214 research outputs found

    TurboSHAKE

    Get PDF
    In a recent presentation, we promoted the use of 12-round instances of Keccak, collectively called “TurboSHAKE”, in post-quantum cryptographic schemes, but without defining them further. The goal of this note is to fill this gap: The definition of the TurboSHAKE family simply consists in exposing and generalizing the primitive already defined inside KangarooTwelve

    Revisiting Shared Data Protection Against Key Exposure

    Full text link
    This paper puts a new light on secure data storage inside distributed systems. Specifically, it revisits computational secret sharing in a situation where the encryption key is exposed to an attacker. It comes with several contributions: First, it defines a security model for encryption schemes, where we ask for additional resilience against exposure of the encryption key. Precisely we ask for (1) indistinguishability of plaintexts under full ciphertext knowledge, (2) indistinguishability for an adversary who learns: the encryption key, plus all but one share of the ciphertext. (2) relaxes the "all-or-nothing" property to a more realistic setting, where the ciphertext is transformed into a number of shares, such that the adversary can't access one of them. (1) asks that, unless the user's key is disclosed, noone else than the user can retrieve information about the plaintext. Second, it introduces a new computationally secure encryption-then-sharing scheme, that protects the data in the previously defined attacker model. It consists in data encryption followed by a linear transformation of the ciphertext, then its fragmentation into shares, along with secret sharing of the randomness used for encryption. The computational overhead in addition to data encryption is reduced by half with respect to state of the art. Third, it provides for the first time cryptographic proofs in this context of key exposure. It emphasizes that the security of our scheme relies only on a simple cryptanalysis resilience assumption for blockciphers in public key mode: indistinguishability from random, of the sequence of diferentials of a random value. Fourth, it provides an alternative scheme relying on the more theoretical random permutation model. It consists in encrypting with sponge functions in duplex mode then, as before, secret-sharing the randomness

    Quantum Rotational Cryptanalysis for Preimage Recovery of Round-Reduced Keccak

    Get PDF
    This paper considers the capability of 4-round Keccak-224/256/384/512 against the cryptanlysis involved by the quantum algorithm. In order to effectively find the corresponding rotational number for the rotational counterpart of preimage, we first establish a probabilistic algorithm based on the Grover search to guess a possible rotational number by using the fixed relations of bits pairs in some coordinates. This is committed to achieving that each iteration of searching the rotational counterparts contains only one run of 4-round Keccak variant applied for the verification, which can reduce the attack complexity in the quantum setting. Based on finding the rotational number under an acceptable randomness, we construct two attack models to focus on the recovery of preimage. In the first model, the Grover’s algorithm serves as finding out a rotational counterpart of the preimage. Through 64 attempts of checking the correct rotational number, the desired preimage can be obtained. In the second model, we abstract the finding of rotational counterparts into searching vertexes on a hypercube, and then, the SKW quantum algorithm is used to deal with the finding of the vertexes acted as rotational counterparts. Compared to the recent works in classical setting, we greatly reduce the attack complexity of preimage recovery. Furthermore, the first attack model is superior to the generic quantum preimage attack for 4-round Keccak-224/256/384/512, and the second model has slightly lower attack effect but more practicality on the 4-round Keccak-512/384, that is, the model is exponentially easier to implement in quantum circuit than both our first attack model and the generic quantum preimage attack

    Algebraic Attacks on Round-Reduced Keccak/Xoodoo

    Get PDF
    Since Keccak was selected as the SHA-3 standard, both its hash mode and keyed mode have attracted lots of third-party cryptanalysis. Especially in recent years, there is progress in analyzing the collision resistance and preimage resistance of round-reduced Keccak. However, for the preimage attacks on round-reduced Keccak-384/512, we found that the linear relations leaked by the hash value are not well exploited when utilizing the current linear structures. To make full use of the 320+64×2=448320+64\times2=448 and 320 linear relations leaked by the hash value of Keccak-512 and Keccak-384, respectively, we propose a dedicated algebraic attack by expressing the output as a quadratic Boolean equation system in terms of the input. Such a quadratic Boolean equation system can be efficiently solved with linearization techniques. Consequently, we successfully improved the preimage attacks on 2/3/4 rounds of Keccak-384 and 2/3 rounds of Keccak-512. Since similar θ\theta and χ\chi operations exist in the round function of Xoodoo, we make a study of the permutation and construct a practical zero-sum distinguisher for 12-round Xoodoo. Although 12-round Xoodoo is the underlying permutation used in Xoodyak, which has been selected by NIST for the second round in the Lightweight Cryptography Standardization process, such a distinguisher will not lead to an attack on Xoodyak

    New Results on the SymSum Distinguisher on Round-Reduced SHA3

    Get PDF
    In ToSC 2017 Saha et al. demonstrated an interesting property of SHA3 based on higher-order vectorial derivatives which led to self-symmetry based distinguishers referred to as SymSum and bettered the complexity w.r.t the well-studied ZeroSum distinguisher by a factor of 4. This work attempts to take a fresh look at this distinguisher in the light of the linearization technique developed by Guo et al. in Asiacrypt 2016. It is observed that the efficiency of SymSum against ZeroSum drops from 4 to 2 for any number of rounds linearized. This is supported by theoretical proofs. SymSum augmented with linearization can penetrate up to two more rounds as against the classical version. In addition to that, one more round is extended by inversion technique on the final hash values. The combined approach leads to distinguishers up to 9 rounds of SHA3 variants with a complexity of only 264 which is better than the equivalent ZeroSum distinguisher by the factor of 2. To the best of our knowledge this is the best distinguisher available on this many rounds of SHA3

