229 research outputs found

    Using Blockchain to support Data & Service Monetization

    Get PDF
    Two required features of a data monetization platform are query and retrieval of the metadata of the resources to be monetized. Centralized platforms rely on the maturity of traditional NoSQL database systems to support these features. These databases, for example, MongoDB allows for very efficient query and retrieval of data it stores. However, centralized platforms come with a bag of security and privacy concerns, making them not the ideal approach for a data monetization platform. On the other hand, most existing decentralized platforms are only partially decentralized. In this research, I developed Cowry, a platform for publishing metadata describing available resources (data or services), discovery of published metadata including fast search and filtering. My main contribution is a fully decentralized architecture that combines blockchain and traditional distributed database to gain additional features such as efficient query and retrieval of metadata stored on the blockchain

    A First Look at the Crypto-Mining Malware Ecosystem: A Decade of Unrestricted Wealth

    Get PDF
    Illicit crypto-mining leverages resources stolen from victims to mine cryptocurrencies on behalf of criminals. While recent works have analyzed one side of this threat, i.e.: web-browser cryptojacking, only commercial reports have partially covered binary-based crypto-mining malware. In this paper, we conduct the largest measurement of crypto-mining malware to date, analyzing approximately 4.5 million malware samples (1.2 million malicious miners), over a period of twelve years from 2007 to 2019. Our analysis pipeline applies both static and dynamic analysis to extract information from the samples, such as wallet identifiers and mining pools. Together with OSINT data, this information is used to group samples into campaigns. We then analyze publicly-available payments sent to the wallets from mining-pools as a reward for mining, and estimate profits for the different campaigns. All this together is is done in a fully automated fashion, which enables us to leverage measurement-based findings of illicit crypto-mining at scale. Our profit analysis reveals campaigns with multi-million earnings, associating over 4.4% of Monero with illicit mining. We analyze the infrastructure related with the different campaigns, showing that a high proportion of this ecosystem is supported by underground economies such as Pay-Per-Install services. We also uncover novel techniques that allow criminals to run successful campaigns.Comment: A shorter version of this paper appears in the Proceedings of 19th ACM Internet Measurement Conference (IMC 2019). This is the full versio

    A Critical Investigation into Identifying Key Focus Areas for the Implementation of Blockchain Technology in the Mining Industry

    Get PDF
    Thesis (PhD)--University of Pretoria, 2023.The value of digital information is ever-increasing as more companies utilize digital technologies such as Artificial Intelligence (AI) and the Internet of Things (IoT) to gain deeper insight into their business operations and drive productivity gains. It is therefore important to safeguard and ensure the integrity of digital information exchange. Blockchain technology (BCT) was identified as potentially providing the mining industry with a trusted system for securely exchanging digital value. However, there is little evidence or understanding of how/where BCT can be implemented and what benefits the industry could obtain. This research study provides a fundamental understanding of what the technology is in order to identify the associated capabilities and potential application benefits for the mining industry. From a technology push perspective, blockchain capabilities are used to evaluate how the technology’s value drivers map to the mining industries core value chain processes. This was done to identify potential focus areas within the mining enterprise for further research and development of blockchain applications.ARMMining EngineeringMEngUnrestricte

    A Deep-dive into Cryptojacking Malware: From an Empirical Analysis to a Detection Method for Computationally Weak Devices

    Get PDF
    Cryptojacking is an act of using a victim\u27s computation power without his/her consent. Unauthorized mining costs extra electricity consumption and decreases the victim host\u27s computational efficiency dramatically. In this thesis, we perform an extensive research on cryptojacking malware from every aspects. First, we present a systematic overview of cryptojacking malware based on the information obtained from the combination of academic research papers, two large cryptojacking datasets of samples, and numerous major attack instances. Second, we created a dataset of 6269 websites containing cryptomining scripts in their source codes to characterize the in-browser cryptomining ecosystem by differentiating permissioned and permissionless cryptomining samples. Third, we introduce an accurate and efficient IoT cryptojacking detection mechanism based on network traffic features that achieves an accuracy of 99%. Finally, we believe this thesis will greatly expand the scope of research and facilitate other novel solutions in the cryptojacking domain

    FinBook: literary content as digital commodity

    Get PDF
    This short essay explains the significance of the FinBook intervention, and invites the reader to participate. We have associated each chapter within this book with a financial robot (FinBot), and created a market whereby book content will be traded with financial securities. As human labour increasingly consists of unstable and uncertain work practices and as algorithms replace people on the virtual trading floors of the worlds markets, we see members of society taking advantage of FinBots to invest and make extra funds. Bots of all kinds are making financial decisions for us, searching online on our behalf to help us invest, to consume products and services. Our contribution to this compilation is to turn the collection of chapters in this book into a dynamic investment portfolio, and thereby play out what might happen to the process of buying and consuming literature in the not-so-distant future. By attaching identities (through QR codes) to each chapter, we create a market in which the chapter can ‘perform’. Our FinBots will trade based on features extracted from the authors’ words in this book: the political, ethical and cultural values embedded in the work, and the extent to which the FinBots share authors’ concerns; and the performance of chapters amongst those human and non-human actors that make up the market, and readership. In short, the FinBook model turns our work and the work of our co-authors into an investment portfolio, mediated by the market and the attention of readers. By creating a digital economy specifically around the content of online texts, our chapter and the FinBook platform aims to challenge the reader to consider how their personal values align them with individual articles, and how these become contested as they perform different value judgements about the financial performance of each chapter and the book as a whole. At the same time, by introducing ‘autonomous’ trading bots, we also explore the different ‘network’ affordances that differ between paper based books that’s scarcity is developed through analogue form, and digital forms of books whose uniqueness is reached through encryption. We thereby speak to wider questions about the conditions of an aggressive market in which algorithms subject cultural and intellectual items – books – to economic parameters, and the increasing ubiquity of data bots as actors in our social, political, economic and cultural lives. We understand that our marketization of literature may be an uncomfortable juxtaposition against the conventionally-imagined way a book is created, enjoyed and shared: it is intended to be
    • …
    corecore