173 research outputs found

    An Efficient Secure Group Authenticated Key Agreement Protocol for Wireless Sensor Networks in IoT Environment

    Get PDF
    Internet of Things(IoT) consist of interconnected devices for transmitting and receiving the data over the network. Key management is important for data confidentiality while transmitting in an open network. Even though several key management techniques are feasible to use, still obtaining a key management technique is a challenge with respect to energy and computational cost. The main intention of this work is to discover and overcome the design issues of the existing system and implement a lightweight and secure solution for that issue. The existing system has a fatal security flaw that leads to the unavailability of a complete system which is considered a huge problem in Internet of things. To overcome this issue, an authenticated key management protocol is proposed which deals with the problem of single point of failure and maintains the security properties of the existing system. An authenticated scheme is provided using elliptic curve and hash functions. This scheme also provides client addition, deletion and key freshness. Security analysis and computation complexity has been also discussed. We experimented proposed algorithm and tested with Scyther verification tool. The design overcomes the issues of an existing system by utilizing our scheme in peer to peer network. This network resolves the issue of a single point of failure (SPOF) by distributing the resources and services to the multiple nodes in the network. It will dissolve the problem of SPOF and will increase the reliability and scalability of the IoT system

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    [[alternative]]The Desing of Anonymous Proxy Automatic Signature Schemes for Distributed Compilers

    Get PDF
    計畫編號:NSC94-2213-E032-022研究期間:200508~200607研究經費:422,000[[abstract]]本計畫預定提出適用於分散式誠實製造編議器的匿名自動代理簽章 法,藉以抵抗(未知)電腦病毒的威脅。由於網際網路的普及,電腦病毒的 危害也變得比以往嚴重。雖然防毒軟體可以提供抵抗電腦病毒的保護,但 是防毒軟體無法偵測未知的電腦病毒。在另外一方面,數位簽章法可以偵 測未知的電腦病毒,因為數位簽章法驗證檔案是否被病毒更動過。利用誠 實製造編議器,日本學者Usuda 等人提出自動簽章法以抵抗電腦病毒,隨 後學者Lin 和Jan 提出他們的適用於分散式誠實製造編議器之自動簽章 法。不幸地Lin 和Jan 的方法不足以抵抗偽造簽章攻擊,另外存在原始程 式碼長度受限的限制。於是學者Hwang 和Li 提出他們的適用於分散式誠 實製造編議器之自動代理簽章法。 在Lin 和Jan 的方法與Hwang 和Li 的 方法中,代理編議器編議工作的伺服器之隱私並未受到保護。為了抵抗編 議器製造者偽造自動簽章攻擊,伺服器之公開金鑰與秘密金鑰並須分別用 於自動代理簽章的驗證與產生,然而維護伺服器之公開金鑰的變更過程是 十分不方便的事。若匿名自動代理簽章只需使用編議器製造者公開金鑰就 可以驗證,不僅可以保護伺服器之隱私,也可以方便匿名自動代理簽章法 的實用性。所以本計畫預定提出適用於分散式誠實製造編議器的匿名自動 代理簽章法。[[sponsorship]]行政院國家科學委員

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Cryptographic Tools for Privacy Preservation

    Get PDF
    Data permeates every aspect of our daily life and it is the backbone of our digitalized society. Smartphones, smartwatches and many more smart devices measure, collect, modify and share data in what is known as the Internet of Things.Often, these devices don’t have enough computation power/storage space thus out-sourcing some aspects of the data management to the Cloud. Outsourcing computation/storage to a third party poses natural questions regarding the security and privacy of the shared sensitive data.Intuitively, Cryptography is a toolset of primitives/protocols of which security prop- erties are formally proven while Privacy typically captures additional social/legislative requirements that relate more to the concept of “trust” between people, “how” data is used and/or “who” has access to data. This thesis separates the concepts by introducing an abstract model that classifies data leaks into different types of breaches. Each class represents a specific requirement/goal related to cryptography, e.g. confidentiality or integrity, or related to privacy, e.g. liability, sensitive data management and more.The thesis contains cryptographic tools designed to provide privacy guarantees for different application scenarios. In more details, the thesis:(a) defines new encryption schemes that provide formal privacy guarantees such as theoretical privacy definitions like Differential Privacy (DP), or concrete privacy-oriented applications covered by existing regulations such as the European General Data Protection Regulation (GDPR);(b) proposes new tools and procedures for providing verifiable computation’s guarantees in concrete scenarios for post-quantum cryptography or generalisation of signature schemes;(c) proposes a methodology for utilising Machine Learning (ML) for analysing the effective security and privacy of a crypto-tool and, dually, proposes a secure primitive that allows computing specific ML algorithm in a privacy-preserving way;(d) provides an alternative protocol for secure communication between two parties, based on the idea of communicating in a periodically timed fashion

