2,070 research outputs found

    Crowdsourced data collection of facial responses

    Get PDF
    In the past, collecting data to train facial expression and affect recognition systems has been time consuming and often led to data that do not include spontaneous expressions. We present the first crowdsourced data collection of dynamic, natural and spontaneous facial responses as viewers watch media online. This system allowed a corpus of 3,268 videos to be collected in under two months. We characterize the data in terms of viewer demographics, position, scale, pose and movement of the viewer within the frame, and illumination of the facial region. We compare statistics from this corpus to those from the CK+ and MMI databases and show that distributions of position, scale, pose, movement and luminance of the facial region are significantly different from those represented in these datasets. We demonstrate that it is possible to efficiently collect massive amounts of ecologically valid responses, to known stimuli, from a diverse population using such a system. In addition facial feature points within the videos can be tracked for over 90% of the frames. These responses were collected without need for scheduling, payment or recruitment. Finally, we describe a subset of data (over 290 videos) that will be available for the research community.Things That Think ConsortiumProcter & Gamble Compan

    Initial perceptions of a casual game to crowdsource facial expressions in the wild

    Full text link
    The performance of affective computing systems often depend on the quality of the image databases they are trained on. However, creating good quality training databases is a laborious activity. In this paper, we evaluate BeFaced, a tile matching casual tablet game that enables massive crowdsourcing of facial expressions for the purpose of advancing facial expression analysis. The core aspect of BeFaced is game quality, as increased enjoyment and engagement translates to an increased quantity of varied facial expressions obtained. Hence a pilot user study was performed on 18 university students whereby observational and interview data were obtained during playtests. We found that most users enjoyed the game and were intrigued by the novelty in interacting with the facial expression gameplay mechanic, but also uncovered problems with feedback provision and the dynamic difficulty adjustment mechanism. These findings hence provide invaluable insights for the other researchers/ practitioners working on similar crowdsourcing games with a purpose, as well as for the development of BeFaced

    Face Analytics Web Platform

    Get PDF
    Automatic facial expression recognition technology can help researchers to conduct behavioral analyses and to improve the usability of a variety of software systems, especially in the domains of education and computer games. In order to obtain accurate results, it is important to conduct large-scale experiments over hundreds or even thousands of subjects; however, to-date there is no freely available platform to conduct experiments of this scale. This project aims to facilitate such experimentation by creating a web-based platform with which users can watch a stimulus video while their own reaction video is being recorded and transmitted simultaneously

    Towards the prediction of the quality of experience from facial expression and gaze direction

    Get PDF
    In this paper we investigate on the potentials to implicitly estimate the Quality of Experience (QoE) of a user of video streaming services by acquiring a video of her face and monitoring her facial expression and gaze direction. To this, we conducted a crowdsourcing test in which participants were asked to watch and rate the quality when watching 20 videos subject to different impairments, while their face was recorded with their PC's webcam. The following features were then considered: the Action Units (AU) that represent the facial expression, and the position of the eyes' pupil. These features were then used, together with the respective QoE values provided by the participants, to train three machine learning classifiers, namely, Support Vector Machine with quadratic kernel, RUSBoost trees and bagged trees. We considered two prediction models: only the AU features are considered or together with the position of the eyes' pupils. The RUSBoost trees achieved the best results in terms of accuracy, sensitivity and area under the curve scores. In particular, when all the features were considered, the achieved accuracy is of 44.7%, 59.4% and 75.3% when using the 5-level, 3level and 2-level quality scales, respectively. Whereas these results are not satisfactory yet, these represent a promising basis

    BeFaced: A casual game to crowdsource facial expressions in the wild

    Full text link
    Creating good quality image databases for affective computing systems is key to most computer vision research, but is unfortunately costly and time-consuming. This paper describes BeFaced, a tile matching casual tablet game that enables massive crowdsourcing of facial expressions to advance facial expression analysis. BeFaced uses state-of-the-art facial expression tracking technology with dynamic difficulty adjustment to keep the player engaged and hence obtain a large and varied face dataset. CHI attendees will be able to experience a novel game interface that uses the iPad's front camera to track and capture facial expressions as the primary player input, and also investigate how the game design in general enables massive crowdsourcing in an extensible manner

    Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected In-the-Wild

    Get PDF
    Computer classification of facial expressions requires large amounts of data and this data needs to reflect the diversity of conditions seen in real applications. Public datasets help accelerate the progress of research by providing researchers with a benchmark resource. We present a comprehensively labeled dataset of ecologically valid spontaneous facial responses recorded in natural settings over the Internet. To collect the data, online viewers watched one of three intentionally amusing Super Bowl commercials and were simultaneously filmed using their webcam. They answered three self-report questions about their experience. A subset of viewers additionally gave consent for their data to be shared publicly with other researchers. This subset consists of 242 facial videos (168,359 frames) recorded in real world conditions. The dataset is comprehensively labeled for the following: 1) frame-by-frame labels for the presence of 10 symmetrical FACS action units, 4 asymmetric (unilateral) FACS action units, 2 head movements, smile, general expressiveness, feature tracker fails and gender; 2) the location of 22 automatically detected landmark points; 3) self-report responses of familiarity with, liking of, and desire to watch again for the stimuli videos and 4) baseline performance of detection algorithms on this dataset. This data is available for distribution to researchers online, the EULA can be found at: http://www.affectiva.com/facial-expression-dataset-am-fed/

    Pedestrian Detection with Wearable Cameras for the Blind: A Two-way Perspective

    Full text link
    Blind people have limited access to information about their surroundings, which is important for ensuring one's safety, managing social interactions, and identifying approaching pedestrians. With advances in computer vision, wearable cameras can provide equitable access to such information. However, the always-on nature of these assistive technologies poses privacy concerns for parties that may get recorded. We explore this tension from both perspectives, those of sighted passersby and blind users, taking into account camera visibility, in-person versus remote experience, and extracted visual information. We conduct two studies: an online survey with MTurkers (N=206) and an in-person experience study between pairs of blind (N=10) and sighted (N=40) participants, where blind participants wear a working prototype for pedestrian detection and pass by sighted participants. Our results suggest that both of the perspectives of users and bystanders and the several factors mentioned above need to be carefully considered to mitigate potential social tensions.Comment: The 2020 ACM CHI Conference on Human Factors in Computing Systems (CHI 2020
    • …
    corecore