2,850 research outputs found

    FEMwiki: crowdsourcing semantic taxonomy and wiki input to domain experts while keeping editorial control: Mission Possible!

    Get PDF
    Highly specialized professional communities of practice (CoP) inevitably need to operate across geographically dispersed area - members frequently need to interact and share professional content. Crowdsourcing using wiki platforms provides a novel way for a professional community to share ideas and collaborate on content creation, curation, maintenance and sharing. This is the aim of the Field Epidemiological Manual wiki (FEMwiki) project enabling online collaborative content sharing and interaction for field epidemiologists around a growing training wiki resource. However, while user contributions are the driving force for content creation, any medical information resource needs to keep editorial control and quality assurance. This requirement is typically in conflict with community-driven Web 2.0 content creation. However, to maximize the opportunities for the network of epidemiologists actively editing the wiki content while keeping quality and editorial control, a novel structure was developed to encourage crowdsourcing – a support for dual versioning for each wiki page enabling maintenance of expertreviewed pages in parallel with user-updated versions, and a clear navigation between the related versions. Secondly, the training wiki content needs to be organized in a semantically-enhanced taxonomical navigation structure enabling domain experts to find information on a growing site easily. This also provides an ideal opportunity for crowdsourcing. We developed a user-editable collaborative interface crowdsourcing the taxonomy live maintenance to the community of field epidemiologists by embedding the taxonomy in a training wiki platform and generating the semantic navigation hierarchy on the fly. Launched in 2010, FEMwiki is a real world service supporting field epidemiologists in Europe and worldwide. The crowdsourcing success was evaluated by assessing the number and type of changes made by the professional network of epidemiologists over several months and demonstrated that crowdsourcing encourages user to edit existing and create new content and also leads to expansion of the domain taxonomy

    Mind the Gap: From Desktop to App

    Get PDF
    In this article we present a new mobile game, edugames4all MicrobeQuest!, that covers core learning objectives from the European curriculum on microbe transmission, food and hand hygiene, and responsible antibiotic use. The game is aimed at 9 to 12 year olds and it is based on the desktop version of the edugames4all platform games. We discuss the challenges and lessons learned transitioning from a desktop based game to a mobile app. We also present the seamless evaluation obtained by integrating the assessment of educa- tional impact of the game into the game mechanics

    On the Complexity of Mining Itemsets from the Crowd Using Taxonomies

    Full text link
    We study the problem of frequent itemset mining in domains where data is not recorded in a conventional database but only exists in human knowledge. We provide examples of such scenarios, and present a crowdsourcing model for them. The model uses the crowd as an oracle to find out whether an itemset is frequent or not, and relies on a known taxonomy of the item domain to guide the search for frequent itemsets. In the spirit of data mining with oracles, we analyze the complexity of this problem in terms of (i) crowd complexity, that measures the number of crowd questions required to identify the frequent itemsets; and (ii) computational complexity, that measures the computational effort required to choose the questions. We provide lower and upper complexity bounds in terms of the size and structure of the input taxonomy, as well as the size of a concise description of the output itemsets. We also provide constructive algorithms that achieve the upper bounds, and consider more efficient variants for practical situations.Comment: 18 pages, 2 figures. To be published to ICDT'13. Added missing acknowledgemen

    TiFi: Taxonomy Induction for Fictional Domains [Extended version]

    No full text
    Taxonomies are important building blocks of structured knowledge bases, and their construction from text sources and Wikipedia has received much attention. In this paper we focus on the construction of taxonomies for fictional domains, using noisy category systems from fan wikis or text extraction as input. Such fictional domains are archetypes of entity universes that are poorly covered by Wikipedia, such as also enterprise-specific knowledge bases or highly specialized verticals. Our fiction-targeted approach, called TiFi, consists of three phases: (i) category cleaning, by identifying candidate categories that truly represent classes in the domain of interest, (ii) edge cleaning, by selecting subcategory relationships that correspond to class subsumption, and (iii) top-level construction, by mapping classes onto a subset of high-level WordNet categories. A comprehensive evaluation shows that TiFi is able to construct taxonomies for a diverse range of fictional domains such as Lord of the Rings, The Simpsons or Greek Mythology with very high precision and that it outperforms state-of-the-art baselines for taxonomy induction by a substantial margin

    The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas

    Get PDF
    Ontologies of research areas are important tools for characterising, exploring, and analysing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 26K topics and 226K semantic relationships. It was created by applying the Klink-2 algorithm on a very large dataset of 16M scientific articles. CSO presents two main advantages over the alternatives: i) it includes a very large number of topics that do not appear in other classifications, and ii) it can be updated automatically by running Klink-2 on recent corpora of publications. CSO powers several tools adopted by the editorial team at Springer Nature and has been used to enable a variety of solutions, such as classifying research publications, detecting research communities, and predicting research trends. To facilitate the uptake of CSO we have developed the CSO Portal, a web application that enables users to download, explore, and provide granular feedback on CSO at different levels. Users can use the portal to rate topics and relationships, suggest missing relationships, and visualise sections of the ontology. The portal will support the publication of and access to regular new releases of CSO, with the aim of providing a comprehensive resource to the various communities engaged with scholarly data

    Improving Hypernymy Extraction with Distributional Semantic Classes

    Full text link
    In this paper, we show how distributionally-induced semantic classes can be helpful for extracting hypernyms. We present methods for inducing sense-aware semantic classes using distributional semantics and using these induced semantic classes for filtering noisy hypernymy relations. Denoising of hypernyms is performed by labeling each semantic class with its hypernyms. On the one hand, this allows us to filter out wrong extractions using the global structure of distributionally similar senses. On the other hand, we infer missing hypernyms via label propagation to cluster terms. We conduct a large-scale crowdsourcing study showing that processing of automatically extracted hypernyms using our approach improves the quality of the hypernymy extraction in terms of both precision and recall. Furthermore, we show the utility of our method in the domain taxonomy induction task, achieving the state-of-the-art results on a SemEval'16 task on taxonomy induction.Comment: In Proceedings of the 11th Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japa

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort
    • …
    corecore