform (DST) to obtain its coefficients. The first secret share is embedded at the coefficients of transformed blue layer to obtain a stego image. At extraction process, the first secret share is extracted from the coefficients of blue layer of the stego image and XORed with the second secret share to generate the original secret logo. According to the experimental results, the proposed method is achieved better imperceptibility for the stego image with the payload capacity equal to (1 bpp). In addition, the secret logo becomes more secured using (2 out 2 share) visual cryptography and the second secret share as a private key
    corecore