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Abstract
Rapid technological advances over the past few decades---in particular, the rise of the internet---has
significantly reshaped and expanded the meaning of our everyday social activities, including our interactions
with our social circle, the media, and our political and economic activities

This dissertation aims to tackle some of the unique societal challenges underlying the design of automated
online platforms that interact with people and organizations---namely, those imposed by legal, ethical, and
strategic considerations.

I narrow down attention to fairness considerations, learning with repeated trials, and competition for market
share. In each case, I investigate the broad issue in a particular context (i.e. online market), and present the
solution my research offers to the problem in that application.

Addressing interdisciplinary problems, such as the ones in this dissertation, requires drawing ideas and
techniques from various disciplines, including theoretical computer science, microeconomics, and applied
statistics.

The research presented here utilizes a combination of theoretical and data analysis tools to shed light on some
of the key challenges in designing algorithms for today's online markets, including crowdsourcing and labor
markets, online advertising, and social networks among others.
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ABSTRACT

ESSAYS IN ALGORITHMIC MARKET DESIGN UNDER SOCIAL CONSTRAINTS

Hoda Heidari

Michael Kearns

Ali Jadbabaie

Rapid technological advances over the past few decades—in particular, the rise of the

Internet—has significantly reshaped and expanded the meaning of our everyday social

activities, including our interactions with our social circle, the media, and our political

and economic activities This dissertation aims to tackle some of the unique societal chal-

lenges underlying the design of automated online platforms that interact with people and

organizations—namely, those imposed by legal, ethical, and strategic considerations. I nar-

row down attention to fairness considerations, learning with repeated trials, and competition

for market share. In each case, I investigate the broad issue in a particular context (i.e. on-

line market), and present the solution my research offers to the problem in that application.

Addressing interdisciplinary problems, such as the ones in this dissertation, requires draw-

ing ideas and techniques from various disciplines, including theoretical computer science,

microeconomics, and applied statistics. The research presented here utilizes a combination

of theoretical and data analysis tools to shed light on some of the key challenges in designing

algorithms for today’s online markets, including crowdsourcing and labor markets, online

advertising, and social networks among others.
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CHAPTER 1 : Introduction

There is little doubt left that today’s social relations are heavily influenced by the new online

world. The impact can be seen in our everyday interactions with our friends, acquaintances,

and media, and even in our political and economic activities. In the last two decades, the

online world has expanded at an extraordinary pace, and all the aforementioned activities

have witnessed a significant shift to high-tech, online, and electronic platforms. In addition

to fundamental changes to existing markets, new markets—and hence new relationships

and roles—emerge everyday.

In the past, it was the job of social sciences, such as sociology and economics, to address

problems related to systems of humans,organizations, and their interactions, whereas com-

puter science and engineering were concerned mostly with improving the performance of

machines. Today the online world is a complex system comprised of machines, humans,

and organizations. As the result areas of research that seemed unrelated to each other in

the past now need to join forces to further our understanding of this complicated system as

a whole (see Nisan et al., 2007; Easley and Kleinberg, 2010, for numerous applications and

case-studies.).

The current dissertation on algorithmic market design contributes to this recent endeavor,

and tackles some of the unique challenges that arise when automated online platforms

interact with the society. In particular, my focus will be on the design constraints imposed

by legal, ethical, and strategic considerations. I investigate each of these broad issues in

a number of specific market settings, and present the solution my research offers to the

problem in detail.

1.1. Algorithmic Market Design

My dissertation contains essays on algorithmic market design, a subfield of Algorithmic

Game Theory, broadly concerned with the design and analysis of algorithms that run on-
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line markets (see Nisan et al., 2007). The problems studied in this interdisciplinary area

of research usually have two components aspects: an algorithmic, as well as a societal as-

pect. A market designer is by definition concerned with the efficiency of the market—both

in its economic and computational sense: The market algorithm must be computation-

ally tractable and more broadly practical. Furthermore, it is imperative that the designer

take into account the impact of the algorithm on the behavior of the human/self-interested

participants of the system. Classical examples of the constraints imposed by strategic con-

siderations are participation constraints and incentive compatibility (see Mas-Colell et al.,

1995, Chapter 23).

Online markets frequently present themselves with further social challenges (Vulkan et al.,

2013), including those imposed by legal (e.g. simultaneously implementing all contracts

between the market and its participants), ethical (e.g. respecting anti-discrimination laws;

providing all market participants with equal opportunities), or strategic constraints (e.g.

maximizing revenue in a competitive market). Addressing the delicate trade-offs among

various efficiency objectives and such constraints is the central theme in this dissertation.

1.2. Overview of This Dissertation

In this dissertation, I focus on a number of key societal challenges a market designer faces

when dealing with automated online platforms:

• Fairness and equality considerations: The market should treat similar individuals

and circumstances similarly. In Chapter 2, I tackle constraints of this type in the

context of prediction, and online labor markets.

• Learning with repeated interactions: An online market usually interacts with

the same set of participants over time. The market and its participants can utilize

this to learn about the other party and optimize their future actions accordingly. In

Chapter 3, I address problems of this flavor in the context of ad exchanges—both

from a theoretical and an empirical perspective.

2



• Competition for market share: A major challenge for any online business oper-

ating within a competitive environment is to ensure that a sufficient proportion of

potential customers prefers their service to that of its competitors. The analysis of

this competition is the subject of Chapter 4. I will look into handling competition in

the context of ad exchanges and social networks.

1.2.1. Fairness and Equality Considerations

Chapter 2 consists of two sections. Section 2.1 is dedicated to the study task assignment in

crowdsourcing systems in presence of considerations for “equality of opportunity”. A fair

task assignment scheme must ensure quick turnaround time, while simultaneously provide

some guarantee for equality of opportunity among workers. In (Heidari and Kearns, 2013)

my coauthor and I present efficient algorithms/structures that simultaneously (approxi-

mately) minimize both the maximum workload among workers, and the number of workers

that need to attempt a task before it is completed. The former guarantees a small group of

high-ability workers don’t receive the bulk of the workload, and the latter puts a limit on

the time it takes for any given task to be completed.

Section 2.2 proposes a generalization of standard combinatorial prediction markets, where

traders are allowed to specify a limit on how much they are willing to pay per share for

their bundle of interest—that is, they can submit limit orders. This obligates the market to

keep track of all open orders/contracts at every point in time and guarantee that executing

one is not in conflict with respecting the other orders in the book.

By combining techniques from continuous and discrete optimization, in (Heidari et al.,

2015) my coauthors and I provide the first concrete algorithm with theoretical guarantees

that combines market makers and limit orders in a combinatorial prediction market with

continuous trade. More precisely, we define the notion of an ε-fair trading path, a path in

security space along which no order executes at a price more than ε above its limit, and

every order executes when its market price falls more than ε below its limit. We develop an

3



algorithm for operating a continuous market maker with limit orders that respects all the

ε-fairness conditions simultaneously.

1.2.2. Learning with Repeated Interaction

Chapter 3 consists of two sections. We begin in Section 3.1 by studying how an ad exchange

can take advantage of the data it accumulates over time about its bidders to optimize future

actions. In particular, in an online display ad exchanges the exchange repeatedly interacts

with quota-limited bidders, making real-time decisions about which subsets of bidders are

called to participate in ad-slot-specific auctions. Given the repeated nature of the interaction

with its bidders, the exchange has information about each bidders’ segments of interest. This

information can be utilized to design smarter callout mechanisms—with the potential of

improving the exchange’s revenue. In a recent work (see Azari et al., 2017), my collaborators

at Google and I present an empirical framework for studying the performance of callout

mechanisms in such settings. To formalize the effect of a callout mechanism on long-term

revenue, I propose a strategic model that captures the repeated interaction between the

exchange and bidder. This model leads us to two metrics for performance: short-term

revenue and social welfare. We then present an empirical framework for estimating the

performance of a callout mechanism in terms of these two metrics from historical auction

data only. We put our framework to test by performing extensive simulations on both

synthetic and real auction data and compare several natural callout heuristics against one

another.

The market is not the only side that can take advantage of the information it accumulates

over time. Participants are also often times intelligent agents who can learn and improve

their performance with repeated trials. In Section 3.2, we propose a stylized model of

learning and performance improvement for workers in a crowdsourcing platforms. Our

model is a variant of the well-studied multi-armed bandit problem in which the reward

from each arm (worker) evolves monotonically in the number of times that arm is pulled

(a task is assigned to that worker). We assume that the arm-dependent rates at which

4



the rewards increase (workers’ learning rates) are unknown, and propose task assignment

algorithms with provably optimal policy regret bounds.

1.2.3. Competition for Market Share

Chapter 4 consists of two sections. In Section 4.1, we address market competition in the

context of ad exchanges. As the number of exchanges has grown, sellers have turned to

low-regret learning mechanisms to decide which exchange has the best price for their in-

ventory. This in turn raises the following question for the exchange: how to set reserve

prices to attract a large market share and maximize revenue? In (Heidari et al., 2016b), my

collaborators and I formulate this as a learning problem, and present algorithms showing

that simply knowing that sellers use low-regret learning to choose among their options is

enough for the exchange to have a low-regret algorithm for the optimal price.

Next and motivated by the word-of-mouth and viral marketing, in Section 4.2 my coauthors

and I consider a setting in which two firms compete for the consumers located in a social

network. Firms have budgets to “seed” the initial adoption of their products/services,

and their goal is to maximize their market share. This defines a game among firms. In

(Goyal et al., 2014), we identify general properties of the adoption dynamics—namely,

decreasing returns to local adoption—which determine whether the inefficiency of resource

use at equilibrium (quantified by the price of anarchy and stability) is bounded across all

networks.

We also test the sensitivity of these results to the changes in the structure of the utility

functions (see Draief et al., 2014). Building on the framework introduced in (Goyal et al.,

2014), we first introduce a new model in which the payoff to each firm comprises not only the

number of vertices who adopt its product, but also the network connectivity among those

nodes. We also introduce a model in which budgeting decisions are endogenous, rather than

externally given as is typically assumed in most viral marketing models.
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CHAPTER 2 : Fairness and Equality Considerations

One of the most important classes of social constraints the market designer faces are those

stemming from fairness and equality considerations: the market must treat similar individ-

uals and circumstances similarly. In this chapter, I tackle constraints of this type in the

context of prediction, and online labor markets1.

Section 2.1 is dedicated to the study task assignment in crowdsourcing systems in presence

of considerations for “equality of opportunity”. A fair task assignment scheme must ensure

quick turnaround time, while simultaneously provide some guarantee for equality of oppor-

tunity among workers. Heidari and Kearns (2013) present efficient algorithms/structures

that simultaneously (approximately) minimize both the maximum workload among workers,

and the number of workers that need to attempt a task before it is completed. The former

guarantees a small group of high-ability workers don’t receive the bulk of the workload, and

the latter puts a limit on the time it takes for any given task to be completed.

More precisely, we assume that arriving tasks for the workforce are homogeneous, and that

each is characterized by an unknown and one-dimensional difficulty value x ∈ [0, 1]. Each

worker i is characterized by their ability wi ∈ [0, 1], and can solve the task if and only

if x ≤ wi. If a worker is unable to solve a given task it must be forwarded to a worker

of greater ability. For a given set of worker abilities W and a distribution P over task

difficulty, we are interested in the problem of designing efficient forwarding structures for

W and P . We give efficient algorithms and structures that simultaneously (approximately)

minimize both the maximum workload of any worker, and the number of workers that need

to attempt a task. We identify broad conditions under which workloads diminish rapidly

with the workforce size, yet only a constant number of workers attempt each task.

Section 2.2 proposes a generalization of standard combinatorial prediction markets, where

traders are allowed to specify a limit on how much they are willing to pay per share for their

1The content in Sections 2.1 and 2.2 is taken directly from (Heidari and Kearns, 2013) and (Heidari et al.,
2015), respectively.
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bundle of interest—that is, they can submit limit orders. This obligates the market to keep

track of all open orders/contracts at every point in time and guarantee that executing one

is not in conflict with respecting the other orders in the book. Heidari et al. (2015) provide

the first concrete algorithm for combining market makers and limit orders in a prediction

market with continuous trade. Our mechanism is general enough to handle both bundle

orders and arbitrary securities defined over combinatorial outcome spaces.

We define the notion of an ε-fair trading path, a path in security space along which no order

executes at a price more than ε above its limit, and every order executes when its market

price falls more than ε below its limit. We show that under a certain supermodularity

condition, a fair trading path exists for which the endpoint is efficient, but that under very

general conditions, reaching an efficient endpoint via an ε-fair trading path is not possible.

We develop an algorithm for operating a continuous market maker with limit orders that

respects the ε-fairness conditions in the general case in which the supermodularity condition

may not hold. We conduct simulations of our algorithm using real combinatorial predictions

made during the 2008 U.S. Presidential election and evaluate it against a natural baseline

according to trading volume, social welfare, and violations of the two fairness conditions.

2.1. Task Assignment in Online Labor Markets

In crowdsourcing applications and many other settings, a large workforce is available for a

series of relatively homogeneous tasks — for instance, labeling images for the presence or

absence of a particular object such as cars. Most existing crowdsourcing systems treat the

tasks as if they were of uniform difficulty, treat the workers as if they were of uniform ability,

and simply assign the next task to the next available worker 2. In reality, it is quite natural

to assume there may be significant variation in both task difficulty and worker ability, and

to incorporate this variation into the design of the system.

We thus consider the problem of effectively organizing a population of workers of varying

2See (Salek et al., 2013) for an exception that is directly related to the models we examine here.
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abilities. We consider a simple model in which we assume that arriving tasks for the work-

force are homogeneous, and that each is characterized by an unknown and one-dimensional

3 difficulty value x ∈ [0, 1]. Each worker i is characterized by their ability wi ∈ [0, 1], and

can solve the task if and only if x ≤ wi If a worker is unable to solve a given task then

it must be passed or forwarded to a worker of greater ability. We assume that the worker

abilities wi are known (perhaps via prior observation or experience)4.

Our primary interest is in the design of efficient forwarding structures for a given workforce.

While the problem of efficiently incentivizing a workforce (Horton and Chilton, 2010; Ho

et al., 2012; Ghosh and McAfee, 2012) is also interesting and important, we separate it from

our concerns here. It is perhaps fair to think of our results as applicable to settings where

workers are either salaried employees willing to attempt the tasks given to them, or are paid

a fixed amount per task, as is common on Amazon’s Mechanical Turk. In the latter case we

can view a worker’s ability value as a conflation of their true underlying ability, and their

willingness to perform quality work at the offered rate.

For our notion of efficient workforce organization, we consider a bicriteria approach. More

specifically, we seek to find forwarding structures that simultaneously keep both maximum

workload and depth small. Maximum workload measures the largest workload of any worker

in the workforce under a given forwarding structure, while depth measures the number of

forwarding steps required before a task is solved. Small maximum workload ensures that

no single worker is (unnecessarily) overburdened, and can be viewed as a sign of efficient

use of a large workforce — we might hope (and indeed shall show) that under natural

assumptions, individual workloads can diminish rapidly with the workforce population size

n, meaning that the system is scaling well. Small depth is motivated by the desire to

solve individual tasks as rapidly as possible by keeping forwarding chains short (which also

minimizes expenditures if workers are paid per task). We note that these two criteria may be

3The important generalization to the multi-dimensional case carries a number of definitional and technical
challenges, and is left to future work.

4For example, by standard arguments if we draw O(log(n)/ε2) tasks at random and give them to all n
workers, we can estimate all the wi to within an additive ε, which suffices for our results.
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in tension with each other, leading to tradeoffs. For example, if we optimize only for depth

we would choose to give all tasks to our best worker, who would then have the highest

possible workload. It is also easy to create examples in which optimizing the workload

results in large depth. We are interested in the problem of designing forwarding structures

that approximately minimize both workload and depth, and the types of structures required

to do so.

We consider two variants of the framework above that differ in precisely how they measure

workloads. In the Pay-to-Forward (P2F) model, the only way for workers to discover

whether they are able to solve a given task is to attempt it, which then counts against

their workload. In other words, in the P2F model, attempting a task and failing is just as

onerous as solving it. In the Free-to-Forward (F2F) model, we assume that workers are able

to quickly assess whether they are able to solve a given task without actually attempting

it, and thus tasks they must forward do not count against their workload. Mathematically,

in the P2F model a given task is charged against the workload of every worker along the

forwarding chain that ends in a worker able to solve it, whereas in the F2F model only

this final successful worker’s load is charged.5. We note that a number of our results are

the same or similar in both models, but there are sufficient differences that it is worth

identifying them separately.

As more concrete motivations for these two variants, first consider a crowdsourcing system

in which workers are asked to locate specific objects in images (Salek et al., 2013). While

task difficulty and worker ability may vary considerably, no worker can simply glance at an

image and immediately determine whether they will succeed or fail — a certain amount of

time must be spent studying and scanning the image either way. In this example the P2F

model is appropriate. In contrast, consider a system in which workers are asked to judge

the accuracy of technical articles. A worker whose specialty is computer science might be

able to immediately see that they have been assigned an article on organic chemistry, and

5Note that the acronyms could equally well stand for “Pay to Fail” and “Free to Fail”.
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know they cannot solve the task before investing any effort. In this case the F2F model

seems more fitting.

Results: Omniscient Workload. We begin our results by considering the optimization

of the maximum workload, regardless of depth.6 We first consider the optimal omniscient

algorithm for task assignment that is allowed to observe the actual difficulty x of each

arriving task, and assign it to any worker in the worker population W capable of solving it;

since workloads in the weaker P2F and F2F models can clearly only be higher, the optimal

omniscient algorithm provides an important baseline or lower bound. For any W and

task difficulty distribution P , we give a precise characterization of the optimal omniscient

maximum workload MW,P , and give an efficient algorithm for computing its forwarding

policy.

Results: P2F and F2F Workloads. We then consider how closely MW,P can be approx-

imated in the P2F and F2F models, and by what types of forwarding structures. Following

a preliminary result showing that it always suffices to consider probabilistic DAGs as the

forwarding structure in both models, we then show that in the F2F model, MW,P can always

be achieved, and give an efficient algorithm for computing the witnessing DAG. We also

show that the weaker forwarding structure of trees cannot always achieve MW,P in F2F

in general, and that MW,P cannot always be achieved in the P2F model regardless of the

structure.

Results: Near-Optimal Depth-Workload Tradeoffs. We conclude by giving our main

positive approximation results for both models in the bicriteria setting. More specifically,

we show that by hierarchically arranging the workers in balanced b-ary trees, we can simul-

taneously come within a multiplicative factor of b2 of MW,P in terms of maximum workload,

with a resulting depth of log(n)
log(b) in both the P2F and F2F models. Thus, if b = 2 we obtain

a 4-approximation to the optimal omniscient workload with only log(n) depth. More gen-

6As noted above, optimizing depth alone is trivial, since we can simply assign every task to the best
worker.
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erally, we can tune b to decrease the depth at the expense of workload. We also provide a

lower bound for this class of structures, showing that maximum workloads must be at least
√
bMW,P in the worst case. We apply the upper bound to the natural model where worker

abilities are distributed as a power law, and show that the maximum workload diminishes

with the population size, even for constant depth.

We freely acknowledge that the models studied here make a variety of strong and simplifying

assumptions that prevent their immediate applicability to real-world crowdsourcing systems

and other labor organization problems. These include:

• One-dimensional task difficulty; surely in reality most settings demand a multi-dimensional

notion.

• Lack of detailed treatment of incentive issues.

• No modeling of variable costs for forwarding tasks.

• No modeling of weaker workers being able to solve any task, but with greater effort.

• No modeling of imperfect task completion.

Despite these simplifications, we shall see that there is already a fair amount to say in our

streamlined model; we leave the consideration of the important extensions above (some of

which we suspect are both conceptually and technically nontrivial) to future work.

Related Work To our knowledge, this work is the first to study a model of a workforce

with varying ability, and to examine workload-depth tradeoffs and associated algorithmic

and representational issues. There are, however, several tangentially related strands of

existing research that study labor organization design and various other tradeoffs.

Organizational Design and Hierarchical Structures: There is a large body of work on the

design and architecture of organizations; see (Hax and Majluf, 1981) for a survey. In most

of these works, hierarchical organizational structures are considered and their properties are
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studied. In (Garicano, 2000) the focus is on the tradeoff between communication and knowl-

edge acquisition costs. In (Cremer et al., 2007), a theory of optimal organizational languages

is developed, and a tradeoff between facilitating internal communication and encouraging

communication with other organizations is identified. The authors study the optimal com-

munication structure and language, and the organizational structure that supports them.

(Ferreira and Sah, 2012) studies organizations with individuals whose expertise differ in

content and breadth, and derives implications for the trade-off between specialization of

knowledge and communication costs, the role of top and middle managers, and the optimal

design of hierarchies. (Prat, 1997) studies the properties of a hierarchy of processors where

the organization must pay each employed processor a wage which is an increasing function

of the processor’s capacity.

Crowdsourcing: While our models are not specifically limited to crowdsourcing settings,

they are related to the growing literature on this subject, as we too study efficient ways

of organizing and utilizing a large pool of workers. We discuss some of the works more

relevant to our interests. In (Salek et al., 2013), the authors employ a model that shares our

emphasis on the variability of task difficulty and worker ability. They propose a probabilistic

graphical model to localize objects in images based on responses from the workforce, and

improve upon natural aggregation methods by simultaneously estimating the difficulty and

skill levels. In (Ho and Vaughan, 2012), the goal is to assign tasks to a set of workers with

unknown skill sets in a way that maximizes the benefit to the crowdsourcing system. The

authors show that the algorithm they propose to this end is competitive with respect to the

optimal offline algorithm which knows the skill levels when the number of workers is large.

This model differs from ours in that its focus is on workers with unknown skill levels who

arrive in an online fashion, and does not consider depth-workload tradeoffs. In (Horton and

Chilton, 2010) the authors study the reservation wage one needs to offer to a workforce to

incentivize them to perform the task. In (Ho et al., 2012), incentive mechanisms are devised

to discourage workers from putting in as little effort as possible, and crowdsourcers from

denying payments. In (DiPalantino and Vojnovic, 2009) and (Ghosh and McAfee, 2012),
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a game-theoretic model of crowdsourcing is proposed, in which workers act strategically

and seek to maximize their total benefit. (Karger et al., 2011) studies achieving a desired

level of reliability cheaply, using the fact that crowdsourcers often increase their confidence

in the result of crowdsourcing by assigning each task multiple times and combining the

results. (Zhang et al., 2012) studies mechanisms for task routing that aim to harness

people’s abilities to both contribute to a solution and to route tasks to others, who they

know can also solve and route. See also (Law and Ahn, 2011) for a thorough discussion of

different task routing methods.

Load Balancing. Somewhat indirectly related to our work is the literature on load balanc-

ing, where the goal is to distribute jobs among a set of machines to optimize the overall

performance of the system; for instance, see (Azar et al., 1999; Adler et al., 1995; Ghosh

et al., 1999). Our model differs from these works in that task assignments are driven by

worker abilities, while in the load balancing scenario, the decision to assign a task to a

machine is usually based on its current workload only. Also, in our model there are no

arrival and departure times defined for the tasks, rather they stay in the system until they

are solved.

2.1.1. Model and Preliminaries

In our model, an organization will consist of a set of n workers W = {1, 2, . . . n}, where

the ability of worker i is denoted by wi ∈ [0, 1]; we use i and wi interchangeably to denote

workers. The ability of a worker determines the difficulty of the tasks she is capable of

solving: a worker with ability w can solve all the tasks with difficulty less than or equal to

w 7. We assume without loss of generality that w1 ≤ w2 ≤ ... ≤ wn = 1, and the difficulty

of every task lies in [0, 1]; the best worker wn can thus solve any task.

Any task given to the organization has an unknown difficulty denoted by x ∈ [0, 1] and

sampled from a known distribution P . Without loss of generality, we may represent the

7Our notion of ability can also incorporate some unobservable mixture of a worker’s actual ability, and
the quality of work they are willing to do at a given rate — for instance, a high-ability worker may choose
to be lazy at the given rate and do no or low-quality observed work.
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task distribution P by 〈A1, A2, ..., An〉 where Ai = Prx∼P [wi−1 < x ≤ wi] is the mass of

tasks solvable by wi but not by wi−1 (where we define w0 = 0).

In order to solve a given task, an algorithm assigns it to one of the workers, who attempts to

solve it. If the worker is unsuccessful, the algorithm forwards it to another worker of greater

ability. This chain of forwarding continues until the task is solved by the first worker of

sufficient ability. Note that the most general notion of forwarding would allow an arbitrary,

centralized algorithm that (probabilistically) decides which worker to forward the task to,

given the sequence of failures so far. However, as we shall show, it turns out that such an

algorithm can always be represented by a decentralized probabilistic DAG over the workers

themselves, and that in many cases near-optimal performance is possible with even simpler

decentralized forwarding schemes, such as trees over the workers.

In this paper, we are interested in algorithms and representations for task forwarding, and

their performance according to two criteria: workload and depth. We discuss and define

workload first.

In the Pay-to-Forward (P2F) model, we assume that any worker who receives a task along

a forwarding chain has their workload charged for attempting that task. Thus, for any

algorithm A that determines how to forward tasks for W and P , we define the workload

`i of worker i to be the probability that i receives a task drawn from P and forwarded

according to A. In the Free-to-Forward (F2F) model, we assume that only the worker who

actually solves the task is charged, and thus define the workload `i of worker i to be the

probability that i is the last worker to receive a task drawn from P and forwarded according

to A. Clearly for any A all workloads `i in the P2F model are greater than or equal to those

in the F2F model.

As noted in the Introduction, the P2F model is appropriate for settings in which the only

way workers can determine whether they are able to solve a task is to attempt it, which

consumes the same effort whether they succeed or fail; and the F2F model is appropriate for
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settings in which, despite the actual task difficulty value x being unobservable, workers can

immediately assess whether they have the requisite skills to solve a problem, and forward

it if not.

In both the P2F and F2F models, we define the depth of a forwarding algorithm A as the

maximum number of workers in any forwarding chain of A under W and P . Our interests

here are in forwarding algorithms and schemes that simultaneously achieve small maximum

workload and depth. As noted in the Introduction, these two criteria may often be in conflict

with each other, necessitating the tradeoffs that we study here. In general, we are most

interested in cases in which workloads diminish rapidly with n, with depth growing only

very slowly with n (logarithmic or even constant); we shall eventually see this is possible

under fairly broad conditions.

2.1.2. The Omniscient Case

Regardless of W and P , it is clear how to minimize depth alone in task forwarding: simply

assign every task to wn = 1, who can solve all tasks (at the expense of the worst possible

maximum workload of 1). In contrast, if we ask what the smallest possible maximum

workload is, the answer depends strongly on W and P , and is far from obvious. Since we

need to compare the workload performance of algorithms in the P2F and F2F models to

some baseline, we consider an idealized omniscient model , in which a forwarding algorithm

is actually allowed to observe the true task difficulty x ∼ P , and immediately assign it to

any worker capable of solving the task. Obviously workloads in the P2F and F2F models,

where x is not observed, can only be worse than the workload-minimizing algorithm in

the omniscient model. We now give a precise characterization of the optimal maximum

workload in the omniscient model, and show that it can be computed efficiently. Perhaps

surprisingly, later we shall see that this ideal can actually be achieved or well-approximated

in the P2F and F2F models under fairly general circumstances.

Theorem 1 In the omniscient model (and therefore in both the P2F and F2F models), any
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algorithm for task assignment has maximum workload greater than or equal to maxi

∑n
j=i Aj
n−i+1 .

Proof Every task x > wi−1, must eventually be solved by one of the workers i, i+ 1, ..., n.

So at least one of these (n− i+1) workers, say w, must have workload greater than or equal

to Pr[x>wi−1]
n−i+1 = (Ai+...+An)

n−i+1 . The maximum workload among all workers cannot be less than

w’s workload, therefore we have maxj `j ≥ (Ai+...+An)
n−i+1 . This holds for any i, therefore we

can conclude maxj `j ≥ maxi
(Ai+...+An)

n−i+1 .

We next show that in the omniscient model, there is an efficient algorithm for assigning the

tasks that achieves this lower bound.

Theorem 2 In the omniscient model, there is a task assignment algorithm whose maximum

workload is equal to maxi

∑n
j=i Aj
n−i+1 , and the assignment policy used by this algorithm can be

computed in time O(n2).

We omit the full proof due to space considerations but we sketch the algorithm here. The

algorithm uses a policy that determines how to distribute tasks among workers, that is, it

computes the probability with which a task wi−1 < x ≤ wi is given to worker j (j ≥ i ≥ 1).

It does this inductively from the hardest to easiest tasks, always maintaining the invariant

that the workloads of workers above the current difficulty level are equal. Note that the

(pre-)computation of this policy occurs only once, and then is used to assign arriving tasks.

The policy computation first sets all the workloads to 0. If a task is in (wn−1, wn], there is

no choice other than giving it to worker n. So the current workload of worker n is increased

to An. Now if a task is in (wn−2, wn−1], either worker n or worker n−1 must eventually solve

it. If An−1 ≤ An, the task is given to worker n − 1 with probability 1, making its current

workload An−1. If not, in order to minimize the maximum current workload, we split An−1

between these two workers such that their current workload becomes equal. Similarly at

each step when we are deciding how to distribute a task in (wi−1, wi], we do it in a way that

the maximum current workload is minimized. This continues until all the tasks assignment

probabilities are computed. In Figure 1, a visualization of this procedure is given.
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Figure 1: Workload-optimizing assignment in the omniscient model.

For the remainder of the paper, we denote the maximum workload of the omniscient algo-

rithm on a distribution P , by MW,P , which we have established is equal to maxi
(Ai+...+An)

n−i+1 .

2.1.3. F2F and P2F: DAGs Suffice

In this section, we present a useful result that we shall employ in the subsequent sections.

We show that in both the F2F and P2F models, the class of arbitrary randomized forwarding

algorithms is no more powerful than the class of probabilistic DAGs, with respect to both

workload and depth.

We require the following notation. In a DAG (and therefore a tree) structure, we denote

the probability that a task is initially assigned to worker i by Ii, and thus
∑n

i=1 Ii = 1. In

addition, the weight on edge uv, denoted by pu,v, specifies the probability that worker u

forwards a given task to v, in the case she fails to solve it herself. Thus
∑n

v=u+1 pu,v = 1.

