9,233 research outputs found

    Crossing and weighted crossing number of near-planar graphs

    Get PDF
    A nonplanar graph G is near-planar if it contains an edge e such that G − e is planar. The problem of determining the crossing number of a near-planar graph is exhibited from different combinatorial viewpoints. On the one hand, we develop min-max formulas involving efficiently computable lower and upper bounds. These min-max results are the first of their kind in the study of crossing numbers and improve the approximation factor for the approximation algorithm given by Hliněny and Salazar (Graph Drawing GD’06). On the other hand, we show that it is NP-hard to compute a weighted version of the crossing number for near-planar graphs

    On Hardness of the Joint Crossing Number

    Full text link
    The Joint Crossing Number problem asks for a simultaneous embedding of two disjoint graphs into one surface such that the number of edge crossings (between the two graphs) is minimized. It was introduced by Negami in 2001 in connection with diagonal flips in triangulations of surfaces, and subsequently investigated in a general form for small-genus surfaces. We prove that all of the commonly considered variants of this problem are NP-hard already in the orientable surface of genus 6, by a reduction from a special variant of the anchored crossing number problem of Cabello and Mohar

    On the pseudolinear crossing number

    Full text link
    A drawing of a graph is {\em pseudolinear} if there is a pseudoline arrangement such that each pseudoline contains exactly one edge of the drawing. The {\em pseudolinear crossing number} of a graph GG is the minimum number of pairwise crossings of edges in a pseudolinear drawing of GG. We establish several facts on the pseudolinear crossing number, including its computational complexity and its relationship to the usual crossing number and to the rectilinear crossing number. This investigation was motivated by open questions and issues raised by Marcus Schaefer in his comprehensive survey of the many variants of the crossing number of a graph.Comment: 12 page

    NC Algorithms for Computing a Perfect Matching and a Maximum Flow in One-Crossing-Minor-Free Graphs

    Full text link
    In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3K_{3,3}-minor-free graphs by building on Kasteleyn's scheme for planar graphs, and stated that this "opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3K_{3,3}-free graphs." In this paper, we finally settle this 30-year-old open problem. Building on recent NC algorithms for planar and bounded-genus perfect matching by Anari and Vazirani and later by Sankowski, we obtain NC algorithms for perfect matching in any minor-closed graph family that forbids a one-crossing graph. This family includes several well-studied graph families including the K3,3K_{3,3}-minor-free graphs and K5K_5-minor-free graphs. Graphs in these families not only have unbounded genus, but can have genus as high as O(n)O(n). Our method applies as well to several other problems related to perfect matching. In particular, we obtain NC algorithms for the following problems in any family of graphs (or networks) with a one-crossing forbidden minor: ∙\bullet Determining whether a given graph has a perfect matching and if so, finding one. ∙\bullet Finding a minimum weight perfect matching in the graph, assuming that the edge weights are polynomially bounded. ∙\bullet Finding a maximum stst-flow in the network, with arbitrary capacities. The main new idea enabling our results is the definition and use of matching-mimicking networks, small replacement networks that behave the same, with respect to matching problems involving a fixed set of terminals, as the larger network they replace.Comment: 21 pages, 6 figure
    • …
    corecore