2,031 research outputs found

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    Year 2010 Issues on Cryptographic Algorithms

    Get PDF
    In the financial sector, cryptographic algorithms are used as fundamental techniques for assuring confidentiality and integrity of data used in financial transactions and for authenticating entities involved in the transactions. Currently, the most widely used algorithms appear to be two-key triple DES and RC4 for symmetric ciphers, RSA with a 1024-bit key for an asymmetric cipher and a digital signature, and SHA-1 for a hash function according to international standards and guidelines related to the financial transactions. However, according to academic papers and reports regarding the security evaluation for such algorithms, it is difficult to ensure enough security by using the algorithms for a long time period, such as 10 or 15 years, due to advances in cryptanalysis techniques, improvement of computing power, and so on. To enhance the transition to more secure ones, National Institute of Standards and Technology (NIST) of the United States describes in various guidelines that NIST will no longer approve two-key triple DES, RSA with a 1024-bit key, and SHA-1 as the algorithms suitable for IT systems of the U.S. Federal Government after 2010. It is an important issue how to advance the transition of the algorithms in the financial sector. This paper refers to issues regarding the transition as Year 2010 issues in cryptographic algorithms. To successfully complete the transition by 2010, the deadline set by NIST, it is necessary for financial institutions to begin discussing the issues at the earliest possible date. This paper summarizes security evaluation results of the current algorithms, and describes Year 2010 issues, their impact on the financial industry, and the transition plan announced by NIST. This paper also shows several points to be discussed when dealing with Year 2010 issues.Cryptographic algorithm; Symmetric cipher; Asymmetric cipher; Security; Year 2010 issues; Hash function

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact

    Revisiting LFSMs

    Full text link
    Linear Finite State Machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is Linear Feedback Shift Registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill LFSRs case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.Comment: Submitted to IEEE-I

    THE DYNAMIC CIPHERS – NEW CONCEPT OF LONG-TERM CONTENT PROTECTING

    Get PDF
    In the paper the original concept of a new cipher, targeted at this moment forcivil applications in technology (e.g. measurement and control systems) and business (e.g.content protecting, knowledge-based companies or long-term archiving systems) is presented.The idea of the cipher is based on one-time pads and linear feedback shift registers. Therapidly changing hardware and software environment of cryptographic systems has beentaken into account during the construction of the cipher. The main idea of this work is tocreate a cryptosystem that can protect content or data for a long time, even more than onehundred years. The proposed algorithm can also simulate a stream cipher which makes itpossible to apply it in digital signal processing systems such as those within audio and videodelivery or telecommunication.Content protection, Cryptosystem, Dynamic cryptography, Linear Feedback ShiftRegisters, Object-oriented programming, One-time pad, Random key, random number generators,Statistical evaluation of ciphers.

    CURRENT APPROACHES IN MODERN CRYPTOLOGY

    Get PDF
    This work proposes a brief analysis of the different types of current approaches to modern cryptology in present days. Due to increased development of communications and IT technologies, the field of cryptography practical approaches exceeded your government / military / intelligence / bank, eventually passing the civil environment and / or private. This process has soared in recent years and the requirements of market economy have forced a trend towards standardization of the theory and practice in cryptology. From there follows a rapid dissemination, sometimes without authorized assessment any official post by a wide range of users, including the private sector. This purposes as stated above, we try an analysis of current patterns of cryptology approach to find action ways for national authorized entities to follow in the near future to synchronize efforts made in the same field of other countries and / or alliances or international organizations. Finally, it should be noted that we considered only the approach of the different types of entities of the cryptologic phenomenon, without regard to side - the scientific approach, which may be subject to other works.cryptology
    corecore