Note that throughout, when talking about a “structure”, whether DAG or tree, we not only

refer to the specific network structure, we also consider the edge weights (if applicable) and

initial probabilities on the vertices to be part of the structure.

Theorem 3 In both the F2F and P2F models, for any randomized task forwarding algo-

rithm A, there is a probabilistic DAG G such that the workload of every worker, and the

depth, are the same in A and G.

Proof Observe that upon initialization, A has no information about the value of the given

task x, and therefore it must have a fixed distribution P0 over the first worker the task

is given to. Now consider the point where A has forwarded the task to k ≥ 1 workers
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wi1 < wi2 < ... < wik , they have all failed, and A must decide who to forward the task to

in the next step.

Note that the only information A has about x so far is that x ∈ (wik , wn] and is distributed

with respect to P in that range, since the information previous workers provided about x

by failing is subsumed by the fact that wik failed to solve it, that is:

Prx∼P [x | (x > wi1) ∧ (x > wi2) ∧ ... ∧ (x > wik)] = Prx∼P [x | (x > wik)]

SoA has to forward the task based on a fixed distribution, call it Pik , over wik+1, wik+2, ..., wn.

It is now easy to see that A can be represented as a DAG: Let G be a complete DAG8 in

which for every worker u and every worker v with higher ability than u, the weight on edge

uv is the probability that A forwards a task to v right after u’s failure. This probability

can be easily obtained from the fixed distribution Pu. Also the probability that a node

gets selected in the initial step can be obtained from P0. It is clear that on any given task,

G and A have exactly the same forwarding behavior, and therefore the workload of every

worker and the depth are the same in both of them.

2.1.4. Workload-Minimizing Structures

We now consider the optimization of workload alone in the P2F and F2F models. We

compare the workloads of optimal DAGs and trees with the omniscient algorithm, and

show that in the F2F model there always exists an efficiently computed DAG with maximum

workload equal to MW,P . We show that that the same is not possible for trees. For the P2F

model, we show that even the class of DAGs cannot always achieve maximum workload

equal to MW,P . We then proceed to consider workload-depth tradeoffs in Section 2.1.5.

The F2F Model

We first show that in the F2F model, there is a DAG that achieves maximum workload

equal to the omniscient optimal MW,P .

8A DAG is complete if in its topological sort, each node points to all the nodes with higher indices.
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Theorem 4 In the F2F model, there always exists a DAG G whose maximum workload is

equal to MW,P . In addition, there is an efficient algorithm for constructing G.

Proof Consider the smallest index, say j, for which we have
(Aj+...+An)
n−j+1 = maxi

(Ai+...+An)
n−i+1 .

If there exists a DAG with maximum workload equal to MW,P , then in that DAG, wj , ..., wn

should never get any task with difficulty x ≤ wj−1, otherwise at least one of them will have

workload larger than
(Aj+...+An)
n−j+1 = maxi

(Ai+...+An)
n−i+1 , resulting in max workload larger than

MW,P . An immediate consequence is that the initial probability of workers j, ..., n, i.e.

Ij , ..., In must be zero and the only node that can have edges with non-zero probability to

them is worker (j − 1).

That being said, if j > 1, in order to build the optimal DAG, we do the following: first we

build the optimal DAG G1 for w1, ..., wj−1 and 〈A1, .., Aj−1〉, then build the optimal DAG

G2 for wj , ..., wn and 〈Aj , ..., An〉. To combine G1 and G2, we use the initial probability of

vertex i ≥ j in G2 as edge weight on the edge from worker (j − 1) to i, and we set Ii to

0. It is easy to see that combining the two DAGs this way results in the optimal DAG for

w1, ..., wn and P .

This suggests a recursive procedure for building the optimal DAG when j > 1. However,

we still need to deal with the case where j = 1 and the workload must be divided equally

among all workers.

For this remaining case w1, ..., wn and 〈A1, ..., An〉 are such that the omniscient algorithm

gives every worker the same workload, equal to (A1+...+An)
n . Algorithm 1 (which we call

WED) presents an efficient procedure with running time O(n2) that generates a DAG with

max workload (A1+...+An)
n for this case.

This algorithm is the recursive form of the following inductive construction:

Induction statement: for k ∈ N workers, if P is such that MW,P = (A1+...+Ak)
k , then

there is a DAG G for which the maximum workload in G is equal to MW,P .
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ALGORITHM 1: Algorithm WED for Computing the Workload Equalizing DAG in the
F2F Model

Data: A task distribution P = 〈A1, A2, ..., An〉 with MW,P = (A1+...+An)
n

Result: A weighted DAG G
I1 ← (A1+A2+...+An)

nA1
;

V (G)← {w1};
E(G)← ∅;
if n=1 then

return;
else

P ′ ← 〈(1− I1)A1 +A2, A3, ..., An〉;
H ← WED(P ′) i.e. the workload optimal DAG for P ′;
for i← 2 to n do

I ′i ← the initial probability of worker i in H;
end
V (G)← V (G) ∪ V (H);
E(G)← E(H);
Add edges from w1 to every vertex in V (H);
for i← 2 to n do

p1,i ← I ′i;
Ii ← (1− I1)I ′i;

end

end
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Induction basis: For k = 1 workers, the optimal DAG is trivial. It is a single node and

we have to give all the workload A1 to the only worker available i.e. I1 = 1.

Induction step: Suppose for a set of k < n workers, we know how to build the optimal

DAG to have the workload of every worker equal to (A1+...+Ak)
k . Now suppose we are given

a set of n workers with ability w1, w2, ..., wn, and the task distribution 〈A1, .., An〉 such that

MW,P = (A1+...+An)
n .

Note that in order to have a DAG in which everyone has workload equal to (A1+...+An)
n ,

this must hold for w1 as well. Since w1’s workload is equal to I1 ×A1, I1 must be equal to

(A1+...+An)
nA1

then.

To build the rest of the optimal DAG, observe that for workers w2, ..., wn, there is no

difference between a task in [0, w1] and one in (w1, w2] i.e. all of them can solve both.

Therefore we can assume the remaining mass on [0, w1] is actually on (w1, w2] and find the

optimal DAG for the remaining workers and task distribution.

According to the induction hypothesis, for the task distribution 〈A1(1−I1)+A2, A3, ..., An〉,

we can find the optimal DAG say H, that gives equal workloads to w2, ..., wn. Suppose the

initial probability on node i in H is I ′i. Now we construct G, in the following way: Add a

vertex for w1 to H and set the initial probability of this vertex to (A1+...+An)
nA1

. Then set the

probability on the edge from w1 to wi, to I ′i. Also set the initial probability of vertex i > 1

in G to Ii = I ′i(1− I1).

We claim that in G, w1, ..., wn all get equal workloads. For w1 this obviously holds due to

the way we chose I1. For the nodes in H let’s look at the task distribution they receive

from outside of H, i.e. either initially or from w1. With probability (1 − I1), a task is

initially forwarded to a node in H; we know that such task, has distribution 〈A1, ..., An〉.

With probability I1 the task is forwarded initially to w1, and if w1 forwards the task to

some one in H, all we know about the task is that it is from the distribution 〈0, A2, ..., An〉.

Combining the above distributions with respect to the probability that each happens, we
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get the distribution I1〈0, A2, ..., An〉+ (1− I1)〈A1, A2, ..., An〉 = 〈(1− I1)A1, A2, ..., An〉.

Now according to the induction hypothesis, H is optimal for this task distribution, giv-

ing w2, ..., wn equal workload. Therefore we can conclude G is giving equal workload to

everyone.

We next show that in the F2F model, the weaker class of trees does not suffice to achieve

maximum workload MW,P .

Theorem 5 In the F2F model, for n > 2 workers, there are worker abilities W and a task

distribution P for which the maximum workload in any tree is strictly larger than 6
5MW,P .

Proof Let Pε = 〈A1, A2, A3〉 where A1 = 1
3 , and A2 = (1

3 + ε) and A3 = (1
3 − ε) with

0 < ε ≤ 1
3 . We claim that for this task distribution the optimal DAG is unique, and

because this unique DAG is not a tree, we conclude that there exists no tree with the same

(optimal) max workload.

Obviously MW,P = 1
3 in this case. To have a DAG with the same max workload, we must

initially give every task to worker 1. So the workload of worker 2 is p1,2(1
3 + ε) which must

be equal to 1
3 , therefore p1,2 = 1/3

1/3+ε < 1, and as a result p1,3 > 0, meaning that the optimal

DAG is not a tree. It is easy to see that for P 1
3
, the maximum workload of the optimal tree

is 2
5 , proving the claimed lower bound.

The above theorem confirms that in the F2F model, the class of trees is not as powerful

as the class of DAGs in terms of the maximum workload. One question we would like to

address is how large this gap can be. Later in Section 2.1.5, we will see that for any task

distribution P , we can find a tree T such that the maximum workload in T is less than or

equal to 4MW,P , yielding a constant-factor approximation to the optimal DAG.
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The P2F Model

We next see that for the P2F model, even the optimal DAG cannot always achieve the

omniscient optimal maximum workload. This already holds for a very simple case of two

workers, and the task distribution P = 〈12 ,
1
2〉.

Theorem 6 In the P2F model, there are worker values W and a distribution P for which

the maximum workload of the optimal DAG is strictly larger than 4
3MW,P .

In Section 2.1.5 we will see that in the P2F model, for any task distribution P , the maximum

workload in the optimal tree (and as a result optimal DAG), is less than or equal to 4MW,P .

2.1.5. Near-Optimal Depth-Workload Tradeoffs

Armed with a firm understanding of workload-only optimization in the omniscient model,

and for DAGs and trees in the P2F and F2F models, we now finally turn our attention to

workload-depth tradeoffs. We shall need the following definition:

Definition 1 A well-balanced b-ary tree T is a tree with branching factor b (1 ≤ b ≤ n−1),

such that:

1. Worker n is located at the root (first layer); the next b best workers are direct children

of worker n; the next b2 best workers are the children of the nodes in second layer,

and so on. The worst workers are the leaves in the tree.

2. If we sort the nodes in any layer, say d, in a decreasing order, and then sort the

children of each of those nodes in a decreasing order as well, it must be case that

nodes in layer (d+ 1) are properly sorted in a decreasing order.

Less formally, we simply take a balanced b-ary tree, and place the workers from best to worst

in a top-to-bottom, left-to-right fashion. It is easy to see that the depth of the well-balanced

b-ary tree is logn
log b . One example of a well-balanced b-ary tree is illustrated in Figure 2 for

b = 3.
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Figure 2: The b-ary tree structure with b = 3. Vertices are ordered by worker index, from
the best (n, wn = 1) down to the worst (1).

Unless otherwise specified, we assume that only leaves have non-zero probabilities of being

initially assigned a task, and that these probabilities are such that every node at the same

depth has the same probability of having a task initially assigned to a worker in their

subtree.

We show that in a well-balanced b-ary tree of size n, not only do we achieve a depth

that increases very slowly with n, the maximum workload we get is a constant factor

approximation of MW,P . The intuition for why such trees provide a good trade-off is that

for a given depth, they (approximately) minimize the difference in ability between the task

sender and the immediate receiver. In this way we avoid the possibility of missing too many

qualified workers in between, which in turn could result in large maximum workload.

Theorem 7 In the F2F and P2F models, for any task distribution P , the maximum work-

load in a well-balanced b-ary (b ≥ 2) tree of depth logn
log b is less than or equal b2MW,P .

Proof We prove the theorem for the P2F model. Since workloads are only lower in the

F2F model, the theorem holds there as well.

Consider the well-balanced b-ary tree T where the only nodes with non-zero initial proba-

bilities are the leaves. Note that here we assume n = bm+1−1
b−1 (m ∈ N), i.e. the last layer

of the well-balanced tree is complete. If it is not the case, we can add sufficient number of

workers with ability zero to the set of workers to make n of the desired form. Note that

by doing so, we may at most multiply the number of workers by a factor b, but as those
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additional workers cannot solve any task, MW,P remains the same. We also set the initial

probability on every leaf to 1
bm .

We claim that for any P , in this tree the workload of each worker is less than or equal

b2MW,P . First note that our claim holds for the leaves in T . The workload of each leaf say

l is equal to Il. Since Il = 1
bm ≤

b
n ≤ bMW,P , we have `l ≤ b2MW,P . Note that here we used

the fact MW,P ≥ 1
n which holds by definition of MW,P .

We shall make use of the following assertion.

Proposition 1 In the P2F model, the workload of worker i in a tree T is equal to:

`i = Ii +
∑
j→i

Hj × Prx∼P [wj < x]

where Hj is the probability that a task x is initially assigned to a worker in the subtree rooted

at node j, and j → k means node j is a direct child of node k.

Observe that according to Proposition 1, for a non-leaf worker i, we can write the following:

`i =
∑
j→i

(Hj × Prx∼P [wj < x])

≤ max
k→i

Prx∼P [wk < x]×
∑
j→i

Hj

= Prx∼P [wk∗ < x]×
∑
j→i

Hj

= Pr[wk∗ < x]×Hi

where k∗ = arg mink→iwk.

Using the above inequality, we next find an upper bound for the workload of a node at

depth d in T . Note that at depth d, Hi = 1
bd

. Also k∗ ≥ i− bd+1. So:

`i ≤ Hi × Pr[wk∗ < x] ≤ 1
bd
× Pr[wi−bd+1 < x].

Now note that since i has depth d, we have i ≥ n − (b1 + b2 + ... + bd) = n − bd+1−1
b−1 + 1.
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Figure 3: Illustration of Theorem 7.

Therefore i− bd+1 ≥ n− bd+2−b
b−1 , and we can write:

`i ≤
1

bd
× Prx∼P [wi−bd+1 < x]

≤ 1

bd
× Prx∼P [wn−bd+2 < x]

≤ b2
(

1

bd+2
× Prx∼P [wn−bd+2 < x]

)
≤ b2MW,P

where the last inequality follows from Theorem 1 since we have:

MW,P = max
r

(Ar + ...+An)/(n− r + 1)

= max
r
Prx∼P [wr−1 < x]/(n− r + 1)

≥ Prx∼P [wn−bd+2 < x]/(bd+2)

This completes the proof.

In Figure 3 we illustrate the depth-workload tradeoff provided by Theorem 7. For a large

value of n, each curve is parameterized by the branching factor b — i.e. each curve is traced

out by varying b from n (smallest depth of 1) to 2 (largest depth of log(n). The x axis then

measures the resulting depths, and the y axis the corresponding maximum workloads given

by Theorem 7. The curves differ in the value of MW,P that is assumed, ranging from 1/n

(rapidly diminishing omniscient optimal workload) to a constant independent of n. Clearly
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smaller workloads are desirable; each curve can thus be thought of as providing an upper

bound on the Pareto optimal curve for the corresponding bicriteria problem. We see that

for small MW,P , there is essentially threshold behavior of our bound — unless we choose

a sufficiently large depth (small branching factor), our bound is vacuous, but then rapidly

falls to 0. At larger MW,P , the decay of workload with depth is more gradual.

The maximum workload upper bound given in Theorem 7 degrades with the branching

factor b at a rate of b2; it is not clear in general whether any such dependence is necessary.

The following theorem, however, shows that at least
√
b dependence is necessary within the

class of balanced trees and the P2F model.

Theorem 8 In the P2F model, for any n ∈ N and b = 2, ..., (n − 1), there is a task

distribution P and a set of n workers W for which any well-balanced b-ary tree results in

maximum workload greater than or equal
√
b

3 ×MW,P .

Proof (Sketch) Given n and b, let P be the uniform distribution and let wi = 0 for

i ≤ (n − b − 1) and wi = (i−n+b+1)
(b+1) . It is easy to see that in this case MW,P = 1

(b+1) . By

solving a suitable optimization problem, it can be shown that for P,W , a well-balanced b-ary

tree results in maximum workload larger than 1
3
√
b
, even if we allow the initial distribution

of tasks over the leaves to be arbitrary, and also allow an arbitrary probability that the root

receives an assigned task directly.

Constant Depth and Diminishing Workloads

We conclude with an application of Theorem 7 to a natural parametric model of worker

abilities that results in perhaps the best tradeoff we could hope for. Consider the case where

MW,P = 1/nα for some constant 0 < α ≤ 1 — that is, the maximum workload diminishes

rapidly as a function of the workforce size n. (We shall shortly give natural assumptions on

W for which this holds.) By choosing b = nβ, Theorem 7 yields maximum workload at most

b2/nα = 1/nα−2β. Thus as long as 2β < α, the well-balanced tree will also give an inverse
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Figure 4: Worker ability as a function of index under the model wi = (i/n)a for various a.

polynomial workload decay with n, while the depth log(n)
log(b) = 1/β will only be constant .

For example, consider the case where wi = ( in)a for some a ≥ 1, and P is the uniform

distribution. In this parametric family for W , if a < 1 we get concave improvement of

workers with i, so successive workers are improving rapidly; while if a > 1 we have convex

improvement, so the best workers may be far better than the average. See Figure 4 for

examples.

Note that when a > 1 since {Ai}ni=1 is an increasing sequence here, MW,P is equal to An.

And An = 1− (n−1
n )a ≈ a

n using the Taylor expansion of the function f(y) = ya. Thus we

can immediately apply the observations above to obtain workloads bounded by O(1/n1−2β)

with only constant depth 1/β.

Also for the case where a < 1 since {Ai}ni=1 is a decreasing sequence here, MW,P is equal

to 1
n . Applying Theorem 7, we obtain workloads bounded by O(1/n1−2β) again with depth

only 1/β.

2.1.6. Discussion and Future Directions

Here are some interesting generalizations and open questions raised by the results presented

here.

• Perhaps the most important generalizations would address all the unrealistic assump-

tions of our model mentioned in the Introduction: multi-dimensional difficulty, incen-
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tive issues, variable task forwarding costs, imperfect task completion, and others.

• We showed that the optimal DAG in the P2F model is not necessarily as efficient as

the omniscient algorithm in terms of maximum workload. One interesting problem is

to determine how large the gap can be.

• The gap between the b2 workload factor given in Theorem 7 and the corresponding

lower bound of
√
b given in Theorem 8 is large; can it be closed or improved?

• It would be interesting to conduct behavioral experiments designed to quantify the

performance benefits of organizational schemes like those suggested here.

2.2. Limit Orders in Prediction markets

Buying a security is a statement that, in a trader’s view, the security is underpriced com-

pared with its expected payoff. This statement is not cheap talk; if the trader is wrong, she

stands to lose money. A prediction market aggregates many statements of this form about

securities whose payoffs correspond to events we would like to predict, such as election

outcomes or product sales. With sufficient activity, prediction markets often outperform

competing prediction methods (Berg et al., 2008). Moreover, continuous-trade markets

(think of the stock market) provide real-time predictions that react with remarkable speed

to news and information, such as a candidate’s poor debate performance in an election race.

Prediction markets rely on trade. Without liquidity, a market faces a serious chicken-and-

egg problem: a lack of trading opportunities discourages traders from participating, which

in turn reduces future trading opportunities. For this reason, many prediction market

mechanisms offer a subsidy to jump-start trade by providing incentives for the first trader

to catalyze the process. A common form of subsidy involves an automated market maker

built into the market institution. The marker maker provides guaranteed liquidity, offering

to buy or sell any security at any time, at some changing price. For prediction markets,

the standard market maker operates by keeping track of a cost function that defines how
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much traders must pay to move the market from one state (vector of security quantities)

to another. The cost function approach can be used to ensure that the market marker’s

worst-case loss is bounded, that trading is path independent, and that traders are unable to

benefit from arbitrage (Hanson, 2003b; Chen and Pennock, 2007; Abernethy et al., 2013).

Even with a market maker, a trader may not see favorable transactions at current prices.

If so, she may want to place a limit order, an offer to buy a security at a price equal to or

less than a specified threshold. A limit order allows a trader to say “I won’t pay the current

price, but if it drops to ` or below, I want to buy.” Limit orders are both a convenience,

freeing traders from constantly monitoring for price changes, and a communication channel

for traders, adding to the market’s liquidity.

In this work, we provide and analyze a means of integrating limit orders into the cost

function framework, which to date only accommodates market orders. We are concerned

with continuous markets, in which trade orders may be placed, matched, and executed at

any time, as opposed to call markets, in which orders are collected and executed at discrete,

pre-specified times (e.g., once per hour). A continuous market maintains an order book

of standing orders, waiting to be matched with arriving orders. It provides a complete,

auditable record of trade execution over time. Both continuous and call markets present

advantages, but the convenience of anytime trading has made the former the default in

financial markets (Harris, 2002, Chapter 5).

In Section 2.2.1, we review the concepts of cost functions and limit orders, and describe the

convex programming framework of Agrawal et al. (2011) for running call prediction markets.

Their framework provides a building block for the continuous trade mechanism developed

in this paper. Our approach also links with ideas of Hanson (2003a), who describes a

method for continuously executing limit orders in the presence of a market scoring rule. In

Section 2.2.2, we formalize Hanson’s intuition by defining the notion of an ε-fair trading

path: a path in security space along which no order executes at a price more than ε above

its limit, and any order executes when its market price falls more than ε below its limit.
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In Section 2.2.3, we show that under a supermodularity condition, a fair trading path exists

for which the endpoint is efficient, in the sense of maximizing social welfare or gains from

trade. The proof is constructive. Supermodularity holds, for example, for a standard market

maker defined over disjoint securities, with limit orders allowed only on single securities.

However, even a standard market maker may fail to satisfy the condition if bundle orders are

allowed, or if the market is incomplete. We show that, under very general conditions, there

exist market states and orders such that reaching an efficient endpoint via a fair trading

path is not possible.

In Section 2.2.4, we develop the Fair Trading Path Algorithm for the general case (with

or without supermodularity) for operating a continuous market maker with limit orders

respecting the ε-fair bounds along the way. The algorithm iteratively solves for an efficient

order fill of maximal volume, but limits the quantity of each order executed per step in

order to stay on an approximately fair trading path and terminate at a state in which no

standing limit order is profitable.

In Section 2.2.5, we conduct simulations of our algorithm in two settings: (1) a negative

example in which no efficient fair trading path exists, and (2) an example constructed using

combinatorial predictions made during the 2008 U.S. Presidential election. We evaluate

our algorithm against a natural baseline according to trading volume, social welfare, and

violations of the two fairness conditions. Section 2.2.6 concludes.

Related Work Our contribution can be viewed from a few different perspectives with

respect to the literature. The one we emphasize is the integration of limit orders and cost

functions, related to ideas outlined in a note by Hanson (2003a). Our contribution can also

be viewed as a continuous-market counterpart to the call market of Agrawal et al. (2011).

Call prediction markets have long provided the ability to place limit orders. Building on

the classic work of Shapley and Shubik (1977), Lange and Economides (2005) derive a pari-

mutuel call market that accommodates both limit orders and bundle orders for binary-payoff
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securities. Bossaerts et al. (2002) design an exchange mechanism called combined value

trading that allows bundle orders and clears the market using linear programming, showing

in laboratory experiments that the mechanism facilitates trade in thin markets. Fortnow

et al. (2005) also use linear programming as the matching engine for a combinatorial call

market for compound securities defined as arbitrary Boolean functions of an underlying

state space.

In two remarkable papers, Peters et al. (2006) and Agrawal et al. (2011) provide a con-

vex programming framework that subsumes much of this previous work, which they call

the convex pari-mutuel call auction mechanism. The framework yields an efficient imple-

mentation of the Lange and Economides (2005) mechanism, and also introduces a market

maker into the combined value trading LP. It is interesting to note that, in the evolution

of call markets, limit orders were accommodated early on while market makers were only

introduced more recently.

The reverse holds for the development of prediction markets with continuous trade. There

we begin with the market scoring rules introduced by Hanson (2003b), and their equivalent

cost function versions derived by Chen and Pennock (2007). Abernethy et al. (2013) extend

the cost function framework to arbitrary-payoff securities, but still allow solely market

orders. Recently, Chakraborty et al. (2015) have drawn on Hanson’s ideas to integrate

limit orders and cost functions in a market for a single security, empirically evaluating the

mechanism with an emphasis on its price discovery properties.

2.2.1. Model and Preliminaries

We begin with a review of cost-function-based market making. We then introduce limit or-

ders and explain how they are handled in call markets, specifically the convex programming

framework of Agrawal et al. (2011).
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Cost Functions

Let Ω = {ω1, . . . , ωN} be a set of mutually exclusive and exhaustive states of the world. We

consider a market that offers a fixed menu of K securities defined over these states. The

payoffs of these securities are described by an arbitrary function φ : Ω → RK , with φj(ω)

specifying the value of security j if the final outcome is ω ∈ Ω.

The cost function framework (Chen and Pennock, 2007; Abernethy et al., 2013) consists of

a continuous market where traders arrive sequentially and request bundles of shares from

a centralized market maker. The model only accommodates market orders, though traders

may query the cost of any bundle before placing orders. The market maker is always willing

to buy or sell arbitrary security bundles θ ∈ RK , where θj denotes the number of shares of

security j. The market maker charges traders according to a convex potential function C

called the cost function. Let q be the current market state, with qj denoting the number

of shares of security j that have been bought from the market maker so far. A trader who

requests bundle θ is charged C(q +θ)−C(q). The instantaneous price of security j is then

pj(q) = ∂C(q)/∂qj .

Choosing the cost function C fully determines the way in which market prices are set.

Abernethy et al. (2013) give necessary and sufficient conditions on C for the resulting

market to satisfy a set of nice properties including bounded loss for the market maker and a

lack of arbitrage opportunities for traders. In particular, they show that C must be convex

and that the derived price function p must map to the convex hull of the space φ(Ω), the

image of the payoff function. They additionally show that any cost function of this form

can be written as

C(q) = max
p∈H(φ(Ω))

p>q−R(p) (2.1)

for a strictly convex function R, where H denotes the convex hull. Furthermore, assuming
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R is continuous and defined over H(φ(Ω)), the instantaneous price vector satisfies

p(q) = ∇C(q) = arg max
p∈H(φ(Ω))

p>q−R(p). (2.2)

We assume throughout the paper that the cost function takes this form, with an ad-

ditional restriction on R. Abernethy et al. (2013) call R a pseudo-barrier function if

limt→∞ ‖∇R(pt)‖ = ∞ for any convergent sequence {pt} of points in H(φ(Ω)) whose

limit is in the relative boundary of H(φ(ω)). Throughout the paper, we assume that R

is a pseudo-barrier and bounded on H(φ(ω)). In particular, our results use the following

lemma, which may be of independent interest. It shows that there is a fixed subspace over

which a cost function obtained from a pseudo-barrier is linear at every point. The proof is

in the appendix.9

Lemma 1 Let C be a cost function defined via (2.1) with R a strictly convex pseudo-barrier

function. If there exist bundles q, r ∈ RK and a constant γ ∈ R such that γ = C(q + r) −

C(q) = C(q) − C(q − r), then for all q′ ∈ RK and all λ ∈ R, C(q′ + λr) − C(q′) = λγ.

Additionally, for all ω ∈ Ω, φ(ω)>r = γ.

One commonly used instance of a cost function market is the logarithmic market scoring

rule (LMSR) (Hanson, 2003b, 2007). The LMSR is defined for complete markets and uses

Arrow-Debreu securities: K = N , and for each j = 1, · · · , N the payoff is φj(ω) = 1 if

ω = ωj and 0 otherwise. The LMSR uses cost function C(q) = b log
∑N

k=1 eqk/b, resulting

in instantaneous prices pj(q) = eqj/b/
∑N

k=1 eqk/b. Here b > 0 is a liquidity parameter

controlling the trade-off between the rate at which prices change with trades and the market

maker’s worst-case loss. Lemma 1 applies to the LMSR because it is indeed based on a

pseudo-barrier function (negative entropy) over the simplex of probability distributions. In

this case the lemma establishes the well-known fact that the LMSR cost function is linear

along the 1 vector at every market state.

9The appendix appears in the long version of this paper available on the authors’ websites.
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Limit Orders

In our setting, traders may place either market orders or limit orders. A limit order is

specified by a triple (θ, n, `). Here θ ∈ RK is a security bundle, n is the number of shares of

this bundle that the trader would like to purchase, and ` is the maximum price the trader

is willing to pay per share. It is convenient to assume that θ is normalized with either

‖θ‖1 = 1 or ‖θ‖∞ = 1, but this assumption is without loss of generality and our results do

not depend on any specific normalization. Market orders can be represented as limit orders

with ` = ∞ (or the maximum payoff of bundle θ), so we may assume that all orders are

limit orders. We allow for limit orders to be partially executed. That is, the trader may be

sold x shares of the bundle θ for any 0 ≤ x ≤ n.

A limit-order market maintains an order book (a set of limit orders) to keep track of orders

that have not yet been fully executed. In a call market, a new order book is provided at

each trading session. In a continuous market, the order book contains orders that have

accumulated over time without fully executing. When describing the behavior of a continu-

ous market, we consider a single point in time in which the order book contains m existing

orders (θi, ni, `i) for i = 1, . . . ,m, and a new trader arrives with order (θ0, n0, `0). We

record the orders in the matrix Θ = [θ0, . . . ,θm], where each bundle is a column of the

matrix, and in the (column) vectors n = [n0, . . . , nm] and ` = [`0, . . . , `m]. Given an order

book (Θ,n, `), an order fill x ∈ Rm+1 denotes the number of units of each order that are

executed. An order fill is feasible if 0 ≤ x ≤ n. We will refer to the 1-norm ‖x‖1 of a

feasible order fill as its volume. In the cost function framework, the instantaneous price of

order i after executing fill x, starting from initial market state q, is given by

πi(x) ≡ θ>i p(Θx + q) = θ>i ∇C(Θx + q).

These instantaneous order prices should not be confused with the instantaneous security

prices, which recall are given by pj(q) = ∂C(q)/∂qj for each security j = 1, . . . ,K. Instan-
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taneous order prices are in fact a linear combination of these instantaneous security prices

at the market state Θx + q.

