4 research outputs found

    Cryptanalysis of Compact-LWE and Related Lightweight Public Key Encryption

    Get PDF
    In the emerging Internet of Things (IoT), lightweight public key cryptography plays an essential role in security and privacy protection. With the approach of quantum computing era, it is important to design and evaluate lightweight quantum-resistant cryptographic algorithms applicable to IoT. LWE-based cryptography is a widely used and well-studied family of postquantum cryptographic constructions whose hardness is based on worst-case lattice problems. To make LWE friendly to resource-constrained IoT devices, a variant of LWE, named Compact-LWE, was proposed and used to design lightweight cryptographic schemes. In this paper, we study the so-called Compact-LWE problem and clarify that under certain parameter settings it can be solved in polynomial time. As a consequence, our result leads to a practical attack against an instantiated scheme based on Compact-LWE proposed by Liu et al. in 2017

    Novel model for boosting security strength and energy efficiency in internet-of-things using multi-staged game

    Get PDF
    Security as well as energy efficiency is one of the most inevitable and challenging problems when it comes it large scale network deployment like INternet-of-Things (IoT). After reviewing existing research work on IoT, it was found that there are discrete set of solution for security as well as for energy. However, there is little research work that has jointly investigated both the problems with respect to IoT. Apart from this, there are also various form of attacks that cost energy of sensors that constitutes core physical devices in IoT. Therefore, these manuscripts present a novel idea for identifying and resisting the security breach within an IoT system ensuring energy efficiency too. Harnessing the modelling capability of game-theory, the proposed system offers a joint solution towards these problems. The simulated outcome of the study is found to offer balance performance for better energy efficiency and robust threat mitigation capability when compared with existing approaches

    RMAC -- A Lightweight Authentication Protocol for Highly Constrained IoT Devices

    Get PDF
    Nowadays, highly constrained IoT devices have earned an important place in our everyday lives. These devices mainly comprise RFID (Radio-Frequency IDentification) or WSN (Wireless Sensor Networks) components. Their adoption is growing in areas where data security or privacy or both must be guaranteed. Therefore, it is necessary to develop appropriate security solutions for these systems. Many papers have proposed solutions for encryption or authentication. But it turns out that sometimes the proposal has security flaw or is ill-suited for the constrained IoT devices (which has very limited processing and storage capacities). In this paper we introduce a new authentication protocol inspired by Mirror-Mac (MM) which is a generic construction of authentication protocol proposed by Mol et al. Our proposal named RMAC is well suited for highly constrained IoT devices since its implementation uses simple and lightweight algorithms.We also prove that RMAC is at least as secure as the MM protocol and thus secure against man-in-the-middle attacks
    corecore