6 research outputs found

    Crowdsourced Live Streaming over the Cloud

    Full text link
    Empowered by today's rich tools for media generation and distribution, and the convenient Internet access, crowdsourced streaming generalizes the single-source streaming paradigm by including massive contributors for a video channel. It calls a joint optimization along the path from crowdsourcers, through streaming servers, to the end-users to minimize the overall latency. The dynamics of the video sources, together with the globalized request demands and the high computation demand from each sourcer, make crowdsourced live streaming challenging even with powerful support from modern cloud computing. In this paper, we present a generic framework that facilitates a cost-effective cloud service for crowdsourced live streaming. Through adaptively leasing, the cloud servers can be provisioned in a fine granularity to accommodate geo-distributed video crowdsourcers. We present an optimal solution to deal with service migration among cloud instances of diverse lease prices. It also addresses the location impact to the streaming quality. To understand the performance of the proposed strategies in the realworld, we have built a prototype system running over the planetlab and the Amazon/Microsoft Cloud. Our extensive experiments demonstrate that the effectiveness of our solution in terms of deployment cost and streaming quality

    QoE-Aware Resource Allocation For Crowdsourced Live Streaming: A Machine Learning Approach

    Get PDF
    In the last decade, empowered by the technological advancements of mobile devices and the revolution of wireless mobile network access, the world has witnessed an explosion in crowdsourced live streaming. Ensuring a stable high-quality playback experience is compulsory to maximize the viewers’ Quality of Experience and the content providers’ profits. This can be achieved by advocating a geo-distributed cloud infrastructure to allocate the multimedia resources as close as possible to viewers, in order to minimize the access delay and video stalls. Additionally, because of the instability of network condition and the heterogeneity of the end-users capabilities, transcoding the original video into multiple bitrates is required. Video transcoding is a computationally expensive process, where generally a single cloud instance needs to be reserved to produce one single video bitrate representation. On demand renting of resources or inadequate resources reservation may cause delay of the video playback or serving the viewers with a lower quality. On the other hand, if resources provisioning is much higher than the required, the extra resources will be wasted. In this thesis, we introduce a prediction-driven resource allocation framework, to maximize the QoE of viewers and minimize the resources allocation cost. First, by exploiting the viewers’ locations available in our unique dataset, we implement a machine learning model to predict the viewers’ number near each geo-distributed cloud site. Second, based on the predicted results that showed to be close to the actual values, we formulate an optimization problem to proactively allocate resources at the viewers’ proximity. Additionally, we will present a trade-off between the video access delay and the cost of resource allocation. Considering the complexity and infeasibility of our offline optimization to respond to the volume of viewing requests in real-time, we further extend our work, by introducing a resources forecasting and reservation framework for geo-distributed cloud sites. First, we formulate an offline optimization problem to allocate transcoding resources at the viewers’ proximity, while creating a tradeoff between the network cost and viewers QoE. Second, based on the optimizer resource allocation decisions on historical live videos, we create our time series datasets containing historical records of the optimal resources needed at each geo-distributed cloud site. Finally, we adopt machine learning to build our distributed time series forecasting models to proactively forecast the exact needed transcoding resources ahead of time at each geo-distributed cloud site. The results showed that the predicted number of transcoding resources needed in each cloud site is close to the optimal number of transcoding resources

    The design and optimization of cooperative mobile edge

    Get PDF
    As the world is charging towards the Internet of Things (IoT) era, an enormous amount of sensors will be rapidly empowered with internet connectivity. Besides the fact that the end devices are getting more diverse, some of them are also becoming more powerful, such that they can function as standalone mobile computing units with multiple wireless network interfaces. At the network end, various facilities are also pushed to the mobile edge to foster internet connections. Distributed small scale cloud resources and green energy harvesters can be directly attached to the deployed heterogeneous base stations. Different from the traditional wireless access networks, where the only dynamics come from the user mobility, the evolving mobile edge will be operated in the constantly changing and volatile environment. The harvested green energy will be highly dependent on the available energy sources, and the dense deployment of a variety of wireless access networks will result in intense radio resource contention. Consequently, the wireless networks are facing great challenges in terms of capacity, latency, energy/spectrum efficiency, and security. Equivalently, balancing the dynamic network resource demand and supply is essential to the smooth network operation. Leveraging the broadcasting nature of wireless data transmission, network nodes can cooperate with each other by either allowing users to connect with multiple base stations simultaneously or offloading user workloads to neighboring base stations. Moreover, grid facilitated and radio frequency signal enabled renewable energy sharing among network nodes are introduced in this dissertation. In particular, the smart grid can transfer the green energy harvested by each individual network node from one place to another. The network node can also transmit energy from one to another using radio frequency energy transfer. This dissertation addresses the cooperative network resource management to improve the energy efficiency of the mobile edge. First, the energy efficient cooperative data transmission scheme is designed to cooperatively allocate the radio resources of the wireless networks, including spectrum and power, to the mobile users. Then, the cooperative data transmission and wireless energy sharing scheme is designed to optimize both the energy and data transmission in the network. Finally, the cooperative data transmission and wired energy sharing scheme is designed to optimize the energy flow within the smart grid and the data transmission in the network. As future work, how to motivate multiple parties to cooperate and how to guarantee the security of the cooperative mobile edge is discussed. On one hand, the incentive scheme for each individual network node with distributed storage and computing resources is designed to improve network performance in terms of latency. On the other hand, how to leverage network cooperation to balance the tradeoff between efficiency (energy efficiency and latency) and security (confidentiality and privacy) is expounded
    corecore