The various call markets in the literature all attempt to find an order fill x that controls the

eventual payout φ(ω)>Θx =
∑m

i=0 xiθ
>
i φ(ω) across states of the world ω ∈ Ω. For instance,

one might bound the maximum payout across states to be non-positive (so that there is no

risk of loss), or no more than some fixed subsidy. If feasible, one might constrain the payout

to always be zero. Various objectives can be layered on top of the constraints to select a

particular order fill: maximizing volume, maximizing value to the traders (according to their

limit prices), and so on (Rothschild and Pennock, 2014). Agrawal et al. (2011) propose a

sophisticated convex program where the eventual payout is controlled by both a subsidy

and a loss function over any amounts the subsidy does not cover. For our purposes, it is

enough to state that their program is, as they prove, equivalent to

max
x

`>x− C(Θx + q) + C(q) (2.3)

s.t. 0 ≤ x ≤ n (2.4)

where C is a cost function of the form (2.1) and q is the current market state. We should

note that the framework of Agrawal et al. (2011) is cast in terms of a complete market with

Arrow-Debreu securities. We believe their framework extends to securities with general

payoffs, but some of their results, such as the equivalence just mentioned, would require

additional conditions. For our purposes this is immaterial because we build directly on top

of the cost function framework.

One interpretation of the objective function (2.3) is as follows. If we take the limit prices as

the traders’ values per share, the first term in the objective captures the value of the order fill

to the traders. Drawing on the known mathematical equivalence between cost functions and

the convex risk measures that are used to quantify risk in mathematical finance (Föllmer

and Schied, 2002; Othman and Sandholm, 2011), we can interpret C(Θx+q)−C(q) as the

change in the market maker’s risk after filling the order Θx. The objective is therefore the
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value to the traders net of the risk incurred by the market maker, as quantified by its cost

function. We focus on a second interpretation of this objective as the overall social welfare

of traders in Section 2.2.2.

While the convex program prescribes an order fill, there are still several possible pricing

schemes in a call market. The most standard is to use market clearing prices, which are

formally obtained as the dual optimal solution to the program. Another possibility is to

charge the limit prices (i.e., a first-price auction). The VCG payments in such an auction

also have connections to cost-function payments (Agrawal et al., 2011). We will return to

this efficiency-maximizing program as it will form the basis of our continuous market, and

we will see that continuous order execution pins down a pricing scheme that is a hybrid of

limit and cost function pricing.

2.2.2. Continuous Order Execution

Our interest is in algorithms that allow the integration of limit orders with cost-function

based market making. More than a decade ago, before the cost function framework was well

understood, Hanson wrote a brief note outlining an intuitively correct way of integrating

limit orders with market scoring rules such as the LMSR (Hanson, 2003a). He described

the following process (our notation in brackets replaces his):

“Each book order with a limit [`i] imposes a constraint on the market maker

prices [πi]. It says that until that order expires, or all its quantity is used, the

prices must satisfy [`i ≤ πi]. This constraint is binding on a particular plane

in the price vector space. Thus the above description of a new order trading

with the market maker is only valid until the price vector reaches one of these

planes. At that point the new order trades with both the market maker and

the book order at the same time, moving the market maker prices in the plane

of the book order. This continues until a price or quantity limit of one of the

orders is reached, or until another book order plane is reached.”
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This idea can be illustrated through a simple example. Consider a complete market with two

states and two Arrow-Debreu securities. Suppose trader 1 enters the market and submits a

limit order (θ1 = (1, 0), n1, `1) on the first security. Suppose that the current market state

q is such that the trade cannot be executed: `1 ≤ p1(q). The order would then go into the

book. Now suppose trader 0 arrives and places a market order (θ0 = (0, 1), n0, `0 = ∞)

on the second security. Following the intuition in Hanson’s argument, the market maker

would begin to execute this new order. Let τ be the quantity of the second security that

could be traded before trader 1’s limit price is hit, so p1(q + τθ0) = `1. If τ ≥ n0, then

the market order can be fully executed. Otherwise, the market maker would execute the

first τ shares. At this point, the two traders would effectively “trade with each other”

at the current market price. Since the market is complete, with any cost function from

the class we consider, purchasing a bundle containing one of each security always costs $1

and does not affect the instantaneous market prices (Chen and Pennock, 2007; Abernethy

et al., 2013). Therefore, to “trade with each other,” we can think of the traders purchasing

min(n0− τ, n1) shares of the bundle (1, 1) from the market maker and splitting them up so

that trader 1 receives the shares of the first security at a cost of `1 per share and trader 0

receives the shares of the second at a cost of 1 − `1. If trader 0’s order has not been fully

executed, the trader may continue to trade with the market maker at this point.

If we alter this example so that there is a third security on a third state available, it already

becomes trickier to reason about what should happen. Purchasing the bundle (1, 1, 0) does

not keep the price of the first security constant, complicating the question of how the traders

should “trade with each other” once trader 1’s limit price is hit. Matters get even more

complex when we move to markets with larger state spaces, arbitrary securities for sale,

and more traders. Hanson (2003a) does not provide an algorithm for determining which

trades should be executed, only stating that iterative numerical methods would probably

be required.

However, this example does provide principles that a market maker should strive to achieve
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when implementing an order book on top of a cost-function based market. In particular, for

any order fill, there should exist a corresponding continuous execution path such that for

any intermediate order fill x′ along that path, the orders in the book should be respected.

This means that at any point x′ along the path, if an order (θ, n, `) has not yet been fully

executed, we should have `i ≤ πi(x
′); the book should not be crossed. Additionally, if the

order is currently being executed at the point x′, it should not be executed at a price higher

than its limit price; for such x′, we must have `i ≥ πi(x′). In the next section, we formalize

these criteria.

Fair Trading Paths

We now formalize this intuition, leading to output criteria for an algorithm implementing

limit orders on top of a cost-function based market maker.

Definition 2 (Trading path) A trading path for order book (Θ,n, `) at initial market

state q is a monotonically non-decreasing, continuous mapping P : [0, 1] → Rm+1 with

P(0) = 0 and P(1) ≤ n.

A trading path describes the evolution of order execution. Note that only the image of the

path matters—paths with the same image are equivalent. The domain is chosen as [0, 1]

only as a normalization. We next define an (approximately) fair trading path.

Definition 3 (Fair trading path) A trading path P for orders (Θ,n, `) at initial market

state q is an ε-fair trading path if

1. For all i ∈ {0, · · · ,m} and any a and b such that 0 ≤ a < b ≤ 1, if Pi is strictly

increasing over [a, b], then for all t ∈ [a, b]

πi(P(t)) ≤ `i + ε. (2.5)
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2. For all i ∈ {1, · · · ,m}, for any t ∈ [0, 1] such that Pi(t) < ni,

πi(P(t)) ≥ `i − ε. (2.6)

If these conditions hold with ε = 0, P is called a fair trading path.

The first condition captures the requirement that no trader should pay (too much) more

than his limit price. The second captures the requirement that the market price of any

unfilled order in the book can never fall (too far) below its limit price. Note that the second

condition only applies to existing orders in the book. This reflects the pricing convention in

continuous markets, which says that existing orders trade at their limit price while arriving

orders trade at the best available price.

Let x̄ = P(1) be the endpoint of a fair trading path. By integrating and aggregating order

prices along the path, it is straightforward to show that the market maker collects a revenue

of C(Θx̄+q)−C(q). This means that charging according to a fair trading path respects the

principle that a cost function should reflect the revenue collected, assuming C(0) = 0 (Chen

and Pennock, 2007). From this viewpoint, the objective (2.3) has a simpler interpretation

in terms of efficiency that does not use the notion of risk measure: the objective is the total

utility to the traders (i.e., social welfare), where utility is the reported value (limit price)

of a trade minus its cost as given by the cost function.

Integrating instantaneous prices along a fair trading path yields a unique, well-defined way

to price orders. Note that when ε = 0, the conditions together imply that orders in the

book (i.e., excluding the new order) always execute exactly at their limit price. Thus each

order i 6= 0 is charged `ix̄i. Meanwhile, the new order 0 is charged

C(Θx̄ + q)− C(q)−
∑
i 6=0

`ix̄i. (2.7)

In some circumstances it may be unreasonable to charge a trader even a small amount
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over his limit price, in which case condition (2.5) may be too weak of a requirement with

ε > 0. In practice, even when ε > 0, a market maker could adopt the convention of charging

exactly the limit price for orders in the book and charging the new order as in (2.7) as long

as this does not exceed the new order’s limit.

While the notion of a fair trading path yields a pricing scheme, note that the trivial trading

path that does not execute any orders satisfies our definition. To obtain more interesting

paths, we impose requirements on the endpoint.

Endpoint Criteria

We now derive conditions that should naturally signal the end of trading. In the process, we

obtain further insights into the fair trading path conditions, and how one might construct a

path satisfying them. A natural condition to impose is that the endpoint should be efficient

(maximize reported social welfare). Let

F (x; q) ≡ `>x− C(Θx + q) + C(q) (2.8)

be the objective function capturing the efficiency of x. (For the sake of clarity we occa-

sionally suppress the parameter q.) Recall the convex program of Agrawal et al. (2011)

introduced earlier:

max
x

F (x; q) (2.9)

s.t. 0 ≤ xi ≤ ni (i = 0, . . . ,m) (2.10)

Here order 0 is the arriving order and orders 1, . . . ,m are in the book before arrival (either

completely unfilled or partially filled with ni shares remaining). This is a straightforward

convex program with box constraints. We say that a feasible order fill is efficient at state

q if it maximizes this convex program. If x∗ is an optimal (i.e., efficient) solution, then the

optimality conditions for such programs (Boyd and Vandenberghe, 2009, p. 142) state that,
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for each order i = 0, 1, . . . ,m,

x∗i > 0 =⇒ πi(x
∗) ≤ `i, (2.11)

x∗i < ni =⇒ πi(x
∗) ≥ `i. (2.12)

See the appendix for a detailed derivation. Note that these conditions are closely related

to conditions (2.5–2.6) in the definition of a fair trading path. For instance, if order i

is partially filled at the optimum, so that 0 < x∗i < ni, then πi(x
∗) = `i. Any further

infinitesimal trade of the order would occur at its limit price, respecting the pricing scheme

derived in the previous section.

However, we will see that efficiency is too stringent of an endpoint criterion. The reason is

that fair trading paths must be monotone—orders cannot be reversed—and there may not

exist a monotone path to an efficient solution respecting (2.5–2.6) for ε = 0. Returning to the

optimality conditions, (2.12) arises because it should not be possible to improve efficiency

by further trading order i. Condition (2.11) arises because reversing order i should also not

improve efficiency. But since we are enforcing monotonicity in the path, and orders cannot

be reversed, the latter should not apply. Thus we say that an order fill is complete if for

each order i = 0, . . . ,m condition (2.12) holds. An efficient order fill is always complete,

but not vice-versa. We will use the following equivalent characterization of completeness.

Definition 4 (Complete order fill) An order fill x is (maximally) complete if 0 is a

(unique) efficient fill at market state q + Θx with quantities n− x.

In more intuitive terms, an order fill is complete if, after executing it, it is efficient to

no longer trade, and maximally complete if any further trade strictly reduces efficiency.

The concept of a maximally complete order fill will prove important later for algorithmic

correctness. Note that F is not strictly concave, because cost functions are not strictly

convex. (For instance, the LMSR is linear at any point along the 1 direction.) Thus there

may be multiple efficient order fills, or multiple complete order fills, and maximality further
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selects among them.

2.2.3. Efficient Trading Paths

In this section we study conditions under which there exists a fair trading path that

reaches an efficient order fill. The close connection between conditions (2.5–2.6) and condi-

tions (2.11–2.12) suggests a few ideas for constructing such a path. First, one could simply

take an efficient fill x∗ and use a straight line from 0 to x∗. While the fair trading path

conditions would be met at the endpoint, and the path is monotone, there is no reason for

the limit prices of orders in the book to match the instantaneous order prices at which they

execute along the way. Alternatively, one could trace out a path by gradually filling order

0. More precisely, consider the correspondence

S(α) = arg max
x
{F (x) | 0 ≤ x ≤ n, 0 ≤ x0 ≤ αn0}, (2.13)

where α ∈ [0, 1]. If the correspondence admits a continuous, monotone selection, then by

the optimality conditions for our convex program the result will be a fair trading path, and

also an efficient path by construction. This section formally investigates whether and under

what conditions such a construction is possible.

For the remainder of the paper, we will make the following standing assumption.

Assumption 1 Before arrival of the new order, the previous order fill is maximally com-

plete. Equivalently, 0 is the unique element in S(0).

The condition holds trivially if the order book is initially empty. Otherwise, one could start

the continuous market with the call auction of Agrawal et al. (2011), ensuring that a solution

of maximal volume is chosen. In fact, it is common practice in financial markets to initialize

a continuous market via a call auction (Harris, 2002, Chapter 5). Our constructions in this

section and the next will yield maximally complete fills, so that Assumption 1 continues to

hold for all future arrivals.
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Existence under Supermodularity

We show that a fair trading path reaching an efficient order fill exists when the objective

function F is supermodular. Let x∧y denote the component-wise minimum of vectors x and

y, and let x ∨ y denote their component-wise maximum. Note that for any two vectors x

and y satisfying constraints (2.10), both x∧y and x∨y are also feasible. Supermodularity

is defined as follows.

Definition 5 (Supermodularity) A function f : Rn → R is supermodular if f(x) +

f(y) ≤ f(x ∧ y) + f(x ∨ y). A function f is submodular if −f is supermodular.

Note that supermodularity of the objective F depends on the cost function C but also the

order bundles Θ. It is not sufficient for C to be submodular (but nor is it necessary).

However, as an important special case, we have that F is supermodular if C is submodular

and the bundles in Θ do not overlap, where by “overlap” we mean intersect when neither

is a subset of the other. For instance, we might use the LMSR, which is submodular, and

restrict limit orders to singleton securities.

Supermodularity of F gives us the following result about S, the proof of which uses similar

ideas as the proof of Topkis’ Monotonicity Theorem; see Topkis (1978) or the excellent notes

of Featherstone (2008).

Lemma 2 Let F be supermodular, and let S be defined as in (2.13). For any α, α′ ∈ [0, 1]

with α ≤ α′, for any x ∈ S(α) and x′ ∈ S(α′), x ∧ x′ ∈ S(α) and x ∨ x′ ∈ S(α′).

Proof For α ∈ [0, 1], define D(α) = {x | 0 ≤ x ≤ n, x0 ≤ αn0}. We will make use of the

following three facts about D, which can be verified easily:

1. α ≤ α′ =⇒ D(α) ⊆ D(α′).

2. x ∈ D(α),x′ ∈ D(α) =⇒ x ∨ x′ ∈ D(α).

3. x ∈ D(α),x′ ∈
⋃
α′∈[0,1]D(α′) =⇒ x ∧ x′ ∈ D(α).
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Now, consider any α, α′ ∈ [0, 1] with α ≤ α′, and any x ∈ S(α) and x′ ∈ S(α′). We have

0 ≥ F (x ∨ x′)− F (x′) ≥ F (x)− F (x ∧ x′) ≥ 0.

The first inequality follows from Facts 1 and 2 about D and the optimality of x′ at α′. The

second inequality follows from the supermodularity of F . The third follows from Fact 3

about D and the optimality of x at α.

Since this chain of inequalities starts and ends with 0, the inequalities must all hold with

equality, implying that F (x ∨ x′) = F (x′) and F (x) = F (x ∧ x′). Since x′ ∈ S(α′) and

x ∨ x′ ∈ D(α′) by Fact 2, x ∨ x′ ∈ S(α′). Since x ∈ S(α) and x ∧ x′ ∈ D(α) by Fact 3,

x ∧ x′ ∈ S(α).

We are now ready to state our result for the existence of efficient trading paths. The main

construction in its proof is based on the correspondence (2.13). Lemma 2 implies that under

supermodularity, each S(α) is a sublattice of the feasible set, allowing us to form a path by

choosing the unique maximum lattice element for each α. The main details of the proof

consist of establishing monotonicity and continuity of this path.

Theorem 9 Let C be a cost function obtained via (2.1) from a pseudo-barrier function and

suppose that F is supermodular in x. Then there exists a fair trading path P for (Θ,n, `)

at state q such that P(1) is efficient.

Proof We define a particular function P and show that it satisfies the definition of a trading

path P for (Θ,n, `) at state q and that its endpoint P(1) is efficient. We use Lemma 2

to show the path is non-decreasing and the Maximum Theorem and Lemma 1 to show

continuity. Finally, we use the optimality conditions (2.11–2.12) to show that P is a fair

trading path.

By Lemma 2, for any α, S(α) must be a sublattice, i.e., for any x,x′ ∈ S(α), x ∨ x′ ∈ S(α)

and x ∧ x′ ∈ S(α). This implies that there is a unique maximum element in each set
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S(α). We can therefore define the path P(α) = max{x | x ∈ S(α)}. We first show that

P is a trading path with P(1) efficient. Assumption 1 immediately implies P(0) = 0. By

construction, P(1) ∈ S(1) and thus P(1) ≤ n and is efficient. To show P is a trading path,

it remains to show that it is non-decreasing and continuous.

By Lemma 2, for any α, α′ ∈ [0, 1] with α ≤ α′, for any x ∈ S(α) and x′ ∈ S(α′),

x∨x′ ∈ S(α′). Since x∨x′ ≥ x, this implies that max{y | y ∈ S(α′)} ≥ x for all x ∈ S(α),

which implies that P is non-decreasing.

To show that P is continuous at any point α, it suffices to show that for all monotonically

increasing or decreasing sequences {αi}∞i=1 such that limi→∞ α
i = α, limi→∞ P(αi) = P(α).

Suppose this were not the case. In particular, suppose that for some α and some increasing

or decreasing sequence {αi}∞i=1, limi→∞ α
i = α, but either limi→∞ P(αi) does not exist or

limi→∞ P(αi) 6= P(α). Note that it cannot be the case that limi→∞ P(αi) does not exist

since P is increasing and bounded. So suppose that z ≡ limi→∞ P(αi) 6= P(α).

By Berge’s Maximum Theorem, S is upper hemicontinuous. Since P(αi) ∈ S(αi) for all

i, this implies that z ∈ S(α) and therefore z < P(α) by construction of the path. (Here

and throughout we use a < b to mean that ai ≤ bi for all i, and ai < bi for some i.) Let

δ = P(α)−z. Note that δ > 0. If the sequence {αi}∞i=1 is decreasing, then for all αi, P(αi) ≥

P(α) = z + δ. But z cannot be bounded away from every P(αi) if z = limi→∞ P(αi), a

contradiction.

Suppose then that {αi}∞i=1 is increasing. We first argue it must be the case that δ0 = 0.

Suppose δ0 > 0. Since the objective F is concave, for any two points x,x′ ∈ S(α) and

any λ ∈ [0, 1], λx + (1 − λ)x′ ∈ S(α). Therefore, z + δ/2 ∈ S(α). For α ∈ [0, 1], let

D(α) = {x | 0 ≤ x ≤ n, x0 ≤ αn0} be the feasible set. Since z + δ ∈ D(α), it must be the

case that there exists some τ such that for all i > τ , z + δ/2 ∈ D(αi). Furthermore, since

D(αi) ⊆ D(α) for all i and z+δ/2 is optimal for α, it must be the case that for all i, for all

x ∈ D(αi), F (x) ≤ F (z+δ/2). Together these imply that for all i > τ , z+δ/2 ∈ S(αi), and
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so P(αi) ≥ z + δ/2. But if this is true, we again cannot have z = limi→∞ P(αi), another

contradiction, so δ0 must be 0.

Finally, consider the last case in which {αi}∞i=1 is increasing and δ0 = 0. By the same

argument above, z + δ/2 ∈ S(α). Thus F (x) = F (x + δ/2), and expanding out the

definition of F , C(q + Θx + Θδ/2) − C(q + Θx) = `>δ/2. Similarly, F (x + δ/2) =

F (x + δ), so C(q + Θx + Θδ) − C(q + Θx + Θδ/2) = `>δ/2. By Lemma 1, for any state

q′, C(q′ + Θδ) − C(q′) = `>δ. Fix some i and let y = P(αi). We must have z ≥ y, and

since z + δ ∈ D(α) and δ0 = 0, y + δ ∈ D(αi). From the previous paragraph, we know that

F (y + δ) = `>(y + δ)− C(q + Θy + Θδ) = `>y − C(q + Θy) = F (y).

Since y ∈ S(αi), y + δ ∈ S(αi), and y could not be P(αi), another contradiction. This

means that P must be continuous.

We have established that P is a trading path. The fact that the trading path P is a fair

trading path follows immediately by comparing optimality conditions (2.11–2.12) with those

in Definition 3.

When There Is No Fair Trading Path

In the previous section, we showed that an efficient trading path can be constructed under

certain favorable conditions. We now show that in general this is not the case. The following

applies to a broad class of cost functions, including the LMSR cost function when traders

request overlapping bundles.

Theorem 10 Consider a complete market over N ≥ 3 states of the world with N Arrow-

Debreu securities. Let C be a cost function obtained via (2.1) with R bounded on H(φ(Ω)).

There exists a set of orders (Θ,n, `), market state q, and ε > 0, such that no ε-fair trading

path P for (Θ,n, `) at state q has an efficient endpoint P(1).
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The high-level idea behind the proof, which appears in the appendix, is as follows. Suppose

that N = 3 and consider two traders with orders on bundles θ1 = (1/2, 1/2, 0) and θ0 =

(0, 2/3, 1/3). Intuitively, purchasing θ0 should simultaneously cause the price of security 1

to drop and the price of security 2 to (quickly) rise. Given an arbitrary cost function C,

we use general properties of cost functions (expressiveness and bounded loss) to construct

a specific start state q, quantity n0, and price `1 such that if the market state moves in

a straight-line path from q to q + n0θ0, the price of bundle θ1 starts out above `1 due

to a high price of security 1, temporarily drops (far) below `1 as the price of security 1

falls, and finally exceeds `1 again as the price of security 2 rises. By setting `0 very high,

effectively making trader 0s order a market order, we force there to be a unique efficient fill

that results in full execution of trader 0’s order while trader 1’s order is not executed at all.

The corresponding (unique) trading path moves the market state in a straight line between

q and q + n0θ0, which, as described above, violates condition (2.6) for trader 1.

2.2.4. Constructing a Fair Trading Path

We now present an algorithm which, given a new order and an order book satisfying As-

sumption 1, constructs an approximately fair trading path terminating at a complete order

fill. As in the construction of Section 2.2.3, the algorithm forms a path by gradually filling

the new order, and filling standing orders when possible while respecting the fair trading

path conditions (2.5–2.6).

The algorithm, given in Figure 5, consists of an outer and an inner loop. Each iteration of

the outer loop solves for an efficient order fill of maximal volume, starting at the current

state, subject to the requirement that the additional order volume (i.e., 1-norm) not exceed

input parameter δ. The error ε by which the output path violates the fair trading path

conditions is proportional to δ and properties of the underlying cost function, as shown

below. The order fill of bounded volume is itself obtained through one or more iterations

of the inner loop. At each iteration of the inner loop, a convex program is solved to find an

efficient fill where the fill of the new order (order 0) is bounded according to βt, where β is the
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Parameters: δ > 0, 0 < β < 1.
Initialize: x0 = 0, n0 = n, q0 = q.
For k = 0, 1, 2, . . . do:

1. For t = 0, 1, 2, . . . repeat until ‖yk‖1 ≤ δ:

(a) Formulate and solve the following convex program:

max
y

F (y; qk)

s.t. 0 ≤ yi ≤ nki (i = 1, . . . ,m)

0 ≤ y0 ≤ βtnk0

From among the set of optimal solutions, set yk to be a solution of maximum
volume.

(b) Set αk = βt, update t← t+ 1.

2. Update xk+1 ← xk + yk, nk+1 ← n− xk+1, qk+1 ← Θxk+1 + q, k ← k + 1.
Output: A path P with image

{
(1− s)xk + sxk+1 | k ∈ {0, 1, . . .}, s ∈ [0, 1]

}
.

Figure 5: The Fair Trading Path Algorithm (FTPA)

other input parameter. (Note the slight overload in notation: in the algorithm superscripts

are used as round indices for iterates, with the exception of βt where the t represents an

exponent.) By only restricting the new order, we can guarantee the (approximate) fair

trading path conditions—recall that (2.6) does not involve the new order. However, this

means several inner iterations may be needed for the total order volume to fall below δ

as a consequence of continuity. When it is efficient to no longer execute any trades, the

algorithm has reached a complete order fill. The variable αk is for book-keeping purposes

in the proofs only.

In step (1a), we require not just an optimal solution to the convex program, but an optimal

solution of maximal volume. The following result explains how to achieve this efficiently.

Note that it depends on certain special properties of the class of cost functions we consider.

The proofs for all results in this section are collected in the appendix.

Lemma 3 Given an optimal solution to the convex program in (1a), an optimal solution

of maximal volume can be obtained via linear programming.
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Let us provide some intuition for the lemma and describe the linear program in more detail.

A consequence of Lemma 1 is that the directions along which the cost function C is linear

form a subspace. We can therefore form a matrix D ∈ RK×k, where k ≤ K, whose columns

form a basis for this subspace. If the cost change along some combination of these directions

equals the change in the limit-price term of the objective, then we obtain directions along

which the objective is constant. Given an optimal solution y′ to the convex program in

step (1a), the LP for extending it to an optimal solution of maximum volume takes the

following form:

maxy,α ‖y′ + y‖1

s.t. 0 ≤ y′ + y ≤ n, Θy = Dα, `>y = 1>α

The latter two constraints ensure that adding y does not change the objective value, and

thus y′+y remains an optimal solution. The fact that an LP can be formulated to maximize

volume is used in proving correctness of the algorithm.

We now turn to the algorithm’s properties. The first element of the proof is to show that

the algorithm always progresses from one iteration to the next. For this it is important that

in step (1a) we choose an optimal solution of maximal volume.

Lemma 4 At every iteration k = 0, 1, . . . the inner loop in step (1) halts.

From this lemma we obtain that the algorithm will generate an infinite sequence of iterates

{xk}. The following gives the main property of this sequence.

Theorem 11 The sequence of iterates {xk} generated by the algorithm converges to a max-

imally complete order fill.

There are several parts to this result. First, it states that the sequence of iterates converges.

Often with numerical algorithms only convergence in objective value holds, not convergence

in iterates (e.g., this is common in optimization methods when there are multiple optima).
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Here we obtain convergence in iterates because we are monotonically filling the orders.

Second, it states that the limit point is a complete order fill. There are two sub-cases:

1) at some point the sequence of iterates becomes constant, meaning that the algorithm

has effectively converged in a finite number of steps, or 2) the algorithm generates an

infinite sequence of distinct iterates. The first case occurs whenever the optimal solution

obtained in step (1a) is 0, which gives one stopping criterion. The second case is not

unusual for numerical algorithms (e.g., consider gradient descent), and allows for several

stopping criteria: small enough change in iterates, in efficiency, etc. Under continuity of

the objective’s gradient, the result implies that condition (2.12) will eventually hold to any

desired tolerance, which is perhaps the most natural stopping criterion for our purposes.

The next result concerns the path constructed by the algorithm. Note that even if the

sequence of iterates is infinite, the output path is well-defined. Furthermore, because the

iterates converge, it is straightforward to normalize the domain to [0,1] and take P(1) = x̄,

the limit point of the sequence.

Theorem 12 Suppose the price function π is L-Lipschitz. Then the path P output by the

algorithm is ε-fair for ε = δL.

The result requires Lipschitz continuity of the order price function. This holds if the cost

function C has Lipschitz continuous gradients, and for cost functions of the form (2.1) that

we consider, this is equivalent to R being strongly convex (Hiriart-Urruty and Lemaréchal,

2001, Thm 4.2.1).10 The Lipschitz constant L for the price function depends on both the

underlying constant for C, and the order bundle matrix Θ (more specifically, its matrix

norm). Therefore L will depend on the way bundles are normalized. Throughout, the

Lipschitz parameter L refers to continuity with respect to the 1-norm.11 The correctness of

the algorithm and the previous result establish the following.

Corollary 1 Suppose the price function π is L-Lipschitz. Then for any ε > 0, there exists

10For instance, the LMSR cost function is Lipschitz continuous with constant 1 with respect to the 1-norm.
11Because the number of dimensions is finite, Lipschitz continuity with respect to some norm implies the

same for any norm. However, the parameter L depends on the norm chosen.
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an ε-fair trading path for (Θ,n, `) at q terminating at a maximally complete order fill.

There are still some limitations to these results. We cannot guarantee that the algorithm will

reach an efficient endpoint when an ε-fair trading path to one exists, let alone parametrize

the algorithm to balance path fairness and endpoint efficiency. It is also not straightforward

to apply a limiting argument to Corollary 1 and obtain existence of an exact (ε = 0) and

complete trading path.

Let us stress again that all our results rely on Assumption 1 holding at the outset. By

Theorem 11, the assumption holds after running our algorithm upon each new order arrival.

Thus we only need to ensure that it holds when the market is started, by using a call market

or starting with an empty order book as suggested earlier.

2.2.5. Simulations

In this section, we investigate the empirical performance of the Fair Trading Path Algorithm

(FTPA) against a simple baseline. The baseline takes as input the set of orders (Θ,n, `),

market state q, and a parameter δ > 0, and tries to fill a small quantity of each order in

cycle, as long as the trade is profitable. More specifically, for each order i = 0, 1, . . . ,m that

has not yet fully executed, let τi = min{δ, ni} and check whether C(q + τiθi)−C(q) ≤ τi`i.

If so, sell τi shares of θi to trader i at this cost, update the current market state q to

q + τiθi, and update ni to ni − τi. Remove order i from the book whenever ni reaches 0.

Each execution of τi shares is filled in a straight line, forming a trading path. The baseline

represents a simple and natural way to handle limit orders by executing them against the

market maker in small pieces, and is similar to what some practitioners have done (Berg

and Proebsting, 2009).

We evaluate the FTPA and baseline along four metrics:

• Trade volume: The volume (total number of executed shares) of the overall order

fill after all orders have been processed.
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• Social welfare: The efficiency after all orders have been processed.

• Violation of condition (2.6): The maximum amount by which the limit price of

any unfilled order exceeds its market price along the trading path, potentially violating

condition (2.6). Estimated by sampling points on the path.

