11 research outputs found

    Incentives and Efficiency in Uncertain Collaborative Environments

    Full text link
    We consider collaborative systems where users make contributions across multiple available projects and are rewarded for their contributions in individual projects according to a local sharing of the value produced. This serves as a model of online social computing systems such as online Q&A forums and of credit sharing in scientific co-authorship settings. We show that the maximum feasible produced value can be well approximated by simple local sharing rules where users are approximately rewarded in proportion to their marginal contributions and that this holds even under incomplete information about the player's abilities and effort constraints. For natural instances we show almost 95% optimality at equilibrium. When players incur a cost for their effort, we identify a threshold phenomenon: the efficiency is a constant fraction of the optimal when the cost is strictly convex and decreases with the number of players if the cost is linear

    Social Status and Badge Design

    Full text link
    Many websites rely on user-generated content to provide value to consumers. These websites typically incentivize participation by awarding users badges based on their contributions. While these badges typically have no explicit value, they act as symbols of social status within a community. In this paper, we consider the design of badge mechanisms for the objective of maximizing the total contributions made to a website. Users exert costly effort to make contributions and, in return, are awarded with badges. A badge is only valued to the extent that it signals social status and thus badge valuations are determined endogenously by the number of users who earn each badge. The goal of this paper is to study the design of optimal and approximately badge mechanisms under these status valuations. We characterize badge mechanisms by whether they use a coarse partitioning scheme, i.e. awarding the same badge to many users, or use a fine partitioning scheme, i.e. awarding a unique badge to most users. We find that the optimal mechanism uses both fine partitioning and coarse partitioning. When status valuations exhibit a decreasing marginal value property, we prove that coarse partitioning is a necessary feature of any approximately optimal mechanism. Conversely, when status valuations exhibit an increasing marginal value property, we prove that fine partitioning is necessary for approximate optimality

    Behavioral Mechanism Design: Optimal Contests for Simple Agents

    Full text link
    Incentives are more likely to elicit desired outcomes when they are designed based on accurate models of agents' strategic behavior. A growing literature, however, suggests that people do not quite behave like standard economic agents in a variety of environments, both online and offline. What consequences might such differences have for the optimal design of mechanisms in these environments? In this paper, we explore this question in the context of optimal contest design for simple agents---agents who strategically reason about whether or not to participate in a system, but not about the input they provide to it. Specifically, consider a contest where nn potential contestants with types (qi,ci)(q_i,c_i) each choose between participating and producing a submission of quality qiq_i at cost cic_i, versus not participating at all, to maximize their utilities. How should a principal distribute a total prize VV amongst the nn ranks to maximize some increasing function of the qualities of elicited submissions in a contest with such simple agents? We first solve the optimal contest design problem for settings with homogenous participation costs ci=cc_i = c. Here, the optimal contest is always a simple contest, awarding equal prizes to the top jj^* contestants for a suitable choice of jj^*. (In comparable models with strategic effort choices, the optimal contest is either a winner-take-all contest or awards possibly unequal prizes, depending on the curvature of agents' effort cost functions.) We next address the general case with heterogeneous costs where agents' types are inherently two-dimensional, significantly complicating equilibrium analysis. Our main result here is that the winner-take-all contest is a 3-approximation of the optimal contest when the principal's objective is to maximize the quality of the best elicited contribution.Comment: This is the full version of a paper in the ACM Conference on Economics and Computation (ACM-EC), 201

    Rating mechanisms for sustainability of crowdsourcing platforms

    Get PDF
    Crowdsourcing leverages the diverse skill sets of large collections of individual contributors to solve problems and execute projects, where contributors may vary significantly in experience, expertise, and interest in completing tasks. Hence, to ensure the satisfaction of its task requesters, most existing crowdsourcing platforms focus primarily on supervising contributors\u27 behavior. This lopsided approach to supervision negatively impacts contributor engagement and platform sustainability

    Essays In Algorithmic Market Design Under Social Constraints

    Get PDF
    Rapid technological advances over the past few decades---in particular, the rise of the internet---has significantly reshaped and expanded the meaning of our everyday social activities, including our interactions with our social circle, the media, and our political and economic activities This dissertation aims to tackle some of the unique societal challenges underlying the design of automated online platforms that interact with people and organizations---namely, those imposed by legal, ethical, and strategic considerations. I narrow down attention to fairness considerations, learning with repeated trials, and competition for market share. In each case, I investigate the broad issue in a particular context (i.e. online market), and present the solution my research offers to the problem in that application. Addressing interdisciplinary problems, such as the ones in this dissertation, requires drawing ideas and techniques from various disciplines, including theoretical computer science, microeconomics, and applied statistics. The research presented here utilizes a combination of theoretical and data analysis tools to shed light on some of the key challenges in designing algorithms for today\u27s online markets, including crowdsourcing and labor markets, online advertising, and social networks among others

    Strategy and Incentive in Contest and Tournament

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore