4 research outputs found

    Subject Index

    Get PDF

    A Unified Framework for Integer Programming Formulation of Graph Matching Problems

    Get PDF
    Graph theory has been a powerful tool in solving difficult and complex problems arising in all disciplines. In particular, graph matching is a classical problem in pattern analysis with enormous applications. Many graph problems have been formulated as a mathematical program then solved using exact, heuristic and/or approximated-guaranteed procedures. On the other hand, graph theory has been a powerful tool in visualizing and understanding of complex mathematical programming problems, especially integer programs. Formulating a graph problem as a natural integer program (IP) is often a challenging task. However, an IP formulation of the problem has many advantages. Several researchers have noted the need for natural IP formulation of graph theoretic problems. The aim of the present study is to provide a unified framework for IP formulation of graph matching problems. Although there are many surveys on graph matching problems, however, none is concerned with IP formulation. This paper is the first to provide a comprehensive IP formulation for such problems. The framework includes variety of graph optimization problems in the literature. While these problems have been studied by different research communities, however, the framework presented here helps to bring efforts from different disciplines to tackle such diverse and complex problems. We hope the present study can significantly help to simplify some of difficult problems arising in practice, especially in pattern analysis

    Crossing-constrained hierarchical drawings

    Get PDF
    1noreservedWe study the problem of computing hierarchical drawings of layered graphs when some pairs of edges are not allowed to cross. We show that deciding the existence of a drawing satisfying at least k non-crossing constraints from a given set is NP-hard, even if the graph is 2-layered and even when the permutation of the vertices on one side of the bipartition is fixed. We then propose simple constant-ratio approximation algorithms for the optimization version of the problem, which requires to find a maximum realizable subset of constraints, and we discuss how to extend the well-known hierarchical approach for creating layered drawings of directed graphs so as to minimize the number of edge crossings while maximizing the number of satisfied constraints. © 2005 Elsevier B.V. All rights reserved.mixedIrene FinocchiFinocchi, Iren
    corecore