• Violation of condition (2.5): The maximum amount by which the limit price of

any order (excluding the new order) falls below its market price while the order is

currently being executed, potentially violating condition (5). Estimated by sampling

points on the path.

In our experiments we varied the maximum trade volume δ allowed at each step, as well

as the liquidity parameter b. All our plots have δ on the x-axis in log scale, and one of the

four metrics on the y-axis.

Two Trader Instance

We first consider one instance of the general counterexample to efficient trading paths

constructed in the proof of Theorem 10. We use an LMSR cost function over three securities

with liquidity parameter b = 10 and initial market state q = (0,−60,−30). Trader 1 places

a limit order with θ1 = (1/2, 1/2, 0), n1 = 100, and `1 = 0.45, which cannot be executed.

Trader 0 then places a market order with θ0 = (0, 2/3, 1/3), n0 = 180, and `0 = 1. By

the argument in the proof of Theorem 10, there is no ε-fair trading path with an efficient

endpoint for small ε.

Results are shown in Figure 6. First examine the volume of trade. Running the FTPA

with δ = n0 + n1 = 280 (the rightmost point in the curve) is equivalent to calculating a

straight-line path to the unique efficient fill. Only trader 0s order is executed in this case,

resulting in a total of 180 shares executed. For all but the highest values of δ, the FTPA

and the baseline execute a significant portion of trader 1s order, about 30 shares. As shown

in the top right plot, this leads to very little change in efficiency. This is because trader 1
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Figure 6: Algorithm performance on an instantiation of the two trader example from the
proof of Theorem 10.

pays exactly his limit price for these shares. The small drop in social welfare for smaller

values of δ is therefore due only to the fact that trader 0 pays slightly more when trader 1s

order is partially filled.

The bottom left plot shows that for the FTPA, the maximum amount by which an order’s

limit price exceeds its market price along the trading path grows very slowly in δ, until δ

reaches its maximum value of 280 when (as we know from the proof of Theorem 10) the

market price of trader 1’s bundle drops below 1/3 while `1 = 0.45. This quantity grows

more quickly in δ for the baseline. Finally, the bottom right plot shows that the maximum

amount by which an order’s market price exceeds its limit price during execution is relatively

small for both algorithms and all values of δ.

Presidential Elections Market

We next generate trading data from survey results from the 2008 U.S. Presidential election

gathered by the Princeton Election Consortium (Wang et al., 2011). This data consists of
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probability forecasts on the outcome of the election in a single U.S. state (e.g., how likely

it is that McCain wins in OH) or on a conjunction or disjunction of outcomes in up to

three U.S. states (e.g., how likely it is that Obama wins in both OH and PA) provided by

individuals across the U.S. The data was used by Dud́ık et al. (2012) to generate synthetic

trades to evaluate their constraint-generation based market maker.

We restrict attention to forecasts that cover a set of 5 U.S. states on which there were a

large number of predictions. We use the LMSR cost function for a complete market over

the N = 32 (= 25) states of the world corresponding to the 32 possible election outcomes

for the two major political parties in these five U.S. states. We generate one limit order

from each forecast in the data. A probability forecast on the likelihood of an event E is

converted into a request to purchase ni = 10 shares of the bundle θi consisting of one unit

each of all securities corresponding to states ω ∈ E. As the limit price `i we use the forecast

probability of E. We discard forecasts of 0 from the data since orders with a limit price

of 0 would never be executed. We run the FTPA and baseline on 1000 orders sub-sampled

from this dataset.

It is well known that the performance of LMSR is sensitive to the choice of liquidity pa-

rameter b. In initial experiments, we found that with ni = 10 for all i, b = 1 led to a

reasonable amount of price movement: Prices moved quickly enough that orders were not

fully executed immediately upon arrival, but slowly enough that orders in the book were

often able to execute later. We chose to run our simulations with three different values of

b near to this: 0.5, 1, and 2. The results, which are qualitatively similar for these three

values, are shown in Figure 7. Although we plot all results together, results from runs using

different liquidity parameters are not directly comparable. As for comparing the FTPA

and baseline, both construct a piece-wise linear path that aims to faithfully approximate a

fair trading path, and in both the parameter δ controls the maximum length of each piece,

albeit in different ways. We therefore compare the two under the same setting of δ, varying

δ. However, the baseline is also able to run for small values of δ where the FTPA takes
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Figure 7: Algorithm performance on trades generated from survey data on the 2008 elec-
tions.

prohibitively long to finish; for completeness, we also include baseline results in this range

to indicate the trends.

From the top left plot we observe that the FTPA leads to a higher trade volume for all

comparable δ. Its trade volume is very stable, while trade volume for the baseline quickly

degrades beyond a certain threshold. The same general pattern holds for social welfare,

as seen in the top right plot. However, here we find that the baseline achieves the highest

social welfare of both options at sufficiently small δ.

Observe that the baseline run with small values of δ achieves higher efficiency than the

FPTA run with the largest value of δ, even though the latter executes arriving orders

efficiently. This is not a contradiction: the FPTA is executing each arriving order efficiently

in an online fashion, but this greedy approach is not necessarily efficient for the entire set

of orders in batch.

The bottom two plots examine violations of the trading path constraints. The bottom right
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plot shows that both approaches perform similarly when it comes to condition (2.5), except

for larger δ where the FTPA has an advantage. The biggest discrepancy is for condition (2.6)

in the bottom left plot—the baseline has a tendency to let market prices drift further below

limit prices without executing the associated orders. This is arguably the most challenging

condition to enforce, because it requires a global control of prices rather than just a local

control of the price on the order being executed.

While the FTPA compares favorably to the baseline on the range of δ for which results

are available, the trends clearly indicate that, for small enough δ, the baseline can achieve

excellent social welfare and trade volume with minimal violation of the trading path con-

ditions. Improving the FTPA so that it can scale to this range is an important avenue for

future work.

2.2.6. Discussion and Future Directions

Even in a prediction market with a heavily subsidized market maker, a trader may not

accept current prices. In that case, a limit order allows the trader to inject information in

the market in the form of a constraint on prices, another form of liquidity. By merging cost-

function based market makers with limit orders, we design a prediction market mechanism

that is well suited for attracting trade. The first traders will interact mainly with the market

maker at a low subsidy rate. As trade volume grows, more and more trades will effectively

occur as bilateral matches between traders.

We formalized the conventions of continuous-trade markets in a general framework through

the notion of a fair trading path, which monotonically fills orders and ensures that standing

orders trade as the market prices reach their limit prices. We showed that arriving orders

can be filled efficiently (in the sense of social welfare, or total trader utility) under super-

modularity conditions, but that this is not possible more generally. We then provided a Fair

Trading Path Algorithm which is guaranteed to construct a path respecting limit prices to

within any required tolerance, and terminates at a state where no order is profitable.
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The most immediate avenue for future work is to develop an algorithm that combines

theoretical guarantees with efficient runtime in practice. It would also be worthwhile to

perform more advanced simulations with traders that strategize in terms of their reported

limit price or the timing of their trades. Another line of research would be to gain a deeper

understanding, through theory and simulations, of the algorithm’s price discovery properties

when there is a common component to the traders’ probability forecasts, or when there is

a mix of informed and noise traders.
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CHAPTER 3 : Learning with Repeated Interactions

An online market usually interacts with the same set of participants over time. The market

and its participants can utilize the sequential nature of the interaction to learn about the

other side and optimize their future actions accordingly. In this chapter, I address problems

of this flavor in the context of online labor markets and ad exchanges1.

We begin in Section 3.1 by studying how an ad exchange can take advantage of the data

it accumulates over time about its bidders behavior. In an online display ad exchanges the

exchange repeatedly interacts with quota-limited bidders, making real-time decisions about

which subsets of bidders are called to participate in ad-slot-specific auctions. Given the

repeated nature of the interaction with its bidders, the exchange has information about

each bidders’ segments of interest. This information can be utilized to design smarter

callout mechanisms—with the potential of improving the exchange’s revenue. Section 3.1 is

a recent work by Azari et al. (2017), in which my collaborators at Google and I present an

empirical framework for studying the performance of callout mechanisms in such settings.

More precisely, we present a general framework for evaluating and comparing the perfor-

mance of various callout mechanisms using historical auction data only. To measure the

impact of a callout mechanism on long-term revenue, we propose a strategic model that

captures the repeated interaction between the exchange and bidders. Our model leads us

to two metrics for performance: immediate revenue impact and social welfare. Next we

present an empirical framework for estimating these two metrics from historical data. For

the baseline to compare against, we consider random throttling, as well as a greedy algo-

rithm with certain theoretical guarantees. We propose several natural callout mechanisms

and investigate them through our framework on both synthetic and real auction data. We

characterize the conditions under which each heuristic performs well and show that, in addi-

tion to being computationally faster, in practice our heuristics consistently and significantly

1The content of Sections 3.2 and 3.1 is taken directly from (Heidari et al., 2016a) and (Azari et al., 2017),
respectively.
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outperform the baselines.

Next in Section 3.2 and motivated by workers’ dynamic perfomance in online labor markets,

we study a setting where the behavior of market participants changes over time. In (Heidari

et al., 2016a), my coauthors and I propose a stylized model of learning and performance

improvement for workers in a crowdsourcing platforms. Our model is a variant of the well-

studied multi-armed bandit problem in which the reward from each arm (worker) evolves

monotonically in the number of times that arm is pulled (a task is assigned to that worker).

We assume that the arm-dependent rates at which the rewards increase (workers’ learning

rates) are unknown, and propose task assignment algorithms with provably optimal policy

regret bounds, a much stronger notion than the often-studied external regret. For the case

where the rewards are increasing and concave, we give an algorithm whose policy regret is

sublinear and has a (provably necessary) dependence on the time required to distinguish the

optimal arm from the rest. We illustrate the behavior and performance of this algorithm

via simulations. For the decreasing case, we present a simple greedy approach and show

that the policy regret of this algorithm is constant and upper bounded by the number of

arms.

3.1. Bidder Selection in Ad Exchanges

For online businesses advertising is a major source of monetization. Every day compa-

nies like Bing, Facebook, Google, and Yahoo run auctions — billions of auctions — to

determine which advertising impressions to show. In particular, online display ad space

is usually bought and sold through high-volume auction-based exchanges, of which App-

Nexus, Google’s DoubleClick, and Microsoft Ad Exchange are examples. In these online

display ad exchanges, impressions are continuously received from publishers and auctioned

off among real-time bidders. Economic theory holds that such auctions allocate resources

efficiently. The auction also determines the price paid by the winner. Of this payment, a

fixed percentage goes to the exchange and the remainder is paid to the publisher. These

transactions constitute the two revenue streams of online advertising, those of ad exchanges
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and of publishers.

On the exchange side the process of running an auction usually consists of two steps: (1)

Once a query arrives from the publisher side, the exchange calls a subset of buyers2 to

participate in the auction (the callout step). (2) Then, among the responding buyers the

exchange runs an auction to determine the winner and price (the auction step). There

are multiple reasons for the existence of the first step — the focus of this work. First, a

significant percentage of bidders are limited by the number of calls per second they can

respond to, their quota (Sel, 2015; Chakraborty et al., 2010; Devanur et al., 2011). The

exchange must protect these bidders from receiving more calls than their servers can handle3.

Furthermore, the exchange itself may need to limit the number of callouts sent to bidders

to conserve its resources.

In practice, random quota throttling (RQT) is the principal solution by which these con-

straints are enforced. At a high level RQT decides which buyers to call randomly and

with probabilities proportional to the quota-per-seconds (qps). Given that the exchange

interacts with its bidders repeatedly and over time, it has access to historical auction data

containing information about each bidder’s segments of interest. By learning this infor-

mation the exchange can target bidders more effectively. The combination of the learning

and targeting is what we call a “callout mechanism”. An ideal callout mechanism reduces

resources when bidders are unlikely to be interested, and increases calls when bidders are

more likely to perceive value.

Finding the optimal callout set is equivalent to solving the following optimization problem:

Subject to bidders’ quota, which callouts should be sent to them for valuation and bidding

so that the exchange’s long-term revenue is maximized? Finding the revenue-maximizing

callout is computationally hard (Section 3.1.1). As a consequence, the exchange has to

2While technically not the same, for simplicity in this work we use the terms “buyer” and “bidder”
interchangeably.

3Beside such technological limitations, bidders may have financial constraints (see for example (Borgs
et al., 2005; Dobzinski et al., 2005)) and/or specify volume limits to control exposure (see (Lahaie et al.,
2008)).
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rely on heuristics and approximation callout mechanisms. Different callout mechanisms can

impact the long-term revenue differently, and the space of all possible callout mechanisms

is extremely large. It is therefore not feasible for the exchange to evaluate every mechanism

by running an actual experiment4. This necessitates the design of a framework that utilizes

historical data only to compare the performance of various callout mechanisms. This is the

main contribution of the present work. Rather than focusing on any particular mechanism,

here we lay out a framework for evaluating any given callout mechanism in terms of its

impact on long-term revenue.

The paper is organized as follows: We formalize the setting in Section 3.1.1. In Section 3.1.2

we start by observing that different callout mechanisms can impact the long-term revenue

differently, mainly for the following two reasons: (1) Different mechanisms satisfy the quota

differently. (2) Bidders are strategic and adapt their response to the choice of the callout

mechanism. Measuring the former can be readily done using historical data, however, to

measure the latter we need to have a model for the way bidders adapt their behavior to a

new callout mechanism. We propose in Section 3.1.2 a game-theoretic model that captures

the repeated interaction between the exchange and its bidders. This model motivates two

performance metrics: immediate revenue impact and social welfare, both of which can be

estimated from historical data (Section 3.1.2). To establish baselines for comparison, in Sec-

tion 3.1.3 we consider two mechanisms: RQT, as well as a greedy algorithm (GRA) for which

theoretical guarantees have been established, albeit under certain restrictive assumptions.

In Section 3.1.3 we propose several natural callout heuristics. Finally in Section 3.1.4, we

demonstrate our empirical framework, measuring the performance of these callout mecha-

nisms on both real-world and synthetic auction data. We characterize the conditions under

which each heuristic performs well and show that, in addition to being computationally

faster, in practice our heuristics consistently and significantly outperform the baselines.

4Experiments can be unpredictably costly. In addition, there are usually restrictions in place on buyers
the exchange can run experiments on.
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Related Work

Microeconomics has a long line of research literature on auctions; see (Klemperer, 1999)

for a survey. Repeated auctions, in which the auctioneer interacts with bidders multiple

times, have received considerable attention (Bikhchandani, 1988; Ozkan and Wu; Thomas,

1996). In particular, the problem of pricing in repeated auctions has been studied ex-

tensively (Amin et al., 2013; Kleinberg and Leighton, 2003; Blum et al., 2004; Bar-Yossef

et al., 2002; Cesa-Bianchi et al., 2013; Mohri and Medina, 2014). That said, most of the

previous work has not considered strategic buyers. Some consider random bidders (Mohri

and Medina, 2014), some study bidders who participate only in a single round (Kleinberg

and Leighton, 2003; Blum et al., 2004; Bar-Yossef et al., 2002; Cesa-Bianchi et al., 2013),

and some focus on bidders who participate in multiple rounds of the auction, but are in-

terested in acquiring exactly one copy of a single good (Hajiaghayi et al., 2004). In none

of these cases do bidders react to the seller’s past behavior to gain higher payoffs in future

rounds. However, in many real-world applications, the same set of buyers interacts repeat-

edly with the same seller. There is empirical evidence suggesting that these buyers behave

strategically, adapting to their history to induce better payoffs (Edelman and Ostrovsky,

2007). Indeed, a growing literature enumerates the various strategies buyers can follow in

order to improve their payoff (Cary et al., 2007; Kitts and Leblanc, 2004; Jofre-Bonet and

Pesendorfer, 2000; Lucier, 2009; Gummadi et al., 2012).

More recently, several studies have focused on the strategic aspect of bidders’ behavior in re-

peated auctions and, in particular, on the problem of setting near-optimal prices. (Acquisti

and Varian, 2005; Kanoria and Nazerzadeh, 2014) study the impact of Intertemporal Price

Discrimination (IPD), i.e. conditioning the price on bidder’s past behavior, and examine

the conditions under which IPD becomes profitable. Amin et al. (2013, 2014) investigate re-

peated posted-price auctions with strategic buyers, and present adaptive pricing algorithms

for auctioneers. With these algorithms the auctioneer’s regret increases as a function of

bidders’ discount factors.
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In this work, rather than optimizing reserve prices, we focus on improving the callout rou-

tine. Of course, targeting bidders to call to an auction has already been reduced to practice.

Consider Selective callouts, as implemented by Google’s display ad exchange (Sel, 2015):

Unlike RQT, Google’s selective callout algorithm (SCA) identifies the types of impressions a

bidder values, thereby increasing the number of impressions the bidder bids on and reducing

the number of callouts the bidder ignores.

To our knowledge, (Chakraborty et al., 2010) is the first work to study the callout opti-

mization problem from a purely theoretical perspective. The authors model callouts by an

online recurrent Bayesian decision-making algorithm, one with bandwidth constraints and

multiple performance guarantees. The optimization criteria considered in (Chakraborty

et al., 2010) are different from ours — here we consider long-term revenue as the princi-

pal criterion and assert that it is the most natural choice. Also, unlike Chakraborty et al.

(2010), we study the effect of strategic buyer behavior on system-wide, long-term outcomes.

Relatedly, Dughmi et al. (2009) investigate the conditions under which the expected revenue

of a one-shot auction is a submodular function of the set of participating bidders. While

these conditions are restrictive and do not often hold in practice, we adopt Dughmi’s greedy

algorithm as a baseline and compare other algorithms to it.

Our work is indirectly related to the large and growing body of research on budget con-

straints in online auctions. Papers in this literature can be divided into two main categories:

(a) those concerned with the design and analysis of auction mechanisms with desirable prop-

erties — truthfulness, optimal revenue, and so on — for budget constrained bidders (see

for example (Borgs et al., 2005; Hafalir et al., 2012; Dobzinski et al., 2005; Balseiro et al.,

2015)); and (b) those that present optimal or near-optimal bidding algorithms for such

bidders (see for example (Chakrabarty et al., 2007; Archak et al., 2012)).

Incentive Issues: We close this section with a remark for readers familiar with the litera-

ture on incentive issues and truthfulness in mechanism design (see Chapter 23 in (Mas-Colell

et al., 1995) for an overview of the main results of this topic.) While we are concerned with,
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and present shortly a model for, the bidders’ strategic reactions to the choice of the callout

mechanism and its impact on long-term revenue, we do not claim that a bidder is better off

by bidding truthfully when the system is in equilibrium. Indeed, in a setting as complicated

as that with which we are dealing here — in which bidders have complex strategy spaces and

information structures — the auction mechanism itself already fails to maintain incentive

compatibility; see (Borgs et al., 2005; Gonen, 2008) for related hardness and impossibility

results. Rather than setting the ambitious goal of restoring bidding truthfulness, here we

consider a model in which both the action space and the information structure are simplified

(see Section 3.1.2 for further details). In spite of the simplicity, the analysis of our model

provides us with important insights about the performance of callout mechanisms.

3.1.1. Model and Preliminaries

Let B = {1, 2, · · · , n} denote the set of bidders active in the exchange. Each bidder i ∈

B has a quota-per-second constraint denoted by qi > 0. This quantity is known to the

exchange and specifies the number of auctions bidder i can be called to per second. Consider

a particular time interval of length one second, and assume that during this period the

exchange receives a sequence of ad slots A = {at}Tt=1 in an online fashion. Let vti denote

the value (or ROI) of ad slot at to bidder i. The exchange does not know the valuations in

advance, but can learn about them through the bids. Let bti specify bidder i’s bid for the

ad slot at.

At time t = 1, 2, · · · when ad slot at arrives, the exchange must choose a subset Bt ⊆ B to

call for participation in the auction for at while respecting all the quota-induced constraints.

A callout mechanism/algorithm is any logic used to decide which subset of bidders to call at

each time step t using the history of bidding behavior observed up to time t. More precisely,

let the matrix Ht denote the bidding history observed by the exchange up to time t. Given

Ht−1 as the input a callout mechanism selects Bt for every t = 1, 2, · · · . Once called, each

bidder i ∈ Bt decides whether to participate in the auction. The auction mechanism then

specifies the winner (if any) and price. The recent bids along with Ht−1 are then used to

65



set Ht. Figure 8 illustrates the flow of a typical callout mechanism.

Figure 8: The high-level flowchart of the system. The two main building blocks of a callout
mechanism are the components for learning and targeting. We treat the auction mechanism
as fixed and given throughout.

Throughout, we treat the auction step as given and fixed; we assert no control over how the

auction is run or how its parameters, e.g. the reserve price, are tuned. While much of our

work extends readily to other auctions, unless otherwise specified we assume the auction

mechanism is second price with reserve. Let rt be the (given) reserve price for auction t.

Bidders do not observe rt before submitting their bids.

For the exchange, the ultimate goal is to maximize the long-term revenue. Therefore we

define the performance of a callout mechanism by its impact on long-term revenue. Long-

term revenue is simply the (possibly discounted) sum of the revenue earned at each time

step t = 1, 2, · · · . We denote the discount factor by δ (0 ≤ δ ≤ 1). The optimal callout

mechanism is the one that maximizes the long-term revenue. We conclude this section

by demonstrating that identifying the optimal callout is computationally hard. And this
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remains true even if we assume bids are sampled from fixed distributions, the exchange

knows these distributions ahead of time, and can accurately predict the sequence of ad slots

it receives.

Proposition 2 Suppose when called to an auction for item t, bidder i samples their bid, bti,

from a distribution Dt
i (i = 1, · · · , n and t = 1, · · · , T ). Let variable xi,t be the indicator of

whether bidder i is called to the auction for at. Solving the following optimization problem

is NP-hard:

max

T∑
t=1

δtER(x1,t, · · · , xn,t)

s.t. ∀i :

T∑
t=1

xi,t ≤ qi

∀i, t : xi,t ∈ {0, 1}

where the random variable R(x1,t, · · · , xn,t) denotes the revenue of auction t with partici-

pants {i|xi,t = 1}, and the expectation is taken with respect to Dt
i’s.

We establish this by showing that the above class of problems includes a known NP-hard

problem—maximum 3-dimensional matching—as a special case.

Proposition 2 motivates our approach in this work. Consider the hypothetical world in which

we have access to a perfectly accurate bid forecasting model. In this setting one natural

proposal is to use this model to forecast the bids, then call the two bidders with the highest

bids in every auction. We emphasize that in practice this is simply not possible: Even the

best forecasting model can only forecast a bidding distribution, not a particular number.

Furthermore, even if we assume this distribution is fully compliant with the true bidding

behavior, according to Propostion 2 finding the optimal callout set is computationally hard.

This implies that the exchange has to rely on heuristics and approximation algorithms to

construct the callout set. In this work we present a data-driven approach for evaluating

and comparing various callout algorithms in terms of their average impact on long-term
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revenue.

3.1.2. Measuring Performance

We start by observingthat different callout mechanisms result in different levels of long-term

revenue for the following two reasons: (1) Different mechanisms satisfy quota differently.

(2) Bidders are strategic and adapt their response to the choice of the callout mechanism.

Measuring the first type of impact is readily possible using historical data — one simply

needs to run each callout mechanism on the data and observe the change in revenue. By sell-

ing previously unfilled impressions, a smart callout mechanism can increase the exchange’s

revenue, and at the same time maintain, and perhaps improve, bidders’ utilities.

In order to improve long-term revenue, however, it does not suffice for the exchange to find a

callout mechanism with high revenue performance on historical data. In real world bidders

are strategic and adapt their response to the choice of the callout mechanism. For instance,

it is possible that a callout mechanism does not result in selling previously unfilled part of

the inventory. Rather, it merely increases the competition and drives the prices up. While

this does not hurt the revenue immediately, it can reduce the utility that certain bidders

earn. Bidders potentially react to this change in their payoffs in future rounds. To quantify

this type of impact on long-term revenue we need to have a model for bidders’ reactions to

the choice of the callout mechanism.

A Two-Stage Game Formulation

There are usually many options (i.e exchanges) available to bidders to choose from (i.e.

participate in). We make the following simple, natural assumption about the bidder’s

reaction to the choice of the callout mechanism in one particular exchange: Bidder seek

to maximize their utility (ROI), that is, they always choose to participate in the exchange

that provides them with the highest utility (value minus cost). In what follows, we make

two simplifying assumptions: First we limit the bidder’s action space to the choice of which

exchange to participate in. Second, we assume by participating in an exchange, all that
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the bidder can observe is their utility from that exchange. We acknowledge that compared

to real-world, these assumptions drastically simplify the action space and the information

structure for both the bidders and the exchange. Nonetheless as the following analysis

shows, this simplified model suffices to capture some of the most important aspects of the

interaction between the exchange and bidders.

We follow the standard modeling approach in microeconomic theory for repeated interac-

tions among strategic agents (see (Mailath and Samuelson, 2006)). Consider the following

two-stage game between two players, the exchange and one bidder. The action space for

the exchange consists of all possible callout mechanisms, denoted by the set E. The action

space for the bidder consists of two actions: participating or taking the outside option. At

the beginning of the first stage the exchange commits to a callout mechanism e ∈ E. (Note

that our analysis does not rely on a particular choice of e.) Next, the bidder, without the

knowledge of e, decides whether to participate in the exchange in the first round. If they

do, then their expected utility is equal to

ue = ve − ce

where ve is the bidder’s average valuation for the items they win and ce is the average cost

they pay for those items under callout mechanism e. If the bidder chooses to participate,

the expected revenue that the exchange receives equals ce. If they do not participate in

the auction, they take their outside option, which provides them with utility u and the

exchange with an incremental revenue of 0.

In the second stage of the game, which captures the future interaction of the bidder with the

exchange, the bidder again chooses whether to participate or not. This time, however, the

bidder is aware of the utility they earns from participation — if they chose to participate

in the first stage. Note that this is in line with the anecdotal evidence suggesting that

bidders do in practice run experiments to estimate the utility they can earn from different

exchanges and adjust their rates of participation accordingly. Utilities for this stage are
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defined similarly to the first stage. Denote by δ the players’ discount factor for the future

(i.e. the second stage) payoffs.

Proposition 3 Among all callout mechanisms e ∈ E for which ue ≥ u, let e∗ be the one

for which ce is maximized. If maxe ce

ce∗
− 1 ≤ δ, the following strategy profile is the unique

sub-game perfect equilibrium of the above game: The exchange chooses e∗, and the bidder

chooses to participate in each stage if and only if according to their beliefs at that stage

Eue ≥ u.

The above proposition suggests that when players value their future utilities — or more

precisely, when the discount factor δ is large enough — the ideal callout mechanism in-

creases the immediate revenue as much as possible (i.e. maximizes ce) while providing the

bidder with a utility level at least as large as what they can earn from their outside option

(i.e. maintaining the constraint ue ≥ u). In other words, when choosing a callout mecha-

nism, the exchange faces a trade-off between immediate- and long-term revenue: Of course,

for a given callout mechanism, increasing its callouts can boost the revenue. However,

unless the exchange induces sufficiently high value for bidders, such increases in callouts

ultimately discourage their participation in future rounds — they find their outside option

more profitable. This in turn translates into less revenue for our exchange in the long run.

Performance Metrics and Estimators

The argument above leads us to two metrics for evaluating the performance of a callout

mechanism: immediate revenue impact and social welfare. Next we propose ways for esti-

mating these metrics, ce, ue, as well as the outside option utility u, from historical bidding

data. Throughout we assume we know and can therefore simulate the auction mechanism

on any given set of bids.

More precisely, suppose we have access to the bidding data over a period of length S for

n bidders (i.e. bti for all t = 1, · · · , S and i = 1, · · · , n). We will need the following

notation: Let c̃i be the average cost bidder i pays for the items they win over time period

70



t = 1, · · · , S—before a new callout mechanism is implemented. Similarly, let b̃i be the

average bid submitted by bidder i for the items they win over this time period. Let c̃i be

the average cost bidder i pays for the items they win over time period t = 1, · · · , S—under

callout mechanism e. Note that this can be easily computed by simulating the auction

mechanism on the historical bidding data and the new callout set. Similarly, let b̃i be the

average bid submitted by bidder i for the item they wins over this time period—under

callout mechanism e.

Immediate revenue impact The following is an unbiased estimator of ce: c̄e = 1
n

∑n
i=1 c̃

e
i .

Social welfare To estimate the social welfare, we need some proxy of the bidders’ val-

uations. Since we do not have access to actual valuations, for practical reasons we are

constrained to rely on bids as a proxy for value. In our setting, the assumption of bid

as a proxy for valuation is relatively benign: any bias in measuring the utility of winning

auctions in one exchange is likely the same bias for winning auctions in any other exchange.

Further, the choice of bid-as-value enables bid-minus-cost as the residual value for the buyer,

one that is visible both to each buyer and to the exchange. In that sense, bid-minus-cost

represents the good-faith estimate of the residual value, one that the exchange can actively

work to preserve over the set of buyers. Assuming that a bidder’s average bid reflects their

true valuation, the following is an unbiased estimator for ue: ūe = 1
n

∑n
i=1(b̃ei − c̃ei ).

Outside option utility The following is an estimator for u: ūe = 1
n

∑n
i=1(b̃i − c̃i).

We argue that the above is an unbiased estimator assuming that bidders are rational and

participate at positive rates in both the exchange and their outside option. Here is why:

Consider a strategic bidder who participate at positive rates in both our exchange and the

outside option. This means that both of these options provide them with equal utilities

on average, otherwise, they would have been better of by only participating in the higher

paying exchange.
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3.1.3. Proposed Callout Algorithms

Baselines

We propose two baselines, RQT and GRA, against which we compare other callout mech-

anisms5.

Random Quota Throttling (RQT) As a naive comparison baseline, we consider ran-

dom quota throttling, RQT: we drop each bidder with a fixed probability p.

The Greedy Algorithm (GRA) In settings where the auction revenue is monotone

and submodular6 a simple greedy algorithm, which greedily adds bidders by their marginal

impact on revenue, is guaranteed to obtain revenue at least as large as (1 − 1/e) of the

(one-shot) optimal solution (Dughmi et al., 2009).