    MILP-aided Cube-attack-like Cryptanalysis on Keccak Keyed Modes

    Get PDF
    Cube-attack-like cryptanalysis was proposed by Dinur et al. at EUROCRYPT 2015, which recovers the key of Keccak keyed modes in a divide-and-conquer manner. In their attack, one selects cube variables manually, which leads to more key bits involved in the key-recovery attack, so the complexity is too high unnecessarily. In this paper, we introduce a new MILP model and make the cube attacks better on the Keccak keyed modes. Using this new MILP tool, we find the optimal cube variables for Keccak-MAC, Keyak and Ketje, which makes that a minimum number of key bits are involved in the key-recovery attack. For example, when the capacity is 256, we find a new 32-dimension cube for Keccak-MAC that involves only 18 key bits instead of Dinur et al.\u27s 64 bits and the complexity of the 6-round attack is reduced to 2422^{42} from 2662^{66}. More impressively, using this new tool, we give the very first 7-round key-recovery attack on Keccak-MAC-512. We get the 8-round key-recovery attacks on Lake Keyak in nonce-respected setting. In addition, we get the best attacks on Ketje Major/Minor. For Ketje Major, when the length of nonce is 9 lanes, we could improve the best previous 6-round attack to 7-round. Our attacks do not threaten the full-round (12) Keyak/Ketje or the full-round (24) Keccak-MAC. When comparing with Huang et al.\u27s conditional cube attack, the MILP-aided cube-attack-like cryptanalysis has larger effective range and gets the best results on the Keccak keyed variants with relatively smaller number of degrees of freedom

    Practical Preimage Attack on 3-Round Keccak-256

    Get PDF
    This paper combines techniques from several previous papers with some modifications to improve the previous cryptanalysis of 3-round Keccak-256. Furthermore, we propose a fast rebuilding method to improve the efficiency of solving equation systems. As a result, the guessing times of finding a preimage for 3-round Keccak-256 are decreased from 2652^{65} to 2522^{52}, and the solving time of each guess is decreased from 292^{9} 3-round Keccak calls to 25.32^{5.3} 3-round Keccak calls. We identify a preimage of all \u270\u27 digest for 3-round Keccak-256 to support the effectiveness of our methodology

    Cryptanalysis of 2-round KECCAK-384

    Get PDF
    In this paper, we present a cryptanalysis of round reduced Keccak-384 for 2 rounds. The best known preimage attack for this variant of Keccak has the time complexity 21292^{129}. In our analysis, we find a preimage in the time complexity of 2892^{89} and almost same memory is required

    Algebraic Cryptanalysis of Frit

    Get PDF
    Frit is a cryptographic 384-bit permutation recently proposed by Simon et al. and follows a novel design approach for built-in countermeasures against fault attacks. We analyze the cryptanalytic security of Frit in different use-cases and propose attacks on the full-round primitive. We show that the inverse Frit1^{-1} of Frit is significantly weaker than Frit from an algebraic perspective, despite the better diffusion of the inverse of the used mixing functions: Its round function has an effective algebraic degree of only about 1.325. We show how to craft structured input spaces to linearize up to 4 (or, conditionally, 5) rounds and thus further reduce the degree. As a result, we propose very low-dimensional start-in-the-middle zero-sum partitioning distinguishers for unkeyed Frit, as well as integral distinguishers for round-reduced Frit and full-round Frit1^{-1}. We also consider keyed Frit variants using Even-Mansour or arbitrary round keys. By using optimized interpolation attacks and symbolically evaluating up to 5 rounds of Frit1^{-1}, we obtain key-recovery attacks with a complexity of either 2592^{59} chosen plaintexts and 2672^{67} time, or 2182^{18} chosen ciphertexts and time (about 10 seconds in practice)

    Allocating Rotational Cryptanalysis based Preimage Attack on 4-round Keccak-224 for Quantum Setting

    Get PDF
    In this paper, we aim to present a quantum setting oriented preimage attack against 4-round Keccak-224. An important technique we called the allocating rotational cryptanalysis takes the preimage attack into the situation of 2-block preimage recovery. With the conditions on the middle state proposed by Li et al., we use the generic quantum preimage attack to deal with the finding of first preimage block. By using the newly explored propagation of rotational relations, we significantly increase the number of eigenpoints at the end of 4-round modified Keccak-f from 0 to 32, and therefore improving the accuracy of determining the rotational number for a certain rotational counterpart in the quantum setting by more than 10 orders of magnitude. On the basis of the above, we design an efficient unitary oracle operator with only twice calling of the 4-round modified Keccak-f, which costs half of previous results, to mark a rotational counterpart of the second preimage block in order that the second preimage block can be found indirectly from a quickly generated specified search space. As a result on the 4-round Keccak-224: In the classical setting, the preimage attack with the complexity decreased to 2^218 is better than the result based on the pioneered rotational cryptanalysis. In the quantum setting, the amplitude amplification driven preimage attack with a complexity of 2^110 is by far the best dedicated quantum preimage attack. Additionally, the SKW algorithm is applied to the dedicated quantum preimage attack against the 4-round Keccak-224 for the first time, which is exponentially easier to implement in quantum circuit than the former, with a complexity of 2^111
    corecore