    Efficient Cryptographic Algorithms and Protocols for Mobile Ad Hoc Networks

    Get PDF
    As the next evolutionary step in digital communication systems, mobile ad hoc networks (MANETs) and their specialization like wireless sensor networks (WSNs) have been attracting much interest in both research and industry communities. In MANETs, network nodes can come together and form a network without depending on any pre-existing infrastructure and human intervention. Unfortunately, the salient characteristics of MANETs, in particular the absence of infrastructure and the constrained resources of mobile devices, present enormous challenges when designing security mechanisms in this environment. Without necessary measures, wireless communications are easy to be intercepted and activities of users can be easily traced. This thesis presents our solutions for two important aspects of securing MANETs, namely efficient key management protocols and fast implementations of cryptographic primitives on constrained devices. Due to the tight cost and constrained resources of high-volume mobile devices used in MANETs, it is desirable to employ lightweight and specialized cryptographic primitives for many security applications. Motivated by the design of the well-known Enigma machine, we present a novel ultra-lightweight cryptographic algorithm, referred to as Hummingbird, for resource-constrained devices. Hummingbird can provide the designed security with small block size and is resistant to the most common attacks such as linear and differential cryptanalysis. Furthermore, we also present efficient software implementations of Hummingbird on 4-, 8- and 16-bit microcontrollers from Atmel and Texas Instruments as well as efficient hardware implementations on the low-cost field programmable gate arrays (FPGAs) from Xilinx, respectively. Our experimental results show that after a system initialization phase Hummingbird can achieve up to 147 and 4.7 times faster throughput for a size-optimized and a speed-optimized software implementation, respectively, when compared to the state-of-the-art ultra-lightweight block cipher PRESENT on the similar platforms. In addition, the speed optimized Hummingbird encryption core can achieve a throughput of 160.4 Mbps and the area optimized encryption core only occupies 253 slices on a Spartan-3 XC3S200 FPGA device. Bilinear pairings on the Jacobians of (hyper-)elliptic curves have received considerable attention as a building block for constructing cryptographic schemes in MANETs with new and novel properties. Motivated by the work of Scott, we investigate how to use efficiently computable automorphisms to speed up pairing computations on two families of non-supersingular genus 2 hyperelliptic curves over prime fields. Our findings lead to new variants of Miller's algorithm in which the length of the main loop can be up to 4 times shorter than that of the original Miller's algorithm in the best case. We also generalize Chatterjee et al.'s idea of encapsulating the computation of the line function with the group operations to genus 2 hyperelliptic curves, and derive new explicit formulae for the group operations in projective and new coordinates in the context of pairing computations. Efficient software implementation of computing the Tate pairing on both a supersingular and a non-supersingular genus 2 curve with the same embedding degree of k = 4 is investigated. Combining the new algorithm with known optimization techniques, we show that pairing computations on non-supersingular genus 2 curves over prime fields use up to 55.8% fewer field operations and run about 10% faster than supersingular genus 2 curves for the same security level. As an important part of a key management mechanism, efficient key revocation protocol, which revokes the cryptographic keys of malicious nodes and isolates them from the network, is crucial for the security and robustness of MANETs. We propose a novel self-organized key revocation scheme for MANETs based on the Dirichlet multinomial model and identity-based cryptography. Firmly rooted in statistics, our key revocation scheme provides a theoretically sound basis for nodes analyzing and predicting peers' behavior based on their own observations and other nodes' reports. Considering the difference of malicious behaviors, we proposed to classify the nodes' behavior into three categories, namely good behavior, suspicious behavior and malicious behavior. Each node in the network keeps track of three categories of behavior and updates its knowledge about other nodes' behavior with 3-dimension Dirichlet distribution. Based on its own analysis, each node is able to protect itself from malicious attacks by either revoking the keys of the nodes with malicious behavior or ceasing the communication with the nodes showing suspicious behavior for some time. The attack-resistant properties of the resulting scheme against false accusation attacks launched by independent and collusive adversaries are also analyzed through extensive simulations. In WSNs, broadcast authentication is a crucial security mechanism that allows a multitude of legitimate users to join in and disseminate messages into the networks in a dynamic and authenticated way. During the past few years, several public-key based multi-user broadcast authentication schemes have been proposed in the literature to achieve immediate authentication and to address the security vulnerability intrinsic to μTESLA-like schemes. Unfortunately, the relatively slow signature verification in signature-based broadcast authentication has also incurred a series of problems such as high energy consumption and long verification delay. We propose an efficient technique to accelerate the signature verification in WSNs through the cooperation among sensor nodes. By allowing some sensor nodes to release the intermediate computation results to their neighbors during the signature verification, a large number of sensor nodes can accelerate their signature verification process significantly. When applying our faster signature verification technique to the broadcast authentication in a 4×4 grid-based WSN, a quantitative performance analysis shows that our scheme needs 17.7%~34.5% less energy and runs about 50% faster than the traditional signature verification method

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era
    corecore