Algorithm 2 describes our baseline, GRA.

ALGORITHM 2: The Greedy Algorithm (GRA)

Data: K ∈ N, ε > 0
Start with t = 0;

Let D̂i be the estimated bidding distribution for bidder i. Start with equal estimations for
all bidders;

while there exist more ad slots do
t = t+ 1;
Receive ad slot at;
Bt = ∅;
for i = 1, 2, · · · ,K do

Approximate the marginal revenue impact of adding bidder i to Bt using 1
ε

repetitions;
Add that bidder with highest marginal revenue impact to Bt;

end
Run the auction among bidders in Bt;

Update D̂i for all i using bt;

end

5Note that SCA (Sel, 2015) is not among our baselines, because the details of the algorithm have not
been published.

6This is for example the case for revenue maximizing auction mechanisms in matroid markets with bidders
whose bids are drawn independently (see (Dughmi et al., 2009) for the details).
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Our Heuristics

Throughout this section we focus on callout mechanisms with two natural properties, sym-

metricity and myopicity. We call a callout heuristic symmetric if two bidders with exactly

the same bidding history up to time t have the same chance of being called to the auction

of at. This basic property must be satisfied to ensure that the mechanism is fair. A myopic

callout heuristic disregards the effect of today’s targeting on the future bidding behavior.

The targeting in all of our algorithm is done via thresholding : the algorithm calculates a

score vector st from the (relevant part of the) history vector Ht for all bidders; by designat-

ing a suitable thresholds θ, it selects which bidders to call out. See Algorithm 3 for details.

Next we present several natural choices for the metric m(.) and specify how to update the

scores with it.

ALGORITHM 3: A Myopic Symmetric Thresholding Algorithm

Data: metric m(.) and threshold θ
Start with t = 0 and equal scores for all bidders (s0 = 0);
while there exist more ad slots do

t = t+ 1;
Receive ad slot at;
Set Bt = i : sit−1 ≥ θ;
Run the auction for at among bidders in Bt;
Update mt by including the bids for at;
Update st using st−1 and mt;

end

We end this section with a remark: we restrict ourselves to thresholding mechanisms—as

opposed to the broader class of randomized bidder targeting—because the expected revenue

earned from any randomized targeting can be written as the weighted sum of revenue earned

by different θ vectors. This sum is maximized when all the weight is put on a single (best)

threshold vector θ.
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A Linear Heuristic

Consider an auction with n bidders and let bi denote the bid of bidder i. Let b =

(b(1), b(2), · · · , b(n)) denote the ordered bid vector where the subscript (j) denotes the j-

th order statistic: b(1) ≥ b(2) ≥ · · · ≥ b(n). For any S ⊆ B, let R(S) denote the revenue that

the exchange earns if it calls all the bidders in S to the auction. We want to attribute to

each bidder i ∈ S part of the total revenue, which we denote by Ri, such that the attribution

satisfies the following properties for any set S:7

1. Symmetry: bidders with equal bids are attributed the same revenue: i, j ∈ S and

bi = bj ⇒ Ri = Rj .

2. Linearity: RS = AbS for some fixed matrix A. Throughout, for any vector x and

any set S, xS is a vector that is equal to 0 on any component i 6∈ S and equal to x

everywhere else.

3. Conservation of Revenue: the sum of attributions equals the total revenue:
∑

i∈S Ri =

R(S).

Proposition 4 For a second-price auction properties 1–3 uniquely identify A.

Shapley’s Linear Heuristic (ShA) works by computing and thresholding on the average value

of the above metric for each bidder. We next argue that the above heuristic estimates the

expected counterfactual revenue impact of adding a new bidder to an auction with respect

to a particular distribution. Let S denote the subset of bidders called to the auction, but

without bidder i. Consider two almost-duplicate worlds, one with bidders S∪ i called to the

auctions (the observable) and the other without the bidder in question, S (not observable,

i.e. counterfactual). If everybody participates, the impact on revenue of the intervention

— including i — is (R(S ∪ i)−R(S)). However, the set of bidders who actually end up

participating in the auction is a random variable. Suppose the probability of the subset

7The axioms introduced here bear similarity to those leading to Shapley values in cooperative game
theory (Shapley, 1952; Neyman, 1989), hence the naming.
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T ⊆ S of bidders ending up participating is Pr(T ). Then we can write the expected revenue

impact of adding i to S as follows:

R(S ∪ i)−R(S) =
∑
T⊆S

Pr(T ) (R(T ∪ i)−R(T ))

It is easy to see that the above is exactly equivalent to the calculation in Proposition 4 if

Pr(T ) = |T |!(|S|−|T |−1)!
|S|! . The above distribution is uniquely imposed due to the symmetry

property8.

Non-linear Heuristics

We now turn to propose and discuss the following (nonlinear) heuristics.

History of bidding above reserve (BAR) We call bidder i to an auction if the number

of times she has in the past bid above the reserve price for similar items exceeds some

threshold θi. Obviously, as we increase θi, the number of bidders called to the auction

decreases. As we will see in Section 3.1.4, the performance of this heuristic depends heavily

on the reserve price setting algorithm. The more accurate this algorithm is — in predicting

the auction winner, in predicting the winner’s bid — the better this heuristic performs. In

the ideal case where the pricing algorithm can predict exactly the winner’s bid, the BAR

heuristic maximizes the revenue: we only need to call to the auction the person who is

willing to pay the most and set the reserve price to a level just below her bid. Conversely,

consider the extreme case when the reserve price is 0 and therefore contains no information

about bidder interest: the bid-above-reserve metric is equal for all bidders, and the heuristic

BAR therefore performs poorly.

History of winning (WIN) We call bidder i to an auction if the average number of

times she has won in the past for similar items exceeds some threshold θi. This algorithm

8As a future generalization, one can discard this property and consider a more general linear approach
in which A(P ) × ~ek = ~pk, where ~pk = (pk1, .., pkk, 0, .., 0),

∑k
l=1 pkl = 1, and pkl ≥ 0.
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performs well in the absence of an accurate reserve price setting algorithm for the following

reason: The number of times a bidder wins in a segment indicates how interested she is in

similar impressions. So by calling these interested bidders, competition (and, therefore, the

second price) increases. The problem with this approach is that when multiple bidders have

equal interest in an impression segment. Instead of splitting the impressions among them,

this heuristic calls them simultaneously, driving competition up and dissipating bidders’

resources. To the extent that the price setting algorithm is accurate, WIN is wasteful. In

addition to the above drawback, a bidder may not win often in a segment, but still succeed

in setting a high second price for the winner. The WIN heuristic ignores this effect and

does not call such price-pressuring bidders to the auction.

Total spend (SPD) We call bidder i to an auction if her total spend for similar items

so far exceeds some threshold θi. This heuristic can be thought of as an extension of WIN,

one weighted not only by how many times a bidder wins in a segment, but also by how

much she spends upon winning.

Average ranking (RNK) We call bidder i to an auction if her average rank in past

auctions for similar items lies below some threshold θi. This heuristic can be thought of as

a generalized and smoothed version of WIN. With this heuristic the winner (i.e. the first

ranked bidder) is not the only one who receives credit. Rather, every bidder increases her

score proportional to the placement of where her bids stand relative to others.

Total bid (BID) We call bidder i to an auction if her total past bids for similar items

exceeds some threshold θi. The problem with this heuristic is the following: Consider a

bidder who bids low most of the time, but every once in a while submits an unreasonably

high bid to raise their average. This heuristic cannot distinguish this bidder from one that

consistently submits reasonably high bids.

Total attributed revenue (RVC) We call bidder i to an auction if her total attributed

revenue for similar items exceeds some threshold θi. Note that a bidder’s revenue impact
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manifests not only when she directly provides the winning bid, but also indirectly when

she influences the price of any other winners. The problem with this heuristic is that it

completely disregards the role bidders other than the first and second-highest could have

played in the auction. When the number of repetitions is not high, we expect ShA to

outperform this heuristic. As the number of repetitions increase, this heuristic converges to

ShA.

Shortly in Section 3.1.4 we see not only that our heuristics are faster, but also that they

outperform both baselines. One heuristic that deserves particular attention is ShA. ShA

does not suffer from the problems pointed out for non-linear heuristics above; we therefore

expect it to outperform them in practice. In Section 3.1.4 we see that this is indeed the

case.

3.1.4. Simulations

In this section we demonstrate our framework on both synthetic and real-world auction data.

By simulating each mechanism on such data, we estimate its immediate revenue impact and

social welfare impact using the estimators proposed in Section 3.1.2, and compare them

with the baselines in Section 3.1.3. As predicted earlier, we see that most of our heuristics

consistently outperform the baselines.

At a high level, our simulator receives the auction data and processes it one auction at a

time using the heuristic specified. For any given item, the simulator decides which subset

of bidders to call to the auction for that item (by setting the threshold value), simulates

the auction mechanism among those bidders, and finally calculates the revenue and social

welfare of the auction. By changing the threshold value θ, the percentage of called-out

bidders varies. That allows us to obtain a range of values for the performance metrics for

each heuristic as a function of the percentage of bidders called out.

In our simulations, we assume the qps rates are constant across bidders (qi = c for all i and

some constant c). This not only simplifies the simulation, but also, by enlarging the number
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of potential buyers in each auction, it implicitly increases the scale of each simulation. In

practice, when different bidders have different qps’s, one can designate different threshold

values for each one of them; these thresholds can be set to guarantee no bidder is called

out to more than their qps. More importantly, the above choice allows us to see how

each mechanism’s performance evolves as the percent of bidders it can keep in the auction

increases (i.e as we vary p). Based on the argument in Section 3.1.2, a callout mechanism

outperforms the baselines if: (1) By calling the same percentage p of bidders to auctions,

it results in revenue higher than both RQT and GRA. (2) By calling the same percentage

p of bidders to auctions, it results in social welfare at least as large as RQT. For example,

in Figure 9 the hypothetical callout mechanism outperforms both baselines.

Figure 9: A good callout mechanism (red) must exceed the baselines RQT (blue) and GRA
(cyan) in terms of revenue (left panel) while maintaining social welfare at least as large as
RQT (right panel).

Datasets

Synthetic auction data In this dataset each bidder’s bid is sampled from a fixed distri-

bution specific to that bidder. We generate the data as follows: We assume there is a total

of T items that arrive at time steps 1, 2, . . . , T . We have n bidders and each one of them

samples their bid from a log-normal distribution with a fixed but bidder-specific median

and variance. Note that the assumption that bids follow a log-normal distribution is stan-

dard in the literature and is backed by multiple empirical studies. See for instance (Wilson,

1998; Xiao et al., 2009; Ostrovsky and Schwarz, 2011). For each bidder the mean bid and
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variance is sampled from the uniform distribution with support on [0, µ] and [0, σ], respec-

tively. For simplicity, we assume the reserve price is fixed and equal to r across all auctions.

We generate M datasets with this specifications. By repeating out calculations on these

M datasets, we obtain confidence intervals for our empirical results. Throughout we set

n = 100, µ = 1, ε = 0.05,M = 10.

Real auction data This dataset consists of the bids observed on Google’s DoubleClick

Ad Exchange for a random set of 100 buyers, submitted over three consecutive weekdays

for a set of similar auctions. We ensure that the items are similar by restricting the queries

to a small industrialized upper-middle-income country and one type of device. For ease of

interpretation, we scale the observed bids so they are in units of reserve price, i.e. on the

same scale as the simulated auction data above with r = 1. For each bidder we generate

the missing/unobserved bids by resampling from the empirical distribution of her observed

bids.

Findings

Figures 10, 11, 12 illustrate the performance of our callout mechanisms along with the

baselines on the synthetic dataset for different setting of the parameters. The first row in

each figure depicts the revenue and the second row depicts the social welfare versus the

percentage of bidders called out to each auction. The third row depicts the average revenue

earned by each heuristic across all threshold values. This can be thought of as an overall

score for each algorithm. Figure 13 illustrates the performance of our callout mechanisms

on the real dataset.

Figure 10 illustrates the effect of the reserve price r on the performance of each callout

mechanism when the average variance σ across bidders is 1 and the number of items to be

auctioned off, T , is 100. We observe that regardless of the reserve price, the relative rank

of the heuristics in terms of the revenue integral, remains unchanged. For example ShA

always outperforms the other algorithms by an statistically significant margin. Also see
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Figure 10: The effect of reserve price on the performance of each callout mechanism. Here
T = 100 and σ = 1.

Figure 13 for a similar trend. As we expect, the performance of BAR improves as r grows

larger. Note that when the percentage of bidders called to each auction is high, WIN, SPD

and RVC fail to beat the RQT baseline. The reason is that these metrics give high scores

to only a small subset of bidders and assign the remainder of bidders scores that are about

equal. This induces the flat interval in the corresponding curves. In terms of social welfare,

our heuristics always outperform RQT, except for BAR and RNK. RNK does not maintain

sufficient social welfare when the percentage of bidders called to the auction is low. The

reason is obvious: RNK calls bidders with lowest (best) ranks, making the winner pay more

and degrading the social welfare as the result.

Figure 11 illustrates the effect of average bidding variance σ on the performance of each

callout mechanism when the reserve price r is fixed and equal to 1 and the number of items
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Figure 11: The effect of variance on the performance of each callout mechanism. Here
T = 100 and r = 1.

T is 100. As variance increases, we see a divergence in the performance of various heuristics.

In particular, the performances of GRA, BAR, RNK, and BID all start to deteriorate. Also,

when the percentage of called bidders is small, we observe a sudden jump in social welfare.

The heuristics exhibiting this phenomenon fail to maintain the auction pressure, dropping

the winner’s close competitors. As the result, the winner pays less, which boosts the social

welfare.

Figure 12 illustrates the effect of the number of items T on the performance of each callout

mechanism when the reserve price r is fixed and equal to 1 and the average variance σ across

bidders is 1. We see that as T increases, the difference between the performance of different

heuristics begins to vanish: the performance of all algorithms (expect RQT) converge to

that of ShA, even WIN.
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Figure 12: The effect of T on the performance of each callout mechanism. Here r = 1 and
σ = 1.

The main takeaway messages from the empirical results presented above are:

• It is easy to beat the RQT baseline. Even our crudest heuristics, WIN and SPD,

outperform RQT most of the time.

• Some of our heuristics outperform both baselines. More sophisticated heuristics, e.g.

RVC, RNK, BID, and ShA, consistently outperform the baselines.

• A good callout mechanism can significantly improve revenue. For example in certain

settings, ShA results in revenue up to 50% more than that of RQT and 25% more

than that of GRA.

• ShA > BID> { RNK, RVC, GRA} > {SPD, WIN, RQT, BAR }. And these results

are statistically significant across the settings investigated here.
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Figure 13: The performance of each callout mechanism on the real auction dataset. Here
n = 100, σ = 130, and r = 1.

• The more information a heuristic contains about the revenue impact of bidders, the

better it performs. We believe this is why ShA outperforms all the other heuristics:

As we noted earlier, ShA estimates the counterfactual revenue impact of each bidder,

and as a result improves revenue the most. Overall better heuristics call out more

specifically to bidders with greater revenue impact.

3.1.5. Discussion and Future Directions

We presented a framework for evaluating the performance of callout mechanisms in repeated

auctions using historical data only. Our framework is general enough to enable the study

of other heuristics in settings beyond those considered here (e.g. alternative auction mech-

anisms, bidding distributions, etc.). In future, we intend to investigate the performance

of more complicated callout mechanisms, including ones with more sophisticated learning

steps; ones that combine multiple heuristics in a single score; ones that target bidders by

means not easily represented by single-metric thresholding; and mechanisms that use online

dynamic (as opposed to myopic) targeting.

3.2. Improving Workers in Online Labor Markets

In the well-studied multi-armed bandit setting, a decision maker is faced with the problem

of choosing which arm to play over a sequence of trials. Each time the decision maker

pulls an arm, he receives a reward, and his goal is to minimize some notion of regret .

The majority of previous studies consider the so-called external regret as the objective.

External regret is the difference between the total reward collected by an online algorithm
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and the maximum reward that could have been collected by pulling a single arm on the

same sequence of rewards as the one generated by the algorithm. Past solutions to this

problem can be divided into two main categories: first, solutions that rely on statistical

assumptions about the underlying reward process (see for instance(Robbins, 1985; Gittins

et al., 2011; Auer et al., 2002b)); and second, solutions for the setting where an adversary,

who is capable of reacting to the choices of the decision maker, determines the sequence of

rewards (see e.g. (Auer et al., 2002b)).

Our goal in this work is to minimize a stronger notion of regret, namely policy regret, in

a setting where the reward from each arm changes monotonically9 every time the decision

maker pulls that arm. More precisely, in the model we propose, there exist n arms, each

with a reward curve that is unknown to the decision maker. Every time the decision maker

pulls an arm, the corresponding reward of that arm monotonically changes according to its

underlying reward curve.

Unlike traditional statistical approaches, we do not make probabilistic assumptions on the

behavior of the arms; and unlike traditional adversarial approaches, we do not assume

a fixed sequence of payoffs against which we measure our regret. In particular, under

our assumptions the algorithm itself is actually generating the sequence of payoffs via its

decisions. The right notion of regret is thus not comparing to the best single arm in hindsight

on the sequence generated (external regret), but to the best sequence that could have been

generated — that is, to the optimal policy that knows the reward functions. This stronger

notion is what is called policy regret in the literature (Arora et al., 2012). The following

simple example further illustrates the difference between policy and external regret.

Example 1 Consider a setting in which there are two arms and time horizon T � 10.

Arm 1 returns a reward of i
T when pulled for the ith time, and arm 2 always returns a

reward of 0.1. Consider the algorithm that always pulls arm 2. The external regret of this

algorithm is zero because at every time step, it pulls the arm that would give it the largest

9See (Slivkins, 2011) for other motivating examples and a different formalization of monotone bandits.
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reward on that time step. But the policy regret of this algorithm grows linearly with T , as

the best policy in hindsight indeed pulls arm 1 at every time step. 10

We are motivated by settings in which the available actions correspond to the assignment

of a sequence of relatively homogeneous tasks to one of a finite set of workers, as is often

the case in crowdsourcing systems (see for example (Tran-Thanh et al., 2014; Heidari and

Kearns, 2013)). In such settings, it is reasonable to expect that workers’ performance may

improve or decay with repeated trials, depending on the nature of the task. For example,

tasks that are unfamiliar and challenging (such as segmenting brain images into individual

neurons (Seung, 2015)) may require a training period during which performance gradually

improves. In contrast, in a task primarily requiring only human perception (such as the

transcription of license plates in images (Barowy et al., 2012; Du et al., 2013)), subjects

may immediately be able to perform the task at a high level, but its tedious and taxing

nature may lead to performance decay with increased workload. In both cases, different

subjects may have different rates of improvement or decay.

The rest of this paper is organized as follows: In Section 3.2.1, we introduce the model.

In Section 3.2.2, we study the case of increasing and concave reward functions and present

an optimal online algorithm whose policy regret depends on a parameter we call τ . This

parameter quantifies the time required to distinguish the optimal arm from the others, and

we prove the dependence is necessary. We prove that the policy regret of this algorithm

is sublinear and further illustrate the range of behaviors of τ and the performance of the

algorithm via simulations. Finally, in Section 3.2.3 we investigate the case of decreasing

rewards and present a provably optimal algorithm whose policy regret is constant and upper

bounded by the number of arms.

10It is easy to adapt this example to show that specific algorithms with no external regret, such as EXP3,
will indeed fail to have small policy regret.
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Related Work

As discussed in (Arora et al., 2012), the notion of external regret fails to capture the actual

regret of an online algorithm compared to the optimal sequence of actions it could have

taken when the adversary is adaptive. Policy regret is defined to address this counterfactual

setting. The authors show in (Arora et al., 2012) that if the adaptive adversary has bounded

memory, then a variant of traditional online learning algorithms can still guarantee no policy

regret. In our work, the rewards depend on all the actions taken so far and as the result

our model is not captured by the bounded memory setting.

While our model is not captured by any of the previous papers in the bandit literature, the

following papers are conceptually related. Tekin and Liu (2012) study a setting in which

the reward from each arm is modeled as a finite-state Markov chain. Authors consider two

cases: rested and restless arms. In the rested case, the state of each underlying Markov

chain remains frozen unless the corresponding arm is played. While in our setting the arms

are indeed rested, the reward process we study cannot be modeled by a finite-state Markov

chain (see also (Neu et al., 2014)). Gabillon et al. (2013) study the problem of picking a

subset of arms at each step in a setting where the reward is a submodular function of the

chosen subset. Streeter et al. (2009) study the problem of assigning items to K positions

such that a submodular utility function is maximized. Finally, our model is somewhat

related to the line of research on best arm identification, however, previous studies on this

topic mainly rely on stochastic assumptions on the rewards (see for example (Audibert and

Bubeck, 2010),(Chandrasekaran and Karp, 2012)), and they do not apply to our setting.

There is much work in the psychology literature studying the human learning process on

cognitive tasks (see e.g. (Atkinson et al., 1965; Mangal, 2009)), but to our knowledge ours

is the first to model it in a bandits setting. There are however, a limited number of

papers addressing relevant questions from a heuristic or empirical viewpoint (see (Basu and

Christensen, 2013; Singla et al., 2013)).
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3.2.1. Model and Preliminaries

The decision maker has access to n arms denoted {1, 2, ..., n}. At each time step t (t =

1, 2, ..., T ) he has to decide which arm to pull. Every time the decision maker pulls an arm,

he collects a reward and his goal is to pull the arms in such a way that his policy regret (to

be formally defined shortly) is minimized. We assume the decision maker knows the time

horizon T in advance.

We model the reward process of the arms as follows: Each arm k has a fixed underlying

reward function denoted by fk(.). When the decision maker pulls arm k for the mth time

(m ≥ 1), he receives an instantaneous reward equal to fk(m). The cumulative reward from

pulling arm k for m times is denoted by Fk(m) and is equal to fk(1) + fk(2) + ...+ fk(m).

We assume that all the reward functions are bounded from below by 0 and from above by

111.

A deterministic policy π of length T is a sequence of mappings 〈π1, π2, ..., πT 〉 from the

histories to the arms. That is,

πt : {1, 2, ..., n}t−1 × [0, 1]t−1 −→ {1, 2, ..., n}

prescribes the arm that must be pulled at step t given the history of actions and rewards

observed so far. Given the reward functions f1(.), ..., fn(.) and a deterministic policy π, the

arm that the policy picks at each time step t is deterministic and is denoted by it. Let btk(π)

be the instantaneous reward of arm k under policy π. More precisely, suppose the decision

maker has followed policy π up until time (t− 1). btk(π) denotes the reward of playing arm

k at time t. (As it is usually clear from the context what policy we are referring to, for

simplicity we drop π in our notation.) Note the difference between fk(t) and btk: unlike

fk(t), b
t
k depends on the history of actions taken so far, in particular, the number of times

arm k has been pulled before time t by policy π. We denote by r(π) the total reward that

11It is easy to see that without this assumption no algorithm can guarantee sublinear policy regret.
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a policy π collects, so r(π) =
∑T

t=1 b
t
it

. Note that the total reward of a policy only depends

on the number of times each arm is pulled and not the order.

Given the reward functions f1(.), ..., fn(.) and T , let OPT be the policy that maximizes the

total reward. In the online setting, the decision maker does not know the reward functions

in advance and seeks to design a (possibly randomized) algorithm A so that the total reward

he collects is as close as possible to that of OPT. In other words, the decision maker’s goal

is to minimize his policy regret which is defined as r(OPT)−Er(A). We say that an online

algorithm A has sublinear policy regret if

lim
T→∞

r(OPT)− Er(A)

T
= 0.

3.2.2. Increasing Reward Functions

The Offline Setting

We first show that when the reward curves are all increasing, there exists a single best

arm that the optimal policy must repeatedly pull. Despite this fact, merely having the

guarantee of no external regret would not be sufficient to guarantee no policy regret here

(see Example 1).

Proposition 5 Suppose for all 1 ≤ k ≤ n, fk(.) is increasing. Then there exists an arm

k∗T such that the optimal offline policy OPT consists of pulling k∗T for all T trials.

Proof Assume OPT pulls arm k, Tk times (so
∑n

i=1 Ti = T ). Suppose there exist arms i, j

for which Ti, Tj > 0. We claim that fi(0) = fj(0) = fi(Ti) = fj(Tj). In other words, fi, fj

are both flat and identical. If this holds, the policy OPT remains optimal if we replace

every occurrence of i in it with j. Repeating this for any two arms i′, j′ with Ti′ , Tj′ > 0,

we see that OPT consists of pulling a single arm T times.

To prove the above claim, we first note that since all the fks are increasing, it must be
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(a) (b)

Figure 14: (a) The optimistic (light grey) and pessimistic (dark grey) estimate. (b) The
lower bound example.

that fi(Ti) ≥ fj(Tj). Otherwise one could collect a reward larger than OPT by never

pulling arm i and instead pulling arm j for Tj + Ti times. But this is a contradiction with

optimality of OPT. Similarly fi(Ti) ≤ fj(Tj) and therefore, we can conclude fi(Ti) = fj(Tj).

Next we observe that fi(0) ≥ fj(Tj). Otherwise, given that fi(Ti) ≤ fj(Tj), one could

collect a reward larger than OPT by never pulling arm i and instead pulling arm j for

Ti additional times. Combining this with the previous equality, we can conclude that

fi(Ti) ≥ fi(0) ≥ fj(Tj) = fi(Ti) and therefore, fi(0) = fi(Ti). Similar argument holds for j

as well. Therefore, fi(Ti) = fi(0) = fj(Tj) = fj(0). This proves our claim and finishes the

proof.

The Online Setting

In addition to being increasing and bounded, we assume the learning curves satisfy decreas-

ing marginal returns (see Section 3.2.4 for a discussion of why this assumption is needed).

More precisely, for any arm k we assume

∀t ≥ 1 : fk(t+ 1)− fk(t) ≤ fk(t)− fk(t− 1)

If we think of the reward curves as continuous functions, the concavity of fk would give

us decreasing marginal returns. Therefore we slightly abuse the terminology and refer to

this property as “concavity”. We emphasize that the concavity assumption is very natural

and common in the context of human learning (see for example (Son and Sethi, 2006))
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and in particular, concave learning curves have been shown to arise in various laboratory

environments (see for example (Jovanovic and Nyarko, 1995; Anderson and Schooler, 1991)).

For the case where the reward functions are all increasing, bounded and concave, we in-

troduce an online algorithm whose policy regret bound, as we shall prove, is sublinear and

optimal. Our algorithm is motivated by the following observation: Suppose we initially pull

arm k, t times and observe fk(1), fk(2), ..., fk(t). After this, given that fk is increasing, we

can be sure that for any t < s ≤ T , fk(s) ≥ fk(t). In other words, the additional reward

that can be collected from arm k in the remaining (T − t) steps is minimized if fk flattens

at t. We define the pessimistic estimate of the total reward from arm k (denoted by qtk(T ))

to be equal to the total reward of a function f ′k that is identical to fk up to t, and then

flattens out12 (see Figure 14 (a)).

In addition to the above lower bound, concavity yields an upper bound on future payoffs.

The additional reward that can be collected from arm k in the remaining (T − t) steps

is maximized if the function continues to grow linearly with rate (fk(t)− fk(t− 1)). We

define the optimistic estimate of the total reward from arm k ( denoted by ptk(T )) to be

equal to the total reward of a function f ′′k that is identical to fk up to t, and then continues

to grow linearly with rate (fk(t)− fk(t− 1)) until it hits 1 13(See Figure 14 (a)).

Since all the reward curves are increasing, by Proposition 5 we know that there exists a

single best arm that is repeatedly pulled by the optimal policy. Therefore we seek to detect

this arm. Our algorithm operates as follows: it maintains a set of candidate arms in which

the best arm is guaranteed to lie. At each round, it pulls all the arms in the candidate

set exactly once, and updates both optimistic and pessimistic estimates of the reward from

these arms. If at some round the optimistic estimate of an arm k is less than or equal to

the pessimistic estimate of another arm in the candidate set, then we are sure that k can

not be the optimal arm, and therefore the algorithm eliminates it from the candidate set.

12To be more precise, qtk(T ) = Fk(t) + fk(t)(T − t).
13To be more precise, ptk(T ) = Fk(t) +

∑T
s=t+1 min{1, fk(t) + (fk(t)− fk(t− 1)) (s− t)}.
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ALGORITHM 4: The online algorithm for concave and increasing reward functions (A1)

t = 0;
% t is the index of the current phase. S = {1, ..., n};
% S is the set of remaining candidate arms. Pull every arm exactly once;
repeat

only one arm remains in S or time runs out;
until t = t+ 1; % Start a new phase for each i ∈ S do

Pull arm i once;

pti(T ) = Fi(t) +
∑T

s=t+1 min{1, fi(t) + (f(t)− f(t− 1)) (s− t)};
% Update the optimistic estimate. qti(T ) = Fi(t) + fi(t)(T − t);
% Update the pessimistic estimate.

end
for i 6= j ∈ S do

if qtj(T ) > pti(T ) % i.e. there exists an arm whose total reward is

guaranteed to be larger than that of arm i then
S = S \ {i};

end

end
;
For the remaining steps (if any), pull the only arm left in S;

See algorithm 4 for the details. We refer to this algorithm by A1.

For the coming theorem, we make use of a quantity that captures the time required to

distinguish the optimal arm from the others. More precisely, we define τ(T ) = maxk τk(T )

where

τk(T ) = arg min
t

{
qtk∗T

(T ) > ptk(T )
}

and k∗T is the optimal arm for the time horizon T . Thus τk(T ) specifies the smallest number

of times we need to pull both arm k and k∗T so that the optimistic estimate of the total

reward from arm k falls behind the pessimistic estimate of the total reward from arm k∗T .

We now prove that the policy regret of A1 is bounded by nτ(T ), and show that this is

optimal. Eventually in Theorem 14 we shall prove the regret of A1 is in fact sublinear.

Theorem 13 Suppose for all 1 ≤ k ≤ n, fk(.) is concave, increasing, bounded from below
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by 0 and from above by 1. Then14

r(OPT)− r(A1) ≤ nτ(T ).

Furthermore, the policy regret bound of A1 is optimal: there exists a family of examples

consisting of bounded, increasing and concave reward functions for which no algorithm can

be guaranteed to have a policy regret bound of o(nτ(T )).

Proof Observe that A1 detects the optimal arm after at most τ(T ) phases. This is simply

because a suboptimal arm k is removed from S by phase τk(T ). In addition, note that arm

k∗T can never be removed from S due to its optimality. Therefore, we can conclude that the

number of times when A1 pulls suboptimals arm is at most nτ(T ). Combining this with

the fact that the reward per step is upper-bounded by 1 yields the desired inequality.

For the lower bound, fix a constant τ < T , and consider n arms that all have linear reward

curves with identical slope of 1
2(τ−1) , until they reach payoff 0.5 at time (τ − 1). Then

(n− 1) of the curves stay at 0.5 forever, whereas one of them selected at random continues

to 1 (see Figure 14 (b)). It is easy to see that for any T > τ , τ(T ) = τ . Using Yao’s

min-max principle (Yao, 1977), we lower-bound the regret of any deterministic algorithm

on the above randomized setting. Let us define the number of arms an algorithm verifies to

be equal to the number of arms that it pulls at least τ times (note that this is well-defined

for any deterministic algorithm). It is easy to see that in this example, no algorithm can

find the optimal arm with high probability by verifying o(n) arms. To see this, first note

that in order to see whether an arm is optimal, the algorithm has to pull it at least τ

times. Assume, without loss of generality, that the first arm that the algorithm verifies is

arm 1, the second one is arm 2, and so on. Since the index of the optimal arm is chosen

uniformly at random, the expected number of arms the algorithm must verify before finding

the optimal arm is equal to
∑n−1

i=0
i
n = 1

n
n(n−1)

2 = (n−1)
2 . Every time the algorithm verifies

14One can easily see that with the exact same logic as the one in the proof of Theorem 13, we can get a
slightly better upper bound of

∑n
k=1 τk(T ) on the regret, but to simplify the statement of the theorem and

its proof, we work with the worst case upper bound of nτ(T ).

92



a sub-optimal arm, it fails to collect at least 0.5τ units of reward from the optimal arm,

and instead obtains a reward on average equal to 0.25τ . As a result the policy regret of the

algorithm is lower bounded by τ(n−2)
2 .

Next we show that the policy regret of Algorithm 4 is in fact sublinear for any choice of

bounded, concave and increasing reward functions f1(.), ..., fn(.). The following notation

will be useful in our argument: we denote the asymptote of fi(.) by ai, i.e.

ai = lim
t→∞

fi(t).

Note that since fk(.) is increasing and bounded, the asymptote exists and is finite. Also for

any arm i limT→∞
Fi(T )
T = ai. We define a∗ to be max1≤i≤n ai, and

∆i(t) = fi(t)− fi(t− 1).

Theorem 14 For any set of bounded, concave, and increasing reward function f1(.), ..., fn(.),

the policy regret of A1 is sublinear.

Here is the outline of the proof: We start by observing that for large values of T , the optimal

arm must have the largest asymptote among other arms (note that we don’t assume there

is only one arm with maximum asymptote). Therefore a suboptimal arm i can be of one of

the following two types:

1. The asymptote of arm i is smaller than that of the optimal arm; For this case, we

show that A1 dismisses arm i from its candidate set within o(T ) phases. As a result

the regret from pulling arm i cannot not large.

2. The asymptote of arm i is equal to that of the optimal arm; For this case, we show

that while A1 may fail to determine the suboptimality of arm i quickly, since the

asymptote of i is as large as the optimal arm, pulling it does not add much to the

policy regret of A1.
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Proof Observe that limT→∞ ak∗T = a∗; in other words, if T is sufficiently large, then

k∗T ∈ arg max1≤i≤n ai. Throughout, we assume T is large enough so that the latter holds.

Let W = arg maxk ak. We start by showing that if i 6∈ W (i.e. ai < a∗), then A1 removes

arm i from its candidate set within o(T ) phases.

Lemma 5 For arm i, if ai < a∗, then limT→∞
τi(T )
T = 0.

Proof Suppose that the statement of the lemma does not hold and limT→∞
τi(T )
T 6= 0. This

means that for any unbounded and increasing sequence {γT }∞T=1 for which limT→∞
γT
T = 0,

there exists an infinite subsequence of T ’s such that qγTk∗ (T ) < pγTi (T ). Expanding this, we

have15

Fk∗T (γ) + (T − γ)fk∗T (γ) ≤ Fi(γ) +
∑
s>γ

min{1, fi(γ) + ∆i(s− γ)}

≤ Fi(γ) +
∑
s>γ

fi(γ) + ∆i(s− γ)

The above is equivalent to

(
Fk∗T (γ)− Fi(γ)

)
+ (T − γ)

(
fk∗T (γ)− fi(γ)

)
≤

∑
s>γ

∆i(s− γ)

≤ ∆i
(T − γ + 1)2

2

≤ ∆i
T 2

2

Therefore combined we have:

Fk∗T (γT )− Fi(γT ) + (T − γT )
(
fk∗T (γT )− fi(γT )

)
< ∆i(γT )

T 2

2
(3.1)

Now note that if T (and as a result γT ) is large enough, then Fk∗T (γT ) ≥ Fi(γT ) and

fk∗T (γT ) − fi(γT ) ≥
ak∗
T
−ai

2 = a∗−ai
2 . Let C = a∗−ai

2 (recall that due to our assumption

about arm i, C > 0). Therefore from (3.1) we obtain that C(T − γT ) < ∆i(γT )T
2

2 and as a

15To simplify the notation in this equation we drop the subscript T . Also by δi we mean ∆i(γ).
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result

C(T − γ) < ∆i(γ)
T 2

2

⇒ C(T − γ)

T
< ∆i(γ)

T

2

⇒ lim
T→∞

C(T − γ)

T
≤ lim

T→∞
∆i(γ)

T

2

⇒ C ≤ lim
T→∞

∆i(γ)
T

2

where the last inequality follows from the fact that limT→∞
γT
T = 0. So we have

C ≤ lim
T→∞

∆i(γT )
T

2
(3.2)

Next, one can easily verify that limT→∞∆i(γT )T = 0. To see this note that

∞∑
t=1

∆i(t) ≤ 1

⇒
∞∑
t=1

∆i(t)T ≤ T

⇒ lim
t→∞

∆i(t)T = 0

⇒ lim
t→∞

∆i(γT )T = 0

where the last inequality follows from the fact that {γT }∞T=1 is positive, increasing and

unbounded. This combined with (3.2) yields C ≤ 0, which is a contradiction.

Using Lemma 5, we can conclude that for any arm i 6∈ W our algorithm can distinguish i

from k∗ within o(T ) phases. In other words, after a prefix of at most o(T ) many phases,

A1 eliminates every arm i 6∈W .

Second we show that if i ∈W (i.e. ai = a∗), while A1 may fail to detect the suboptimality

of arm i quickly, pulling arm i does not add much to the policy regret of A1.
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Lemma 6 Let Ti denote the number of times A1 pulls arm i ∈W . Then

lim
T→∞

Fk∗T (T )−
∑

i∈W Fi(Ti)

T
= 0.

Proof If i ∈W gets eliminated within o(T ) phases, it can not cause the algorithm to suffer

from a linear policy regret. Now consider a subset W ′ of W consisting of any suboptimal

arm i for which it takes Θ(T ) steps for the algorithm to eliminate i.

Given that the arms not in W ′ can all be detected in T ′ = o(T ) time steps, we have that

T −
∑

i∈S′ Ti = T ′ = o(T ). Let w ∈W ′ be the arm for which Fi(Ti)
Ti

is the smallest. We have

Fk∗T (T )−
∑
i∈W ′

Fi(Ti) = Fk∗T (T )−
∑
i∈W ′

Ti
Fi(Ti)

Ti

< Fk∗T (T )−
∑
i∈W ′

Ti
Fw(Tw)

Tw

= T
Fk∗T (T )

T
− (T − T ′)Fw(Tw)

Tw

= T (
Fk∗T (T )

T
− Fw(Tw)

Tw
) + T ′

Fw(Tw)

Tw

≤ T

(
Fk∗T (T )

T
− Fw(Tw)

Tw

)
+ o(T )

That is,

Fk∗T (T )−
∑
i∈W ′

Fi(Ti) ≤ T
(
Fk∗T (T )

T
− Fw(Tw)

Tw

)
+ o(T ) (3.3)

It only remains to show that

T

(
Fk∗T (T )

T
− Fw(Tw)

Tw

)
= o(T ) (3.4)

But this is certainly true as limT→∞
Fk∗
T

(T )

T = limTw→∞
Fw(Tw)
Tw

= a∗. Combining (3.3),

(3.4), we have the desired result.

Combining Lemma 5 and 6 we obtain the sublinearity of the policy regret for A1.
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Figure 15: The first row illustrates f1 (black) and f2 (grey curves); the second and third
rows illustrate τ and the regret respectively.

Finally, we remark that if the decision maker only gets to observe a corrupted version of

the rewards and the corruption is bounded by some ε > 0, then A1 is guaranteed to have

a total reward at least equal to r(OPT) − nτ ε(T ). τ ε(T ) is the corrupted version of τ(T )

in which the optimistic and pessimistic estimate from an arm are computed by taking the

presence of noise into account 16 .

Simulations

So far we have established two upper bounds on the regret of A1: in Theorem 13 we gave an

upper bound of nτ(T ), and in Theorem 14 we showed that the regret of is always sub-linear.

In this section we empirically investigate the performance ofA1 on several illustrative reward

16More precisely, τ ε(T ) = maxk τ
ε
k(T ) and τ εk(T ) = arg mint{qt,εk∗

T
(T ) > pt,εk (T )} where pt,εk (T ) = Fk(t) +∑T

s=t+1 min{1, fk(t) + ε+ (f(t)− f(t− 1) + 2ε) (s− t)} and qt,εk (T ) = Fk(t) + (fk(t)− ε)(T − t).
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curves, and observe that τ(T ) (and the regret of our algorithm) are typically significantly

sublinear in T .

Throughout, for simplicity we set n to 2 and consider two arms 1, 2 where the asymptote

of f1 is 1 and that of f2 is 0.5. In Figure 15, we report the value of regret and τ versus

T = 500, ..., 30000 for three different sets of examples.

In the first column of Figure 15, f1(t) = 1 − t−0.5 and

f2(t) = 0.5 − 0.5t−α where α = 0.1, 0.5, 1, 5. Each of these values corresponds to a dif-

ferent rate of increase for f2. The larger α is, the faster f2 converges to its asymptote. In

this example for all values of α, τ increases slowly (sub-linearly) with T and as a result re-

gret consistently decreases with T . The reason for the slow growth of τ is that f1 converges

to its asymptote very quickly; in addition, the rate with which f2 increases, approaches 0

fast. This enables the algorithm to find and dismiss the suboptimal arms early on.

In the second column, f1(t) = min{1, t
30000} and

f2(t) = min{0.5, 0.5( t
30000)α} where α = 0.03, 0.1, 0.4, 1. The smaller α is, the faster f2

converges to its asymptote. Here when τ increases linearly or faster with T , the regret

increases as well. Note that this does not contradict Theorem 14 as the theorem holds

for large enough values of T only. Notice that for α = 0.03, 0.1, 0.4, τ spikes at around

T = 10000 and then drops. The reason for this behavior is that at that point, the optimal

arm changes from arm 2 to arm 1.

Finally in the third column of Figure 15, f1(t) = 1 − t−0.1 and f2(t) = 0.5 − 0.5t−α where

α = 0.1, 0.5, 1, 5. It might come as a surprise that in this example, at the points when

τ peaks, regret actually drops. Of course this does not contradict Theorem 13. While

this theorem guarantees small regret when τ grows slowly with T , if τ increases linearly

or faster, it does not necessarily imply that Algorithm 4 must suffer a large regret. For

example, when α = 5 and T ≤ 2500, arm 1 is the sub-optimal arm, however, its reward is

just slightly worse than that of the optimal arm (arm 2). Given that the rate of increase of
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the sub-optimal arm is sufficiently large, the algorithm fails to detect the optimal arm and

instead keeps pulling the two an equal number of times. However, since the reward from

the sub-optimal arm is getting closer to that of the optimal arm, the regret decreases. Note

that this was not the case for the example in column 2.

3.2.3. Decreasing Reward Functions

Optimal Offline Policy

When all the reward functions are decreasing, there exists a simple greedy approach that

can compute the optimal offline policy. The proposed policy, A0, works as follows: At

each time, pull the arm that results in the highest instantaneous reward. More precisely,

if up to time step t, arm i has been pulled ti times (1 ≤ i ≤ n), then pull an arm in

arg maxi fi(ti + 1).

Proposition 6 Suppose for all 1 ≤ k ≤ n, fk(.) is decreasing. Then r(A0) = r(OPT).

Proof We prove that A0 maximizes the total reward for any set of reward functions

using induction on T . If T = 1, it is obvious that the optimal action is to pull the arm

that results in the highest instantaneous reward; more precisely, in order to maximize the

reward, one should pull arm k∗ where k∗ ∈ arg maxk fk(1) and this is exactly what A0 does.

Suppose that our claim holds for T ≤ m. Now consider the case of T = m + 1. Consider

the policy OPT of length (m + 1) that maximizes the total reward for the given set of

reward functions f1, ..., fn. Let k∗ ∈ arg maxk fk(1) be the arm that A0 initially pulls. We

first show that, without loss of generality, we can assume OPT pulls arm k∗ at least once.

Suppose it does not. Consider the last action that OPT takes. Suppose it pulls arm k for

the T ∗k ’th times. Due to the fact that fk is decreasing and due to the definition of k∗, we

have fk(Tk) ≤ fk(1) ≤ fk∗(1). In other words if instead of k, in the last step OPT pulls k∗,

the total reward it collects can only improve. Therefore without loss of generality we can

assume OPT pulls arm k∗ at least once.
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Now let gk∗(t) = fk∗(t + 1). Remove the first occurrence of k∗ from OPT, and call the

remaining policy π. Obviously, π, which is of length m, must maximize the total reward

from arms with reward curves f1, ..., gk∗ , ..., fn, otherwise the total reward of OPT could be

increased and this contradicts the optimality of OPT. Now applying the induction hypoth-

esis, we know that A0 also maximizes the total reward for f1, ..., gk∗ , ..., fn. Therefore we

can conclude that the total reward that A0 collects is equal to that of π. This finishes the

proof.

The Online Setting

As the above theorem shows, in the case of decreasing reward functions, there does not

necessarily exist a single best arm that an online algorithm should track. Rather, the

optimal algorithm needs to quickly react and switch to another arm when the reward from

the current one drops.

We introduce a greedy online algorithm that can guarantee constant (and therefore sub-

linear) policy regret when all the reward curves are decreasing. The algorithm, which we

call A2, does not need to know T in advance and works as follows: Intuitively, after the

initial prefix of n actions, A2 chooses a policy that is identical to the optimal greedy policy.

The only difference is that for each action, it is getting a reward that is diminished by

one additional time unit compared to the offline optimal benchmark. In sum, compared

to the optimal algorithm, it loses at most one unit of reward from each action. But each

instantaneous reward is bounded in [0, 1], so the loss is at most n. See Algorithm 5 for

further details.

Theorem 15 Suppose for all 1 ≤ k ≤ n, fk(.) is decreasing, bounded from below by 0 and

from above by 1. Then

r(OPT)− r(A2) ≤ n.

Furthermore, the policy regret bound of A2 is optimal: there exists a family of examples con-
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ALGORITHM 5: A no policy regret algorithm for decreasing reward functions (A2)

for 1 ≤ k ≤ n do
Pull arm k once;
mk = 1;
%mk is the number of times arm k has been pulled so far Rk = fk(1);
%Rk is the most recent instantaneous reward collected from arm k

end
for n+ 1 ≤ t ≤ T do

Pull arm j where j ∈ arg maxkRk;
Rj = fj(mj + 1);
mj = mj + 1;

end

sisting of bounded and decreasing reward functions for which no algorithm can be guaranteed

to have a policy regret bound of o(n).

Proof Suppose for all 1 ≤ k ≤ n, OPT pulls arm k, T ∗k times and A2 pulls it Tk times.

First note that for any arm k and any t ≤ min{T ∗k , Tk}, both OPT and A2 receive an

instantaneous reward equal to fk(t) when they pull arm k for the t’th time. Thus these

two instantaneous rewards cancel each other out in r(OPT) − r(A2). It only remains to

investigate the actions that A2 and OPT differ on.

Let U be the subset of arms for which Tk > T ∗k and V be the subset of arms for which

T ∗k > Tk. Note that if one of U or V is non-empty, the other one has to be non-empty as

well. For any arm i ∈ V , let `i be the last instantaneous reward A2 collects from arm i, i.e.

`i = fi(Ti). Let i∗ = arg maxi∈V `i. Now consider the time when A2 pulls arm j ∈ U for the

tth time where (T ∗j +1) < t ≤ Tj (if no such t exists, then T ∗j +1 = Tj which means A2 pulls

arm j just once more than OPT). Suppose that so far, A2 has pulled arm i∗, s ≤ Ti∗ times.

Given that A2 chooses to pull arm j, we know that at that time Rj ≥ Ri∗ , or equivalently,

fj(t − 1) ≥ fi∗(s). Also, given that fk’s are all decreasing, we have that fi∗(s) ≥ fi∗(Ti∗).

Due to the way i∗ has been chosen, we know that for all i ∈ V , `i∗ ≥ `i, or equivalently,

fi∗(Ti∗) ≥ fi(Ti). Given that fk’s are all decreasing, we have that for all i ∈ V and r ≥ Ti,

fi(Ti) ≥ fi(r). Combining the last four inequalities, we have that for all i ∈ V and r ≥ Ti,

fj(t− 1) ≥ fi(r). This inequality means that except for at most 1 step (i.e. the Tjth time
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A2 pulls arm j ∈ U), those extra times at which A2 pulls arm j results in a reward larger

than any of the instantaneous rewards that OPT collects and A2 doesn’t. In other words

A2 wastes at most 1 time step on arm j. Given that the rewards are all upper bounded by

1, we can conclude that r(OPT )− r(A2) ≤ |U | ≤ n.

For the lower bound, consider n arms, (n − 1) of which have a reward function equal

f(t) = 1[t = 1]; and one of them (which we call k∗) chosen uniformly at random has a

reward function always equal to 1. Note that in order to verify whether an arm is the

optimal arm, any online algorithm has to pull it at least twice. If a suboptimal arm is

pulled for the second time, we say the algorithm made a mistake. It is easy to see that in

this example, no online algorithm can be guaranteed to find the optimal arm by making

o(n) mistakes in expectation. Assume without loss of generality that the first arm that the

algorithm verifies (i.e. pulls for the second time) is arm 1, the second one is arm 2, and

so on. Since the index of the optimal arm is chosen uniformly at random, the expected

number of mistakes the algorithm makes before detecting k∗ is equal to
∑n−1

i=0
i
n = (n−1)

2 .

This means that the algorithm makes Θ(n) mistakes in expectation. Given that every time

the algorithm makes a mistake, it loses 1 unit of reward, the policy regret of the algorithm

is lower bounded by (n−1)
2 . This finishes the proof.

We conclude with a few remarks: First, one can easily see that if the decision maker only

gets to observe a corrupted version of the rewards and the magnitude of the corruption

is bounded by ε > 0, then A2 is guaranteed to have a total reward at least equal to

r(OPT)− n− εT .

Second, we note that the greedy approach presented here fails to perform well in the in-

creasing setting, since there the optimal arm can have the lowest payoff at time 1, and

therefore never gets pulled by the greedy algorithm.
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3.2.4. Discussion and Future Directions

We presented no-policy regret algorithms for two settings: one in which all the reward

functions were concave and increasing, and another where all the rewards were decreasing.

We saw that even this simplified setting leads to non-trivial questions. We consider our

work as a first step towards designing no-regret algorithms in settings where the rewards

are neither stochastic nor fully adversarial.

Here are some interesting open questions raised by the results presented here.

• Non-concave improving bandits. The concavity assumption allows one to infer

upper and lower bounds on the total reward of each arm with certainty. This is what

our analysis relied on heavily to guarantee no policy regret. The same idea cannot

be readily applied to settings where the rewards are increasing but non-concave. The

existence of a no-policy regret algorithm for such settings remains an interesting open

question.

• Bandits that improve initially, then decay. We assumed either all the reward

functions are increasing or they are all decreasing. A natural and interesting question

is whether it is possible to guarantee no policy regret in the case where the learning

curves are concave and increasing at first, but then start decaying from some point on.

It is easy to see that this is not simply achievable by naively combining the algorithms

presented here.

• Statistical noise. Our algorithms can handle small amounts of adversarially gener-

ated noise. An important question is whether a similar regret bound can be shown to

hold if the noise is generated stochastically. One natural idea to extend our work to

this setting is to estimate the gradient of the reward functions and the corresponding

confidence intervals using past observations, then follow a logic similar to what we

proposed here.
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CHAPTER 4 : Competition for Market Share

A major challenge for any online business is to ensure that a sufficient proportion of potential

customers prefers their service to that of a competitor. The analysis of this competition is

the subject of this chapter1.

Chapter 4 consists of two sections. In Section 4.1, we address market competition in the

context of ad exchanges. As the number of exchanges has grown, sellers have turned to low-

regret learning mechanisms to decide which exchange has the best price for their inventory.

This in turn raises the following question for the exchange: how to set reserve prices to

attract a large market share and maximize revenue? My collaborators and I formulate this

as a learning problem, and present algorithms showing that simply knowing that sellers

use low-regret learning to choose among their options is enough for the exchange to have a

low-regret algorithm for the optimal price (Heidari et al., 2016b).

Next and motivated by the word-of-mouth and viral marketing, in Section 4.2 my coauthors

and I consider a setting in which two firms compete for the consumers located in a social

network. Firms have budgets to “seed” the initial adoption of their products/services, and

their goal is to maximize their market share. This defines a game among firms. In (Goyal

et al., 2014), we identify general properties of the adoption dynamics—namely, decreasing

returns to local adoption—which determine whether the inefficiency of resource use at equi-

librium (quantified by the price of anarchy and stability) is bounded across all networks.

We also test the sensitivity of these results to the changes in the structure of the utility

functions (see (Draief et al., 2014)). Building on the framework introduced in (Goyal et al.,

2014), we first introduce a new model in which the payoff to each firm comprises not only

the number of vertices who adopt its product, but also the network connectivity among

those nodes. For a general class of stochastic dynamics driving the local adoption process,

we derive upper bounds on (1) the (pure strategy) Price of Anarchy and Budget Multiplier.

1The content of Sections 4.2 and 4.1 is taken directly from Goyal et al. (2014); Draief et al. (2014) and
Heidari et al. (2016b), respectively.
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Here the bounds we obtain depend on the budgets and the maximum degree of the net-

work, but no other structural properties. We also introduce a model in which budgeting

decisions are endogenous, rather than externally given as is typically assumed in most viral

marketing models. In sharp contrast to the previous results, we show that for almost any

local adoption dynamics, there exists a family of graphs for which the price of anarchy is

unbounded.

4.1. Pricing a Low-regret Seller in Ad Exchanges

A display ad exchange (e.g. DoubleClick, AdECN, and AppNexus) is a platform that

facilitates buying and selling of display advertising inventory connecting multiple publishers

and advertisers. Publishers can select an exchange to serve an impression each time a user

visits one of their websites. Upon receiving an ad slot, the exchange sells it to one of their

advertisers—often by running an auction among real-time bidding agents—and pays the

publisher an amount based on the revenue generated from the ad.

With the recent growth in the number of ad exchanges, one important decision a publisher

has to make is which one of these exchanges to enlist in order to sell their inventory for

the highest price. Unlike traditional settings where prices are posted, in display advertising

the publisher cannot simply observe the offered prices in advance and choose the highest

paying exchange. There are multiple reasons behind this constraint: First, on the exchange

side each price check often involves running an auction and allocating the impression to the

winner. As the result the publisher cannot send the same item to multiple exchanges at

the same time. This combined with the fact that there is very limited time—on the order

of a few milliseconds—to serve an ad to the user, forces the publisher to commit to using a

particular exchange before observing the prices.

Given that prices cannot be observed in advance, in order to pick the highest paying ex-

change publishers have to rely on experimentation, utilizing different exchanges and seeing

the payoffs realized from each over time. In recent years great progress has been made to
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automate decision making processes in such settings. The so called bandit algorithms auto-

matically explore between the multitude of available options (here exchanges) and exploit

the most profitable ones. These algorithms are easy to implement, are incredibly practical,

and come with strong theoretical guarantees on the regret of the operator (here publisher).

Therefore, from the point of view of the publisher, the situation is largely resolved.

From the point of view of an exchange, however, it is far from clear what strategy it must

employ to maximize revenue. In an ideal world the exchange could look at the prices offered

to the publisher by its competitors, and set the offering price ever so slightly higher. Any

strategic publisher (e.g. one minimizing regret) would then shift their inventory towards

this exchange, rewarding them for the higher prices. In practice, however, these prices are

not publicly announced and there is no easy way to discover them. For instance, because

of cookie based targeting, it is not possible for the exchange to simply find a ’similar’

impression on one of the competing platforms and check its price. Given that the exchange

cannot observe the competing prices directly, the only way to infer and react to them is

through the actions of the publisher.

Faced with a publisher who selects among exchanges using a no-regret algorithm, the op-

erator of an exchange must carefully decide what prices to offer. If the prices are too low,

the publisher will never select the exchange, and if the prices are too high, the exchange

is overpaying. Our goal in this work is to design a no regret pricing algorithm for the

exchange.

We assume the prices offered by the competitors is drawn from an unknown distribution.

This assumption is required for the existence of a no regret pricing algorithm. Furthermore,

we believe that this assumption is in fact realistic: given that each exchange has a large

number of competitors, the response of an individual exchange will not have a significant

impact on the aggregate distribution of the competing prices (this is similar to the reasoning

behind mean-field equilibria).
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The first solution that comes to mind is to discretize the price space and run an off-the-shelf

no regret algorithm in order to find the best price. As we will show in Section 4.1.4 this

approach does not solve the problem. The main result of the current paper is a binary-

search pricing algorithm that guarantees the exchange pays only a little more than the

best price offered by its competitors, even though it never observes these prices directly

(Section 4.1.2,4.1.3).

Related Work

We study a setting in which a seller repeatedly interacts with a group of buyers, deciding

at each time step which buyer to sell the next item to. In this setting a natural choice

for the seller is to employ low regret bandit learning algorithms (Lai and Robbins, 1985;

Auer et al., 2002a,b). Bandit algorithms are a popular solution to sequential decision

making problems, as they require only limited feedback and have low regret, i.e., they

guarantee performance comparable to the best single action in hindsight. While some of

the earliest bandit algorithms were index-based (Lai and Robbins, 1985; Auer et al., 2002a),

the EXP family of algorithms (Auer et al., 2002b) are designed for bandit problems where

the feedback is generated arbitrarily, rather than stochastically. Bayesian bandit algorithms

based on Thompson sampling (Thompson, 1933) have also been very successful empirically

(Graepel et al., 2010; Chapelle and Li, 2011).

The focus of the present paper is to design a no-regret pricing scheme for a buyer who

interacts with a strategic seller over multiple time periods. The most closely related to our

work are the results in (Amin et al., 2013, 2014). These papers study a repeated posted-

price auction setting consisting of a single strategic buyer and a price-setting seller. The

main results in (Amin et al., 2013, 2014) are pricing algorithms for the seller that guarantee

no regret if the buyer’s discounting factor is small. Compared to our work, Amin et al.

define regret with respect to different benchmarks. Also in contrast to our model, they

assume buyer’s valuation is subject to time discounting, with non-trivial regret achievable
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only when the discount rate is strictly less than 1.

Our work is also related to the broad literature on repeated auctions, where an auction-

eer interacts with buyers and sellers over multiple time steps. Repeated auctions have been

studied extensively and from various angles (Bikhchandani, 1988; Thomas, 1996; Chouinard,

2006). Both empirical (Edelman and Ostrovsky, 2007) and anecdotal evidence have sug-

gested that in repeated auctions agents use sophisticated algorithms to induce better payoffs

for themselves in the future. Indeed a growing part of the literature has been dedicated to

designing various strategies and algorithms to improve the future payoff (Jofre-Bonet and

Pesendorfer, 2000; Kitts and Leblanc, 2004; Kitts et al., 2005; Cary et al., 2007; Lucier,

2009; Gummadi et al., 2012). Our work is in particular concerned with the study of pricing

in repeated auctions. Some of the previous papers on this topic are (Bar-Yossef et al.,

2002; Kleinberg and Leighton, 2003; Blum et al., 2004; Cesa-Bianchi et al., 2013; Mohri

and Medina, 2014). These papers mostly consider a simplified setting, focus on the buyer

(and not the seller) side, and assume the buyer behaves in a naive manner. Our work

is also related to the study intertemporal price discrimination, i.e. conditioning the price

on buyer’s past behavior in a repeated auction. Previous work, for instance Acquisti and

Varian (2005); Kanoria and Nazerzadeh (2014) examine the conditions under which it is

profitable to engage in this form of pricing.

Finally, we remark that the current paper adds to the growing line of research in algorithmic

game theory investigating the outcome of games in which players employ some form of no-

regret learning (Roughgarden, 2012; Syrgkanis and Tardos, 2013; Nekipelov et al., 2015). As

opposed to classic economics where players are assumed to have reached an equilibrium, this

recent body of work relies on the weaker assumption that players utilize no regret learning

to learn from their past observations and adjust their strategies. This idea is compelling

especially in online settings, such as the one studied in this work, where players repeatedly

interact with one another in a complex and dynamic environment. Our work presents an

algorithmic no-regret response against a no-regret opponent in an auction environment.
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4.1.1. Model and Preliminaries

We consider a setting where a seller repeatedly interacts with a group of price-setting buyers,

deciding at each time step which buyer to sell the next item to. In the context of display

advertising, sellers and buyers correspond to publishers and ad exchanges, respectively;

each time step represents an instance where a user visits the publisher’s website and gives

the publisher an advertising opportunity to sell at any of the advertising exchanges. In

practice, an ad exchange is often an intermediary who runs an auction among advertisers to

allocate the ad, and then determines how much to pay the publisher (typically based on the

revenue generated from this auction). Nonetheless, by modeling the exchange as a buyer

we implicitly assume it has full control over how much the publisher (seller) is paid. We

argue that this assumption is practical for multiple reasons: First, the amount the exchange

pays the publisher does not have to be tied to the amount it receives from the advertisers2.

Second, even if two are closely related, e.g. if the exchange decides to pay the publishers

a fixed percentage of the revenue, it only needs to satisfy this constraint in sum across all

impressions3. Third, the exchange has full control over the reserve price, which in practice

often directly affects the auction revenue.

Consider a seller selling one unit of an identical good at each time step to a group of

price-setting buyers. Time is assumed to be discrete and indexed by positive integers. We

study the pricing problem from the perspective of a buyer interested in this good. At each

time step, the seller must select whether to sell the good to us, or to one of the outside

options. If the seller does not select us, which outside option it chooses does not affect our

revenue. Therefore, without loss of generality, we represent the outside option with a single

buyer. Let us denote the price offered by us (A) and by the outside option (B) for the good

at time t by pAt and pBt , respectively. We assume at each time step the seller must select

2Of course, the amount collected from the advertisers determines the “value” that the exchange has for
receiving the ad slot, but this will be captured in our model by the parameter v, the buyer’s value for the
good.

3Specifically, the exchange can take on the arbitrage risk, by promising the publisher a minimum price,
and recouping the cost later if needed.
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between A and B before seeing these prices. Once it picks a buyer, the seller will observe the

price offered by that buyer. Note that while this would be an odd assumption in standard

marketplaces, as noted earlier in the case of the online advertising market, it is standard

practice: First, the publisher cannot send the same item to multiple exchanges at the same

time. Second, once a user requests a page on the publisher’s website, they must quickly be

served an ad, therefore the publisher simply does not have enough time to check prices at

multiple exchanges.

Since the seller cannot see the prices before selecting which buyer to choose, it employs a

low-regret strategy to select the buyer that over time gives her a higher price. The regret

of the seller up to time T is defined as

R(T ) = max{
T∑
t=1

pAt ,

T∑
t=1

pBt } −
T∑
t=1

pXtt ,

where Xt ∈ {A,B} is the buyer chosen by the seller in time step t. We assume the seller

uses a (possibly randomized) low-regret4 algorithm to pick Xt’s. We need to be careful

about the definition of low regret here: in our setting we need the regret to be bounded

not just in expectation, but with high probability. We follow the definition in (Bubeck and

Cesa-Bianchi, 2012), and assume the seller’s strategy satisfies the following: for every δ > 0,

with probability at least 1− δ, seller’s regret up to time T is

R(T ) < cT γ log(δ−1), (4.1)

where c and γ < 1 are constants (independent of T and δ). The standard adversarial multi-

armed bandits algorithms (Bubeck and Cesa-Bianchi, 2012) satisfy the above bound with

any γ > 1
2 .5

The pricing problem can be defined as follows: at each time step t, we (as a buyer) would

4Or sublinear regret.
5More precisely, the EXP3.P algorithm satisfies the regret bound with γ = 1

2
and an additional polylog

term on the right hand side.
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like to set a price pAt . All we can observe at the end of each round is the actions of the

seller, i.e. whether we are selected or not. Note that in practice we cannot directly observe

when the publisher chooses our opponent (exchange A does not get a call every time the

publisher sends an impression to exchange B), nonetheless it is relatively easy for exchange

A to know the approximate amount of traffic the seller sends to other exchanges. This can

be done with either estimating the overall traffic the publisher receives, or by randomly

monitoring the publisher’s website and observing the fraction of times the ads on the page

are served by exchange A.

We assume the price of the outside option pBt is drawn i.i.d. from an unknown distribution

D with mean µ ∈ [0, 1]. Note that in large market places it is a common practice (see

for example the literature on mean field equilibrium) to assume each player treats other

players’ strategies as sampled from a fixed distribution. The assumption that pBt ’s are

drawn stochastically is necessary for the existence of a low regret pricing algorithm. We

don’t get to observe our competitor’s prices.

Let v be our value for each unit of the good (v can be thought of as the value we can

get from the advertisers in our exchange for an advertising opportunity on this publisher).

For simplicity, we treat v as a constant value, but our results generalize to the case that

v is a random variable drawn i.i.d. from a distribution.6 A clairvoyant algorithm that

knows µ can simply offer a constant price slightly higher than µ. At this price, the seller

almost always selects us. So, if we value the good at v > µ, the total utility earned by the

clairvoyant algorithm after T rounds is asymptotically (v − µ)T . Our objective is to get a

total utility close to this quantity without knowing µ.

The loss of any pricing algorithm can be decomposed into two components: number of times

we are not selected by the seller when we employ that algorithm, and the “extra” payment

6Note that we are making the assumption that v is drawn each time independently of other draws of v
or other random variables in the model. In particular, v has to be independent of the price of the outside
option. This assumption is realistic when the set of goods that are offered for sale are homogeneous, e.g.,
ad slots on a single web page on the publisher’s website.
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(i.e., amount of payment over µ) we pay the seller during the rounds we are selected. More

formally, let’s define

not-selected =
T∑
t=1

1[Xt = B],

extra-payment =
T∑
t=1

1[Xt = A](pAt − µ).

The expected regret of the algorithm can be written as:

not-selected · (v − µ) + extra-payment. (4.2)

Our objective is to set the prices pAt in such a way that both terms in the above expression

are sublinear (o(T )). Our main result is an algorithm that achieves a bound of Õ(T
1+γ
2 ) for

these regret terms, where γ < 1 is the exponent in the regret bound (4.1) of the seller.

4.1.2. Our Pricing Algorithm

The idea behind our algorithm is simple: note that if we offer a constant price, the lowest

price at which the seller still chooses us over the outside option without incurring linear

regret is µ. We run a binary search to estimate this value. The subtlety here is that since

the seller does not see the prices and is allowed some regret, we need to repeat offering

the same price a number of times to accurately decide whether the price is too high or too

low. Furthermore, if the price we offer is too close to µ, the seller can essentially choose

arbitrarily without violating the regret bound. Therefore, the binary search will need to

allow for some margin of error.

For simplicity, we assume the total number of rounds T is known, and we prove that at

the end of the T rounds, our regret is bounded. Our proposed algorithm is described in

Algorithm 6. The algorithm uses the function f(k) and constant θ that will be fixed during

the analysis. Also the variable t in the algorithm is only for bookkeeping purposes.
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ALGORITHM 6: Binary Search Pricing Algorithm

l0 ← 0, u0 ← 1, k ← 0, t← 0;

while uk − lk > T−θ do
pk ← (lk + uk)/2;
Offer the seller a price of pk for f(k) rounds;
x← # of times the seller accepts the price of pk;
lk+1 ← lk, uk+1 ← uk;
if x > f(k)/2 then

lk+1 = (2lk + uk)/3;
else

uk+1 = (lk + 2uk)/3;
end
t← t+ f(k);
k ← k + 1;

end

Offer a price of uk + T−θ for the remaining rounds;

4.1.3. A No-regret Guarantee

The main result of this section is the following:

Theorem 16 Consider a run of Algorithm 6 for T steps, and assume the seller follows a

strategy that satisfies the regret bound (4.1). Then, with probability at least 1 − O( log T
T ),

both the number of times we are not selected by the seller and the extra payment to the seller

are bounded by

O
(
T

1+γ
2 log T

)
.

Proof We start with a few notations. We call the steps during the binary search while

loop (lines 2–14 of Algorithm 6) the exploration phase, and the steps after this loop (line

6) the exploitation phase. The k’th iteration of the exploration while loop (with k starting

from 0) is called the k’th exploration phase, or simply phase k.

Since the length of the interval uk−lk decreases by a factor of 2/3 in each phase, the number

of phases of the algorithm is at most O(log T ). Therefore, using the regret bound (4.1) with

δ = 1/T and the union bound, we know that with probability at least 1− O( log T
T ), at the
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end of every phase (both exploration phases and the exploitation phase), we have

R(t) < ctγ log(T ). (4.3)

Throughout the rest of the proof, we assume the above event happens, and prove that the

desired bounds on the regret of our algorithm follow from this.

The argument is in two steps. First, we show that if the function f(k) is properly chosen,

with high probability, the algorithm maintains the invariant that the value of µ lies in the

interval [lk, uk]. In particular, this means that at the end of the exploration phases, the

value of µ is at most uk and is at least lk ≥ uk−T−θ. This implies that in each of the steps

in the exploitation phase, either the seller gets an expected regret of at least T−θ by not

accepting the price of uk + T−θ, or she accepts and we make an extra payment that is at

most 2T−θ. The second step is to use this fact to bound the total regret of the algorithm.

We prove the invariant µ ∈ [lk, uk] by induction. Consider a phase k, and assume µ ∈ [lk, uk].

We show that the probability that this property does not hold in the subsequent phase is

small. To do this, we bound the regret of the seller in this phase, and show that if the

algorithm makes the wrong decision about lk+1 or uk+1 in this phase, seller’s regret must

be too high.

First, consider the case that µ > (lk + 2uk)/3. We show that in this case, with high

probability the seller accepts the price pk less than f(k)/2 times. Let x denote the number

of times that the seller accepts the price pk during this phase. Note that x is a random

variable and can depend on the draws of the price of the outside option as well as the internal

random bits of the seller’s algorithm. We compare the expected total price the seller pays

during phases 0 through k with the expected total price she would have gotten had she

always picked the outside option. The latter value is simply
∑k

i=1 f(i)µ. The total price

the seller gets during phase k can be computed as follows: In x steps during this phase, the

seller gets a price of pk. In each of the remaining (f(k)−x) steps, the seller gets a price that
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is drawn from a distribution with mean µ. We define a martingale 0 = Y0, Y1, Y2, . . . , Yf(k)

based on this process as follows: For each i, if the seller selects us in step i of phase k, we

let Yi = Yi−1. Otherwise, we let Yi be Yi−1 plus the price of the outside option in step i

minus µ. Note that this is in fact a martingale. The total price of the outside option during

this phase is precisely Yf(k) + (f(k)−x)µ. Therefore, the total price that the seller receives

during this phase is

xpk + (f(k)− x)µ+ Yf(k) ≤ f(k)µ− x · uk − lk
6

+ Yf(k).

For each step in phase i (0 ≤ i ≤ k − 1), the expected price the seller gets is at most

max(µ, pi). Therefore, the expected total price during these phases is at most

k−1∑
i=0

f(i) max(µ, pi) =
k−1∑
i=0

f(i)µ+
k−1∑
i=0

f(i) max(0, µ− pi)

≥
k−1∑
i=0

f(i)µ+

k−1∑
i=0

f(i) · ui − li
2

Therefore, the difference between the total price the seller gets and the price she would

have gotten had she always picked the outside option is at least

x · uk − lk
6

−
k−1∑
i=0

f(i) · ui − li
2
− Yf(k)

The value of ui − li decreases by a factor of 2/3 in each phase. Therefore, if x > f(k)/2,

the regret of the seller is at least:

Regret ≥ 1

12
(2/3)kf(k)− 1

2

k−1∑
i=0

(2/3)if(i)− Yf(k). (4.4)

This means that if we select f(k) in such a way that the above value is more than the

regret bound (4.1), the above event cannot happen, and therefore, the algorithm makes the
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right choice and maintains the property that µ ∈ [lk, uk].

First, we use martingale inequalities to bound the term Yf(k). Using Azuma’s inequality

and the fact that prices are bounded by 1, the probability that Yf(k) > ε(2/3)kf(k) is

at most 2 exp(−O(ε2(2/3)2kf(k))). In this case, the regret of the seller is at least ( 1
12 −

ε)(2/3)kf(k)− 1
2

∑k−1
i=0 (2/3)if(i). We need to set f(k) in such a way that this value is larger

than the regret bound of the seller.

Assume f(k) is of the form f(k) = αβk for values α > 0 and β > 1 that will be fixed later.

The lower bound (4.4) on the regret of the seller can be written as

Regret ≥ α

12
(1− ε)(2β

3
)k − α

2

k−1∑
i=0

(
2β

3
)i

=
α

12
(1− ε)(2β

3
)k − α

2
·

(2β
3 )k − 1
2β
3 − 1

. (4.5)

On the other hand, since the value of t at the end of the k’th phase is
∑k

i=0 f(i), the upper

bound (4.3) on the regret can be written as

Regret < c log(T )

(
k∑
i=0

f(i)

)γ

= cαγ log(T )

(
βk − 1

β − 1

)γ
. (4.6)

If we pick α =
(
c log(T )

λ

) 1
1−γ

for another constant λ that will be fixed later, we would have

cαγ log(T ) = λ

(
c log(T )

λ

)1+ γ
1−γ

= λα.

Therefore, after combining lower and upper bounds (4.5) and (4.6), we can cancel α from

both sides of the inequality and obtain:

1− ε
12

(
2β

3
)k − 1

2
·

(2β
3 )k − 1
2β
3 − 1

< λ

(
βk − 1

β − 1

)γ
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Assuming β > 3
2 , the above inequality implies

(
1− ε

12
− 1

2(2β
3 − 1)

)
(
2β

3
)k < λ

βγk

(β − 1)γ
(4.7)

We now fix the value of β to β = (3
2)

1
1−γ . Note that this value satisfies the assumption

β > 3/2. We have:

2β

3
= (

3

2
)

1
1−γ−1

= βγ .

Therefore, inequality (4.7) reduces to

λ >

(
1− ε

12
− 1

2(2β
3 − 1)

)
(β − 1)γ .

This means that if we pick the value of λ to be the expression on the right-hand side

of the above inequality, inequality (4.7) leads to a contradiction. Thus, with probability

at least 1 − O( log T
T ) − 2

∑
k exp(−O(ε2(2/3)2kf(k))), the event “µ > (lk + 2uk)/3 but

x > f(k)/2” does not happen in any phase k. An almost identical proof shows that the

event “µ < (2lk + uk)/3 but x < f(k)/2” does not happen in these cases either. If these

events happen, the algorithm maintains the invariant that µ ∈ [lk, uk] throughout the

exploration steps. The probability that this is violated is at most

O(
log T

T
) + 2

∑
k

exp(−O(ε2α(
4β

9
)k)).

It is not hard to see that with the above choice of the values of α and β, the above expression

tends to zero as T tends to infinity.

Given this invariant, in each of the steps in the exploitation phase (line 6), either the seller

incurs a regret of at least T−θ by not accepting the price of uk + T−θ, or she accepts and

we get a regret of at most 2T−θ. Let y denote the number of times we are not selected by

the seller during the exploitation phase. We bound the total regret of the seller compared

to the strategy that always selects us using a method similar to the first part of the proof.

117



Since µ ∈ [li, ui] for every i, in each step during phase i, the price of the option selected by

the seller is at most ui, i.e., at most ui−li
2 = 1

2(2/3)i higher than our price . In each of the

y steps that the seller chooses the outside option during the exploitation phase, her regret

is at least T−θ. Therefore, the total regret of the seller is at least

yT−θ − 1

2

k∗−1∑
i=0

(2/3)if(i),

where k∗ is the value of k at the end of the algorithm. Using the regret bound for the seller

at the end of the T steps, we get the following inequality:

yT−θ − 1

2

k∗−1∑
i=0

(2/3)if(i) < c log(T )T γ .

Replacing f(i) = αβi, we obtain:

yT−θ <
α

2

(
2β

3
− 1

)−1

(
2β

3
)k
∗

+ c log(T )T γ

Since uk − lk = (2/3)k, we have k∗ = log(T−θ)/ log(2/3). Therefore,

(
2β

3
)k
∗

= (
3

2
)
γk∗
1−γ = T

θγ
1−γ

Therefore,

y <
α

2

(
2β

3
− 1

)−1

T
θ+ θγ

1−γ + c log(T )T γ+θ

Furthermore, the total length of the exploration phases is α
∑k∗−1

i=0 βi < α
β−1T

θ
1−γ . There-

fore, even assuming that the seller never chooses us during the exploration phase, the total

number of times the seller does not chose us can be written as

α

β − 1
T

θ
1−γ +

α

2

(
2β

3
− 1

)−1

T
θ

1−γ + c log(T )T γ+θ.
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Since β is a constant and α = O((log T )1/(1−γ)), the above expression is at most

O(log(T )T
max( θ

1−γ ,γ+θ)
). (4.8)

Finally, we bound the amount of extra payment (i.e., payment beyond µ) made to the

seller. By the invariant µ ∈ [li, ui], we know that in each round in the i’th exploration

phase, this extra payment is at most 1
2(ui − li). Also, during the exploitation phase, the

extra payment is at most 2T−θ per round. Therefore, the total extra payment made to the

seller can be bounded by

1

2

k∗−1∑
i=0

(2/3)if(i) + 2T−θ · T = O(αT
θγ
1−γ + T 1−θ). (4.9)

Now, if we select θ = 1−γ
2 , both expressions (4.8) and (4.9) will be at most O(log(T )T

1+γ
2 ).

Here, we discuss some of the assumptions we made in our model. In particular, we sketch

how the assumptions that the number of rounds T is known and that µ should be in [0, 1]

can be relaxed. We also show that the assumption that the outside option is stochastic is

necessary.

Unknown number of rounds The assumption that the number of rounds T is known

can be relaxed using a standard “doubling” trick. The main observation is that Theorem 16

holds even if the number of rounds turns out to be not precisely T but a constant multiple

of T . Therefore, we can start running the algorithm with a small value of T as an estimate

for the number of rounds, and each time we discover that the actual number of rounds is

more than the current estimate, we multiply the estimate by a constant and restart the

algorithm from scratch. It is not hard to show that this algorithm satisfies the same regret

bounds (with larger constants hidden in the O(·) notation).
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Range of µ The assumption that the mean µ of the outside is between 0 and 1 can be

relaxed by adding an initial “doubling” stage to the binary search algorithm to find an

upper bound M on µ. A term containing the value the upper bound M will be added to

the regret of the algorithm.

Arbitrary buyer values If our value for the good offered by the seller is v, the expres-

sion (4.2) gives the value of our regret, assuming v > µ. This assumption can be relaxed

with a simple modification of Algorithm 6 that caps the offered price at v. The proof is

straightforward and is omitted due to space constraints.

Non-stochastic outside option Since we offer prices based on the observed behavior

of the seller, it is reasonable to ask why we assume that the prices offered by the outside

option are drawn i.i.d. from a fixed distribution D. Consider an alternate model where the

outside option can offer arbitrary prices, and the goal is for our expected total utility to

asymptotically approach (v− µT ) · T , where µT = E
[

1
T

∑T
t=1 p

B
t

]
. Unfortunately, allowing

the outside option this much flexibility makes our goal impossible.

To see this, consider an outside option that simulates our algorithm and offers identical

prices, so that the distribution of pAt and pBt are the same (note that the outside option can

also observe the seller’s behavior, so this simulation is feasible). Clearly one way for the

seller to ensure that her regret R(T ) = 0 is to select between us and the outside option via

an independent coin toss in every round. However, in this case our expected total utility

will be

E

[
T∑
t=1

1[Xt = A] · (v − pAt )

]
=

T∑
t=1

1

2
· E[(v − pAt )]

=

T∑
t=1

1

2
· E[(v − pBt )]

=
1

2
(v − µT ) · T,

and thus the difference between (v−µT ) ·T and our total utility is linear in T , disallowing
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the possibility that any pricing algorithm can have low regret. One potential approach

to get around this impossibility result is to assume more information about the particular

no-regret algorithm the seller is using. We leave the analysis of this alternative model as

an interesting direction for future work.

4.1.4. Simulations

In this section we empirically evaluate the performance of Algorithm 6 and 7, and compare

them with a baseline.

A Heuristic Algorithm The idea behind Algorithm 6 was to zero in on the smallest price

the seller is willing to sell her goods for. To do this, we maintained the invariant that the

target price is always within a shrinking interval around the price we offered. Maintaining

this invariant made it possible to theoretically analyze the regret of the algorithm: we could

use a simple union bound to handle the highly-correlated error events, and get around

the complexity arising from the sequential stochastic nature of the errors. This invariant,

however, came at a cost: we needed to offer the same price many times to ensure that the

average response of the seller gives us a reliable signal about the target price, and make the

decision about the next step based on this reliable signal. An alternative approach is to

forgo the invariant, and adjust the price based on signals that are unreliable on their own

right, but stochastically lead us in the right direction. This is what Algorithm 7 does.

There are a few subtleties in the process of updating prices in Algorithm 7: To ensure that

the prices eventually get closer to the target price we need to update them in a way that the

changes become smaller and smaller as time goes on. To do this, we update the prices by

multiplying or dividing the current price by a time-dependent factor. Note that to ensure

our price remains above the target price significantly more often than below it, we need to

use different factors for multiplication and division. So every time the price is rejected we

multiply it by a factor of (1 + t−α) for some 0 < α < 1, and when it is accepted, we divide

it by a smaller factor (1 + t−β) (i.e., β > α). Aside from this, we leave it to the simulation

121



to determine the best values for the parameters α and β.

ALGORITHM 7: Heuristic Pricing Algorithm

t← 0, pt ← 1
2 ;

while true do
Offer the seller a price of pt ;
if the seller rejects then

pt+1 = (1 + t−α)pt;
else

pt+1 = (1 + t−β)−1pt;
end
t← t+ 1;

end

While Algorithm 7 is simple and natural, and as we will see in Section 4.1.4 performs well

in practice, the fact that the sequence of errors it generates is correlated makes it difficult

to analyze its performance theoretically. In the next section we evaluate the performance

of the algorithm via simulations, and leave its theoretical analysis for future work.

Baseline We compare our algorithms with a naive baseline that works as follows: Given

parameters 0 < ε < 1, it discretizes the price space (i.e. [0,1]) into 1
ε equally spaced prices

and treats each of these prices as an arm. When the algorithm offers the price pi the seller,

the reward from the corresponding arm is equal to pi if the seller chooses our buyer, and

is 0 otherwise. The baseline simply runs the algorithm EXP3.P (see (Bubeck and Cesa-

Bianchi, 2012)). Note that from a theoretical stand-point we don’t expect this algorithm to

perform well for the following reason: Given that the seller is playing a no-regret algorithm,

in order for us to observe her eventual reaction to a particular price, we need to offer the

same price to them multiple times, i.e. long enough for their no-regret algorithm to realize

the price change and respond to it. The baseline fails to do this, and as the result we expect

its regret to be high.

Simulation setup The simulation setup is as follows: we assume the price pBt of the

outside option comes from a uniform distribution on [0, 2µ] where µ = 0.3. For this and other

parameters, we experimented with other values as well and did not observe any significant
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Table 1: Regret values after T = 106 steps

Algorithm not selected extra payment regret

Algorithm 1 61110 32040 74817
Algorithm 2 8585 9227 15236
Baseline 840149 -908 587196

difference in the outcome. For the seller, we use the algorithm EXP3.P (see (Bubeck and

Cesa-Bianchi, 2012)). We take T = 106 and run both Algorithms 6, 7 with a range of values

for their free parameters (i.e. the function f and the value θ for Algorithm 6, and the values

α and β for Algorithm 7). We track the number of rounds our exchange is not selected by

the seller, the extra payment to the seller, and the overall regret. For the baseline ε = 0.001.

The regret values reported here use a value of v = 1 in the regret expression (4.2). Each

simulation is repeated 100 times, and the computed values are averaged over these runs.

Confidence intervals are very small, hence omitted for better readability.

Optimal setting of the parameters For Algorithm 6, we use the functional form f(k) =

a · log(T )2βk (see Section 4.1.3). A grid search over the ranges a ∈ [0.5, 2.5], β ∈ [1, 2.5],

and θ ∈ [0.1, 0.3] reveals that the values a = 2, β = 1.5, and θ = 0.2 result in the lowest

regret. Observe that the values of β and θ are close to the values derived in the analysis.

For Algorithm 7, a grid search over the range 0 < α < β ≤ 1 finds that the combination

α = 0.1 and β = 0.5 results in the lowest regret.

Comparison of the algorithms In Table 1 we present the following quantities for each

algorithm: The number of times the price is not accepted by the seller, the extra payment to

the seller, and the overall regret. Figure 4.1.4 illustrates the total regret of each algorithm

as a function of time in the logarithmic scale. One can see that Algorithms 6 and 7 both

significantly outperform the baseline in terms of the total regret. Furthermore, the regret

of Algorithms 6 and 7 are sublinear, while that of the baseline is growing linearly with time.

Also, interestingly algorithm 7 incurs less regret than Algorithm 6.
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Figure 16: Regret of Algorithms 6, 7, and the baseline as a function of time.

4.1.5. Discussion and Future Directions

We presented a binary search-style pricing algorithm for a buyer facing a no-regret seller.

Our main contribution was the analysis of this algorithm and showing that it guarantees the

buyer vanishing regret. It remains an open question whether the regret bound presented here

is asymptotically tight. Furthermore, we focused on the buyer side of the market only and

ignored the possibility of the seller responding strategically to our proposed algorithm. We

leave the equilibrium analysis and the study of the seller-side implications of the algorithm

for future work.

4.2. Competing via Viral Marketing

In the traditional viral marketing problem, firms attempt to maximize the adoption of their

product or service in a large social network. To this end, each of them seeds a set of ini-

tial “infections” in the network via product give-aways, marketing campaigns targeting the

seed individuals, and so on. The product may then spread through the network via local

stochastic dynamics accounting for local recommendations or influence between neighbors,

known as “word of mouth” effects. Previous papers on this subject mainly focus on design-

ing (Kempe et al., 2003, 2005; Mossel and Roch, 2010) or improving (Chen et al., 2009, 2010;
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Model
Measure

Price of Anarchy Budget Multiplier

Goyal and Kearns model Θ(1) Θ(1)

The Connectivity model Θ(K2
max, dmax) Θ(Kmax)

The Endogenous model unbounded unbounded
Table 2: Summary of our upper bound results compared to the work of Goyal and Kearns
(2012) for the case where the adoption dynamics exhibit decreasing returns to local adoption.

Borgs et al., 2014; Goyal et al., 2011) algorithms for finding a seed set that (approximately)

maximizes the total number of vertices that ultimately adopt the product. More recently,

a number of papers (Goyal and Kearns, 2012; Bharathi et al., 2007; Borodin et al., 2010;

Clark and Poovendran, 2011; Carnes et al., 2007; Dubey et al., 2006; Vetta, 2002; Borodin

et al., 2017; Tzoumas et al., 2012; Alon et al., 2010) have examined models of competitive

contagion that take a game-theoretic perspective on the traditional problem: two or more

players or firms compete in a large social network, each with the goal of maximizing their

individual market share, possibly at the expense of others.

In this paper, we introduce and examine two new natural models for competitive contagion

in a network. Existing models of influence maximization and competitive contagion assume

that firms benefit merely according to the number of nodes that eventually adopt their

product. We introduce a framework where the payoffs to firms capture both their market

share and the connectivity within that market share in the network. In many natural

settings, the goal is not simply that many nodes adopt a product, but also subsequently use a

networked service requiring the product. For instance, Skype users are more valuable if they

are in a densely connected subnetwork of other Skype users with whom they use the service

to interact. We thus consider utility functions that combine both the size of the market

share and the connectivity within that share. For a broad family of stochastic dynamics—

concave switching function and linear selection function— we prove upper bounds on both

the pure strategy PoA and the Budget Multiplier which depend on the firm budgets and

the maximum degree of the network, but no other structural properties. We also find broad

conditions under which the PoA and the Budget Multiplier can be unbounded.

Previous works on the subject of influence maximization (e.g. see (Goyal and Kearns, 2012;
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Kempe et al., 2003)) assume that the budgets available to firms to seed initial infections

in the network are fixed and exogenously determined. In many settings this might not be

realistic, as firms are free to adjust their budgets in order to capture a larger market share.

We therefore also consider a model in which budgeting decisions are endogenous. While

the results of Goyal and Kearns (2012) establish fairly general conditions on local dynamics

yielding bounded PoA and Budget Multiplier independent of network structure, we show

that such robustness vanishes in the case of endogenous budgets: for almost any choice

of dynamics, the PoA and the Budget Multiplier may be unbounded for certain network

structures. The informal intuition is that firms may engage in “bidding wars” for sub-

optimal seed infections that essentially eradicate subsequent market share gains. Table 2

shows a summary of our results compared to (Goyal and Kearns, 2012)7.

Related Work

We contribute to the study of influence maximization in a networked setting (see (Kempe

et al., 2003, 2005; Mossel and Roch, 2010; Chen et al., 2009, 2010; Borgs et al., 2014; Goyal

et al., 2011)), where the goal is to find a small set of influential nodes in the network whose

aggregated influence is maximized. We also contribute to the study of competition in net-

worked environments (see (Gerard, 1977; Grossman and Shapiro, 1984)). We mainly build

on the game-theoretic framework introduced by Goyal and Kearns (2012) for studying the

competitive influence maximization in a social network. In this work, the authors identify

broad conditions on the adoption dynamics — namely, decreasing returns to local adoption

— under which the PoA is uniformly bounded above, across all networks. They also find suf-

ficient conditions on the adoption dynamics — namely, proportional local adoption between

competitors — for bounded pure strategy Budget Multiplier. In our work we investigate

similar problems in more general settings.

To the best of our knowledge, our work is the first to take the connectivity among adopters

7In Table 2, Kmax denotes the maximum number of “seeds” firms can spend to initialize the adoption of
their product in the network, and dmax is the maximum degree of a vertex in the network.
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into account in the payoff function of players. There are however several previous papers

that look at a similar quantity, but with different goals. For example, Quan et al. (2012) and

Chaoji et al. (2012) investigate the relationship between connection features of individuals

and the popularity of a content in a social network; and Katona et al. (2011) investigate

the effect of the connectivity among current adopters on a potential consumer’s behavior.

Our connectivity model is also remotely related to the large body of work on clustering (see

(Aggarwal and Wang, 2010) for a survey).

The impact of endogenous budgets have been investigated on various economic problems, in-

cluding auctions (Kotowski, 2013; Burkett, 2015; Ausubel et al., 2013) and housing markets

(Pereyra, 2012).

4.2.1. Model and Preliminaries

For the underlying diffusion dynamics, we consider the

switching-selection framework introduced by Goyal and Kearns (2012). Before introduc-

ing our new models, we first review this framework.

Consider a 2-player 8 game of competitive adoption on a (possibly directed) graph G over

n vertices. G is known to the players, R(ed) and B(lue). The two players simultaneously

choose some number of vertices to initially seed; after this seeding, the stochastic dynamics

of local adoption determines how each player’s seeds spread throughout G to create adop-

tions by new nodes. Each player seeks to maximize her payoff which is a function of her

eventual adopters.

More precisely, suppose that player p ∈ {R,B} has Kp ∈ N seed infections; Each player

p then chooses an allocation ap = (ap1, ap2, ..., apn) of budget across the n vertices, where

apj ∈ N and
∑n

j=1 apj = Kp. Goyal and Kearns (2012) assume that Kp is exogenously

8One can also define the single-player setting by letting the opponent’s strategy be the empty set. In
the single-player setting the interesting problem is that of maximizing the profit. One can easily show that
as is the case for other contagion models, including (Kempe et al., 2003), profit maximization is hard in
our models. In fact it may even be more difficult, since in the connectivity model the payoff function is not
submodular, and in the endogenous model it is not monotone.
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given.We will see that this assumption is crucial for obtaining their upper bounds on the

Price of Anarchy and the Budget Multiplier.

Let Ap be the set of allocations for player p, which is her pure strategy space. A mixed

strategy for player p is a probability distribution σp on Ap. Let Ap denote the set of

probability distributions for player p. The two players simultaneously choose their strategies

(σR, σB). Consider any realized initial allocation (aR, aB) for the two players. Let V (aR) =

{v|aRv > 0}, V (aB) = {v|aBv > 0} and let V (aR, aB) = V (aR)∪V (aB). A vertex v becomes

initially infected if one or more players assigns a seed to infect v. If both players assign

seeds to the same vertex, then the probability of initial infection by a player is proportional

to the seeds allocated by the player (relative to the other player).

Following the allocation of seeds, the stochastic contagion process on G determines how

these Red and Blue infections generate new adoptions in the network. Time is considered

to be discrete for this process, and the state of a vertex v at time t is denoted svt ∈ {U,R,B},

where U stands for Uninfected, R stands for infection by Red, and B stands for infection by

Blue. We assume there is an update schedule which determines the order in which vertices

are considered for state updates. Note that this schedule does not need to be deterministic.

We also assume once a vertex is infected, it is never a candidate for updating again.

For the stochastic update of an uninfected vertex v, we will consider the switching-selection

model. In this model, updating is determined by the application of two functions to v’s

local neighborhood: f(x) (the switching function), and g(y) (the selection function). More

precisely, let αR and αB be the fraction of v’s neighbors infected by R and B, respectively,

at the time of the update, and let α = αR + αB be the total fraction of infected neighbors.

The function f maps α to the interval [0, 1] and g maps αR/(αR+αB) (the relative fraction

of infections that are R) to [0, 1]. These two functions determine the stochastic update in

the following fashion:

1. With probability f(α), v becomes infected by either R or B; with probability 1−f(α),
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v remains in state U(ninfected), and the update ends.

2. If it is determined that v becomes infected, it becomes infected by R with probability

g(αR/(αR + αB)), and infected by B with probability g(αB/(αR + αB)).

We assume f(0) = 0 (infection requires exposure), f(1) = 1 (full neighborhood infection

forces infection), and f is increasing (more exposure yields more infection); and g(0) = 0

(players need some local market share to win an infection), g(1) = 1. Note that since the

selection step above requires that an infection takes place, we also have g(y) + g(1− y) = 1,

which implies g(1/2) = 1/2.

Given a graph G and an initial allocation of seeds, the dynamics described above — deter-

mined by f , g, and the update schedule — yield a number of adopters for the two players,

and as mentioned earlier, the payoff to player p ∈ {R,B}, which we denote by Πp(σR, σB),

is a function of her eventual adopters. Here is one possible choice for the payoff function:

let the random variable χp denote the number of infections p gets at the termination of

the dynamics for the strategy profile (σR, σB); in (Goyal and Kearns, 2012) authors assume

Πp(σR, σB) = E[χp|(σR, σB)], where the expectation is over any randomization in the player

strategies, in the choice of initial allocations, and the randomization in the stochastic up-

dating dynamics. Shortly in the connectivity and the endogenous budgets model we will

see more general choices for the payoff function.

Given any payoff function, each player seeks to maximize her own expected payoff, and this

results in competition among the players. In the resulting game a Pure Nash Equilibrium

is a profile of pure strategies (aR, aB) such that ap maximizes player p’s payoff given the

strategy a−p of the other player.

A Mixed Nash Equilibrium is a pair σ = (σR, σB) of independent probability distributions

that satisfies

Ea∼σ[Πp(a)] ≥ Ea−p∼σ−p [Πp(a
′
p, a−p)]
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for every p and a′p ∈ Ap. In the above a = (ap, a−p).

For a fixed graph G and stochastic update dynamics, the maximum social welfare allocation

is the (deterministic) allocation (a∗R, a
∗
B) (obeying the budget constraints if any exists) that

maximizes ΠR(aR, aB) + ΠB(aR, aB). For the same fixed graph and update dynamics, let

(σR, σB) be the equilibrium strategies that minimize ΠR(σR, σB) + ΠB(σR, σB) among all

equilibria9. Then the Price of Anarchy (or PoA) is defined to be

ΠR(a∗R, a
∗
B) + ΠB(a∗R, a

∗
B)

ΠR(σR, σB) + ΠB(σR, σB)
.

The Price of Anarchy is a measure of the inefficiency in resource use created due to decen-

tralized, non-cooperative behavior by the two players.

We also study the Budget Multiplier , which measures the extent to which network struc-

ture and dynamics can amplify initial resource inequality across the players. For example,

when we have external budget constraints KR,KB, with KR ≥ KB, we define the Budget

Multiplier as follows: for any fixed graph G and stochastic update dynamics, let (σR, σB)

be the equilibrium that maximizes the ratio

ΠR(σR, σB)

ΠB(σR, σB)
× KB

KR

among all equilibria10. The resulting maximized ratio is the Budget Multiplier, and it

measures the extent to which the larger budget player can obtain a final market share that

exceeds her share of the initial budgets11.

Finally, we will restate some of the results in (Goyal and Kearns, 2012) which we will make

use of later in the paper.

9If we restrict attention to pure Nash equilibria only, the resulting ratio is called the pure strategy Price
of Anarchy.

10If we restrict attention to pure Nash equilibria only, the resulting ratio is called the pure strategy Budget
Multiplier.

11We will later introduce the endogenous budgets model in which budgets are not externally constrained.
In that model we can either use the same definition for the Budget Multiplier, or use a similar one in which
we replace the number of seeds players spend with the cost per seed for each.
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Lemma 7 Let aR and aB be any sets of seed vertices for the two players. Then if f is

concave and g is linear,

E[χR|(aR, ∅)] ≥ E[χR|(aR, aB)]

and

E[χB|(∅, aB)] ≥ E[χB|(aR, aB)].

Lemma 8 Let aR and aB be any sets of seeded nodes for the two players. If f is increasing,

E[χR + χB|(aR, aB)] ≥ E[χR|(aR, ∅)].

4.2.2. The Connectivity Model

In some cases, such as video conferencing and messaging applications like WhatsApp, ooVoo

or Skype, not only the number of adopters matters; it is also important to the firms how

well those adopters are connected to each other, as the use of these products takes place

along the edges of the social network rather than at a vertex alone. Motivated by the above

examples, we introduce the connectivity model in which a firm’s goal is to maximize the

number of her adopters plus the number of edges among those adopters; the second term

here models the strength of the connectivity among the adopters.

More precisely, consider a pure strategy profile (aR, aB) where ap denotes the strategy of

player p ∈ {R,B}. We define the random variable γp to be the eventual number of edges

among adopters of product p. Player p then seeks to maximize her payoff which is equal to

E[γp + χp|(aR, aB)].

Note that due to linearity of expectation E[γp+χp|(aR, aB)] = E[γp|(aR, aB)]+E[χp|(aR, aB)].

To simplify the statement of our results we denote E[γp|(aR, aB)] by δp and E[χp|(aR, aB)]

by θp. In addition, we denote the strategy of player p in the maximum social welfare solu-

tion by a∗p and her payoff by θ∗p + δ∗p. Also let θ = θR + θB, δ = δR + δB, θ∗ = θ∗R + θ∗B, and
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δ∗ = δ∗R + δ∗B.

We will see that in this new model, when f is concave and g is linear, upper bounds on the

pure PoA and Budget Multiplier still exist, but they can depend on the budget constraints

and the structure of the network. In addition we will see that if f is convex and g is

linear, then the PoA and Budget Multiplier can be unbounded. Note that the results and

techniques presented in this section can be easily extended to the case where Πp = Bδp+Dθp

with B,D being positive constants. Detailed discussion is omitted due to space constraints.

We first illustrate the connectivity model with an example for which the equilibrium looks

quite different compared to the original model of (Goyal and Kearns, 2012).

Example 2 Consider a graph G consisting of 3 components C1, C2 and C3, where C1, C2

are star networks of size (N + 1) with central nodes v1, v2 pointing to N peripheral vertices,

and C3 is a complete undirected network of size 3
√
N . Suppose that both players have a

budget equal to 1. Let f(x) = xα for some α > 0, and let g be linear. Suppose that the

update schedule is relatively long so that any connected component containing a non-zero

number of seeds eventually becomes entirely infected.

It can be shown that in the original model, the equilibrium of the game on G is where Red

and Blue put their seeds on v1, v2 and each get an expected number of infections equal to

(N + 1). However, in the connectivity model, the equilibrium is where both players put their

seeds on C3 and each get an expected payoff approximately equal to 3(3N/2 +
√
N)/2. Thus

the connectivity objective causes the players to prefer to compete for the highly connected

vertices, as opposed to each taking an isolated low-connectivity component.

In what follows, we will use the following notations: Kmax denotes max{KR,KB}, Kmin

denotes min{KR,KB}, and dmax is the maximum degree of any vertex in the graph G.

Theorem 17 If f is concave and g is linear, then in the connectivity model, the pure

strategy Budget Multiplier is bounded from above by 8(Kmax + 1).
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Proof Without loss of generality suppose KR ≥ KB. Let (SR, SB) denote the pure Nash

equilibrium that maximizes the ratio ΠR
ΠB
×KB
KR

. We assume that in this equilibrium, Red has

the higher payoff, that is θR + δR ≥ θB + δB (if this is not the case the budget multiplier is

bounded from above by 1). We will assume that δR ≥ θR. Since if δR < θR, from Theorem

4 in (Goyal and Kearns, 2012), we know that in the equilibrium the Blue player gets at

least KB
2KR

θR infections (the Blue player can achieve this by imitating the KB Red seeds that

result in the highest number of infections). Therefore, we have

ΠB ≥ θB ≥
KB

2KR
θR =

KB

4KR
(θR + θR) ≥ KB

4KR
(θR + δR)

and so we can conclude that the Budget Multiplier is at most 4.

Given the above assumptions, next we assign a unique label to each of the vertices in SR

and attribute subsequent Red infections to exactly one of these seeds. More precisely, let

the solo Red process be the stochastic dynamical process on the network when only Red

seeds SR are present. Suppose SR = {v1, . . . , vKR}. At time 0, label each vertex vi ∈ SR by

a different color Ci; also label all other vertices by U . In the subsequent steps, whenever a

new vertex gets infected in the process we assign to it one of the KR labels {Ci}KRi=1 in the

following manner: when updating a vertex v, we first compute the fraction αRv of neighbors

whose current label is one of C1, . . . , CKR , and with probability f(αRv ) we decide that an

infection will occur (otherwise the label of v is updated to U). If an infection occurs, we

simply choose an infected neighbor of v uniformly at random, and update v to have the

same label (which will be one of the Ci’s). It can easily be observed that at every step,

the dynamics of the (SR, ∅) process are faithfully implemented if we drop label subscripts

and simply view any label Ci as a generic Red infection R. Furthermore, at all times every

infected vertex has only one of the labels Ci. Thus if we denote the expected number of

edges with endpoints labeled Ci, Cj by ΩR
i,j , we have E[γR|(SR, ∅)] =

∑
i≤j ΩR

i,j .

Next we claim that the blue player can choose KB of the Red seeds as her strategy such

that in expectation she gets at least KB
4KR(KR+1) share of the Red edges, which as we will
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see, results in the desired bound on the Budget Multiplier.

To prove the above claim, observe that the Blue player can consider the KB
2 color pairs

with highest ΩR values. If pair (i, j) is in that set, the Blue player adds both i and j to her

seed set. Since there are KR(KR + 1)/2 color pairs in total, the expected number of edges

Blue gets by choosing this strategy, is at least 1
4

KB/2
KR(KR+1)/2δR (the factor 1

4 is present due

to the fact that when Blue seeds vi, vj , the two vertices both become initially infected by

Blue with probability 1/4). Therefore we have

θR + δR
θB + δB

≤ 2δR
KB

4KR(KR+1)δR
≤ 8(KR + 1)

KR

KB

Next, we simply multiply the left and the the right hand side of the above inequality by KB
KR

and replace KR with Kmax to obtain the claimed bound on the Budget Multiplier. This

finishes the proof.

One can easily find families of examples in which the Budget Multiplier does actually grow

with Kmax.

Example 3 Suppose KR = K > 2 and KB = 2. Consider the network G which is a

complete graph of size K. One can easily see that in any equilibrium Red gets Θ(K) vertices

while Blue gets Θ(1) vertices. Since all the Red vertices are connected to each other, the

number of edges among them is Θ(K2). Similarly the number of edges among Blue adopters

is Θ(1). Therefore the Budget Multiplier is Θ(K).

Theorem 18 If f is concave and g is linear, then in the connectivity model, the pure

strategy Price of Anarchy is bounded from above by 2 + 2(1 + dmax)(1 + 8(Kmax + 1)Kmax
Kmin

).

Proof Let (SR, SB) denote the pure Nash equilibrium and (a∗R, a
∗
B) denote the maximum

social welfare solution. Without loss of generality, suppose the Red player gets the higher

payoff in (a∗R, a
∗
B). Since (SR, SB) is a Nash equilibrium, the deviation of Red player to a∗R

should not be profitable, i.e. θR + δR must be larger than the payoff Red gets by deviating
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to a∗R. Let’s denote that payoff by (θ′R + δ′R). Next we find a lower bound on (θ′R + δ′R). We

claim the following holds:

θ′R + δ′R ≥ (θ∗R − θ) + (δ∗R − θdmax) (4.10)

To prove the above, we first note that when Blue is not present, the number of infection R

gets by switching to a∗R is at least θ∗R (Lemma 7). Also when Red is not present, the number

of infection B gets by seeding SB is at most θ (Lemma 8). Now by adding SB to a∗R, the

total number of infections remains at least θ∗R. In addition the number of Blue infections

will decrease and become less than or equal to θ. So the number of Red infections will be

at least (θ∗R − θ), i.e.

θ′R ≥ (θ∗R − θ) (4.11)

Next, we observe that when Blue is not present, the number of edges Red gets using strategy

a∗R is at least δ∗R. To see this, just note that by the departure of a∗B from (a∗R, a
∗
B) all the

vertices become just more likely to adopt Red. So the Red edges remain Red.

Now if the Blue player comes back with strategy SB, this can result in at most θ Blue

infections, and therefore number of Red edges decreases by at most θdmax, as each Blue

vertex can take at most dmax edges away from Red, meaning that

δ′R ≥ (δ∗R − θdmax). (4.12)

Combining (4.11) and (4.12), we get

θ′R + δ′R ≥ (θ∗R − θ) + (δ∗R − θdmax)

Combining the above with θR + δR ≥ θ′R + δ′R (which must hold because of the property of

Nash equilibrium), we obtain the following:

θR + δR ≥ (θ∗R − θ) + (δ∗R − θdmax) (4.13)
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Now to prove the desired bound on PoA we can write

θR + δR ≥ (θ∗R − θ) + (δ∗R − θdmax)

⇒ 1 + (1 + dmax)
θ

θR + δR
≥
θ∗R + δ∗R
θR + δR

⇒ 1 + (1 + dmax)
θ + δ

θR + δR
≥
θ∗R + δ∗R
θ + δ

⇒ 2 + 2(1 + dmax)
θ + δ

θR + δR
≥ θ∗ + δ∗

θ + δ
. (4.14)

In the third line we used the fact that δ ≥ 0 and θB + δB ≥ 0, and in the fourth line we

used the fact that in the maximum social welfare solution the Red player gets the higher

payoff, or equivalently 2(θ∗R + δ∗R) ≥ θ∗ + δ∗. Next we note that

θ + δ

θR + δR
≤


1 + 1 if θR + δR ≥ θB + δB

1 + 8 if KR ≥ KB

1 +MKB
KR

otherwise.

where M is the Budget Multiplier12. Using the bound we obtained in Theorem 17 for

Budget Multiplier, we get

θ + δ

θR + δR
≤ 1 + 8(KB + 1)

KB

KR
.

Combining the above with (4.14) and replacing KB with Kmax and KR with Kmin, we get

2 + 2(1 + dmax)(1 + 8(Kmax + 1)Kmax
Kmin

) ≥ θ∗+δ∗

θ+δ

and that finishes the proof.

Finally, using constructions similar to the ones in (Goyal and Kearns, 2012), we show that

the concavity of f and the linearity of g are necessary for obtaining the upper bounds.

Proposition 7 If f is linear and g(y) = ys/(ys + ((1 − y)s) for some s > 1, then in the

12The discussion for the second item where KR ≥ KB is very similar to the proof of Theorem 17, and due
to space constraints we do not repeat it here.
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connectivity model, for any V > 0, there exists a graph G for which the Budget Multiplier

is greater than V .

Proof (sketch) The idea, closely following Theorem 5 in (Goyal and Kearns, 2012), is to

construct a layered graph that amplifies the punishment in the selection function, and as a

result makes the Budget Multiplier arbitrarily large: The top layer of this amplifying graph

is where in the equilibrium solution players put their seeds; as we go down the layers the

share of vertices that adopt the product of the higher budget player, becomes larger and

larger; and therefore in the last layer, which is a huge one that makes up for the majority

of the payoff each player receives, the larger budget player receives a payoff much higher

than what the opponent receives. As a result the Budget Multiplier becomes very large. By

adjusting the parameters of this construction, we can make the Budget Multiplier arbitrarily

large.

Proposition 8 If f(x) = xr for some r > 1, and g is linear, then in the connectivity model,

for any V > 0, there exists a graph G for which the Price of Anarchy is greater than V .

Proof (sketch) The idea, closely following Theorem 2 in (Goyal and Kearns, 2012), is to

create a layered directed graph whose dynamics rapidly amplify the convexity of f . When

we take two such amplification components of differing sizes, one equilibrium is the case

where players coordinate on the smaller component, while the maximum social welfare

solution lies in the larger component. As a result we have an example in which the PoA is

large. By adjusting the parameters of this construction, we can make the PoA arbitrarily

large.

4.2.3. The Endogenous Budgets Model

As we have mentioned, previous works assume that there are external constraints on the

maximum number of seeds players can spend to initialize the adoption of their product in the

network. We argue that this assumption is not necessarily realistic, since in some settings

(such as the case of product give-aways), if firms feel they can offset higher marketing
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expenditures by winning greater market share, they are free to do so. This motivates us

to relax this assumption and investigate the case in which firms are allowed to choose

the number of seeds they want to allocate, given the constraint that each seed has a cost

associated with it.

More precisely, we propose the endogenous budgets model , which is the following modifi-

cation of the original framework: Each firm p ∈ {R,B} has a cost per seed denoted by

cp ≥ 0, and for each new (non-seed) vertex that adopts her product, firm p benefits bp
13.

So if θp denotes the (expected) eventual number of non-seed infections that firm p obtains

by initially spending Kp seeds, her payoff is equal to bp × θp − cp × Kp. Without loss of

generality we can assume bp = 1, and write the payoff as:

θp − cp ×Kp

In this section we show that in the endogenous budgets model, for a broad setting of f, g

and c, there are examples in which the PoA is unbounded14.

Beside the PoA we also look at the quantity θ∗

θ (recall that this quantity represented the

PoA in the original model of (Goyal and Kearns, 2012)).We will see that similar to the PoA

in our model, this quantity is also unbounded, showing that the unbounded PoA in the

endogenous model is not merely due to the introduction of costs (i.e. the term −cp ×Kp)

to the payoff function.

We first illustrate the endogenous budgets model with an example where the equilibrium

can look completely different compared to the original model of (Goyal and Kearns, 2012).

Example 4 Consider a graph G consisting of a central node v pointing to N vertices

v1, v2, ..., vN , each of which points to 3 different (unimportant) vertices. Suppose cp =

13We assume seed vertices do not provide any payoff, only cost.
14Similar results hold for the Budget Multiplier. The construction—which is basically a properly tuned

star-like network—is straightforward, and therefore omitted due to space constraints.
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Figure 17: A graph with PoA ≥ (2c+ 1)N .

Kp = 1 for p ∈ {R,B}. Let f(x) = xα for some α > 0, and let g be linear. Suppose that

the update schedule is relatively long so that a connected component containing a non-zero

number of seeds eventually becomes entirely infected.

It can be shown that in the original model of (Goyal and Kearns, 2012), the equilibrium

is where both players put their only seed on v and each get an expected payoff equal to

(4N + 1)/2, while in the endogenous budgets model, the equilibrium is the case where there

is exactly one Red and one Blue seed on each of v1, v2, ..., vN , resulting in a payoff equal to

N/2 for each player.

Theorem 19 Suppose cp = c for all p ∈ {R,B} and c ∈ N. Then regardless of f, g, in the

endogenous budgets model the PoA can be unbounded.

Proof We first prove the theorem for the case of c = 1. Consider the graph H represented

in Figure 17. We claim that in this graph the maximum social welfare solution is the case

where there is a single seed on each node in layer L1. Also we claim that the equilibrium

solution is the case where players both spend exactly one seed on each node of layer L2. If

this holds then it is easy to see that the PoA is equal to 3N+1+K∗−K∗
2N+1−2N = 3N+1

1 = 3N + 1;

And since N can be arbitrarily large, we can conclude that the PoA is unbounded. Also we

have θ∗

θ = 3N+1+K∗

2N+1 , and since K∗ can be as large as we want, θ∗

θ is unbounded as well.
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It only remains to prove the above claims. First note that no node in layers L3, L4 is ever

selected as a seed in the maximum social welfare solution, because selecting those nodes

does not result is any new infections (as all the edges are directed from top to bottom).

Therefore since layer L3 is empty of seeds, putting one seed on a node of layer L1 always

pays off immediately as it has a neighbor in L3 which becomes subsequently infected with

probability 1 (f(1) = 1). This means that if a node in L1 is not already seeded in the

maximum social welfare solution, one can seed it without decreasing the payoff. So we can

assume that in the maximum social welfare solution all the nodes in layer L1 are seeded (it

is easy to see that one seed per node suffices). Now note that once all the vertices in L1 are

seeded, the rest of the network will become infected with probability 1 (f(1) = 1). So we

can conclude that this case is indeed the maximum social welfare solution.

Now we prove our claim about the equilibrium solution. Suppose the Red player has a seed

on every node of layer L2; we compute the best response of the Blue player to this strategy.

Note that adding a seed to layers L1, L3, L4 does not increase Blue’s payoff, so her only

choice is to allocate seeds to vertices in layer L2. Suppose Blue has k < N seeds on L2 each

on a different node. This means that the expected number of Blue seeds in L2 is equal to

k/2. Now note that for each new seed that Blue adds to a vertex u in L2:

1. If Blue does not have any other seed on u, by adding one, she increases her payoff by

a positive amount: with probability 1
2 , u becomes a Blue seed. If that happens, the 2

neighbors of u in layer L4 certainly adapt Blue; also the probability that v adopts Blue

increases (as g is increasing). Since the cost per seed is equal to 1 and the change in

the expected number of Blue infections is larger than 1
2 × 2 = 1, this action increases

Blue’s payoff.

2. If Blue does already have one seed on u, by adding another, at best she changes her

payoff by 1
6(2 + 1)− 1 ≤ 0 (the change in the probability of u becoming initially Blue

as a result of this new seed is 1
6 . If this happens, in the best case scenario, both v

and the two neighbors of u in L4 become subsequently infected). Since the change is
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Figure 18: A graph with PoA ≥ K.

negative this action decreases Blue’s payoff.

The above shows that the best response of the Blue player is to spend exactly one seed on

each vertex of L2. Similarly, the best response of the Red player to Blue player’s strategy

is to put exactly one seed on every vertex of L2, showing that this allocation is indeed an

equilibrium. This finishes the proof for the case of c = 1.

It is now easy to see that the above example can be easily generalized to the case where the

cost per seed is a positive integer c: It suffices to replace every node in layers L3, L4 with c

vertices with the same neighbor set in L1, L2 as the original vertex. With a similar type of

reasoning one can show that PoA is equal to (2c+1)N+1+K∗c−K∗c
2cN+1−2cN = (2c+1)N+1

1 = (2c+1)N+1

which can be arbitrarily large by respectively choosing N sufficiently large.

Corollary 2 Suppose cp = c for all p ∈ {R,B} and c ≥ 1 (c ∈ N). Then regardless of f, g,

the quantity θ∗

θ can be unbounded in the endogenous budgets model.

Proof The same construction in the previous proof works here too. We have that θ∗

θ =

(2c+1)N+1+K∗c
2cN+1 , so it can be arbitrarily large by choosing K∗ big enough.

Finally we investigate the case where c < 1.

Theorem 20 Suppose cp = c < 1 for p ∈ {R,B} and g is linear. Then regardless of f , the

PoA can be unbounded in the endogenous budgets model.

Proof Consider the graph H in Figure 18. We choose K sufficiently large. The maximum

social welfare solution is obviously the case where a single seed is put on v, resulting in
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payoff K + [2cK] + 1− c which is larger than K.

Next we claim that one equilibrium is the case where players put one seed on each of

u1, ..., uK resulting in total payoff of [2cK] + 1− 2cK < 1, and therefore a PoA larger than

K. To prove our claim, we just need to show that if the strategy of one player (say Red)

is to put exactly one seed on each vertex of the second layer, then the best response of the

Blue player will be to do the same thing. Suppose Blue chooses x vertices among u1, ..., uK

as her seed set. Then her expected payoff would be at most (x/2K)([2cK] + 1)− cx which

is increasing in x (one can easily see this by taking the derivative: ([2cK] + 1)/2K− c ≥ 0).

This means that the best response is to choose x = K which proves our claim.

Finally, we note that since K in the above construction can be chosen arbitrarily large, the

PoA is unbounded and this finishes the proof.

4.2.4. Discussion and Future Directions

We relaxed two of the main restricting assumption in previous papers on competitive in-

fluence maximization. We saw that exogenous budget constraints are crucial for obtaining

upper bounds on the PoA and the Budget Multiplier. We also saw that if in addition to the

number of adopters, firms take the connectivity among those adopters into account, upper

bounds on the PoA and the Budget Multiplier still exist, but they can depend weakly on the

network structure and the budget constraints. Our work suggests a number of additional

interesting open problems, including the following:

1. In the endogenous model, we assumed that the cost per seed is a fixed value. It would

be interesting to investigate the case where the cost is in fact a more complex function

of the seed set.

2. In the connectivity model, we considered a simple notion of connectivity (i.e. the

number of edges). Another interesting direction is to investigate more complex notions

of connectivity.
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CHAPTER 5 : Conclusion and Future Directions

The primary goal of this dissertation was to further our understanding of market algorithms

within the social and economic context they operate in. As we saw earlier, society can

impose various trade-offs on the market designer. I tackled multiple instances of legal,

ethical, and strategic constraints in the context of online labor markets, prediction markets,

ad exchanges, and beyond.

Significant future research is necessary before we have satisfactory answer to the numerous

market design challenges we face in today’s exceedingly online world. As the Internet

becomes more and more an integrated part of modern society, the number of these challenges

is inevitable to rise. In this chapter, I conclude with a brief overview of several broad, related

research directions that remain largely open for future work.

5.1. Learning and Information Aggregation through Markets

One of the key components of an effective market algorithm is its ability to aggregate and

react to information it accumulates from its participants. In some cases—e.g. prediction

markets—this is the primary goal of the market mechanism, and in other instances—e.g.

callouts in ad exchanges—information aggregation can be a powerful means to market’s

broader agenda.

We know that some market mechanisms outperform others in terms of their ability to learn

and react to informative signals they receive from participants. For instance, in case of

making predictions about future outcomes, under certain conditions cost function-based

market making is known to perform significantly better than traditional methods of infor-

mation aggregation, such as polling. Our current understanding ways in which information

aggregates through markets is limited. Important areas for future work therefore includes:

• investigate the conditions under which one market algorithm outperforms another in

terms of the speed and reliability with which it aggregates information;
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• and the underlying forces driving this forward.

Obtaining a satisfactory answer to the above questions would require a clear understanding

of market participants’ behavior, and means to extract as much relevant information as

possible from that behavior.

5.2. Modeling Market Participants’ Behavior

A trivial prerequisite in designing any kind of algorithm is to know its inputs properly. Mar-

ket algorithms are no exception: The first step in designing an effective market algorithm is

to understand the behavior of the entities interacting with it. Unlike traditional algorithms,

however, in case of market algorithms understanding this input is far from trivial. Market

participants are usually sophisticated agents that use complex tools to drive their agenda

forward. The challenge in modeling this behavior is, therefore, multifold:

• Complex environment: Market participants seldom operate in vacuum. They

often interact with other market participants; participate in other, possibly competing

platforms; and more broadly interact with and receive information from the outside

world in numerous ways.

• Belief formation and learning: Given the complex environment they operate

in, it is both intractable and unrealistic to model market participants as traditional

Bayesian agents.

• Evolving strategies: Any intelligent agent is naturally expected to experiment with

new strategies and methods over time, especially as its environment changes. An

effective market algorithm must inevitably be capable of identifying and reacting to

these changes–at least to a sufficient degree.
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