6 research outputs found

    Open Source and Open Standards

    Get PDF
    Publication reference: Koper, R. (2008). Open Source and Open Standards. In J. M. Spector, M. Merrill, J. van Merriënboer & M. P. Driscol (Eds.), Handbook of Research on Educational Communications and Technology (3rd ed., pp. 355-368). New York: Routledge.The objective of this chapter is to create an understanding of the importance of open source software and open standards (OSS/OS) for e-learning research. Open source is a fundamental new way to develop software, and open standards are needed to make software components work together. It is argued that OSS and OS can improve the convergence of knowledge in the e-learning field, improve the general quality and interoperability of e-learning applications, and improve collaboration between researchers and users. All of these are beneficial and necessary requirements for e-learning research. After a general introduction into basic OSS and OS concepts, the following questions will be answered: a) How does OSS/OS facilitate the technological activities of the researchers in terms of methodology, collaboration and dissemination of results? b) How does OSS/OS facilitate the development of technological knowledge in the field? c) How does OSS/OS facilitate the development of technological artifacts in the field? The development and use of the open standard “IMS Learning Design” (a formal design language for online courses), and the open source applications that are developed to run and present IMS Learning Design courses will be used as an example to demonstrate the use of OSS/OS in e-learning research. In the concluding section we provide some practical information for researchers how to get involved in OSS and OS and how to use it in e-learning research

    Using the Personal Competence Manager as a complementary approach to IMS Learning Design authoring

    Get PDF
    Vogten, H., Koper, R., Martens, H., & Van Bruggen, J. (2008). Using the Personal Competence Manager as a complementary approach to IMS Learning Design authoring. Interactive Learning Environments, 16(1), 83-100.In this article TENCompetence will be presented as a framework for lifelong competence development. More specifically, the relationship between the TENCompetence framework and the IMS Learning Design (LD) specification is explored. LD authoring has proven to be challenging and the toolset currently available is targeting expert users mostly working for institutions of higher educations. Furthermore these tools re-enforce a fairly rigid top-down workflow approach towards design and delivery. This approach it is not always the most suitable model in all circumstances for all practitioners. TENCompetence provides an alternative bottom-up approach to LD authoring via its first implementation: the Personal Competence Manager (PCM). Constructs such as competence profiles and competence development programmes, let users define, modify, and acquire competences they need for achieving their personal goals. We will show how the PCM provides support for these constructs and stimulates the bottom-up development of learning materials. We will also show how these concepts can be mapped towards LD. This allows the ad hoc designs of the PCM to be captured in a Unit of Learning (UOL). These UOLs can be enhanced and eventually fed back into the PCM, therewith closing the edit cycle. This editing cycle allows for a gradual integration of bottom-up ad hoc designs with more formal top-down designs introducing LD in a gentle fashion.The work on this publication has been sponsored by the TENCompetence Integrated Project that is funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org

    Representing CSCL macro-scripts using IMS LD lessons learned

    Get PDF
    Extended version of Hernández-Leo, D., Burgos, D., Tattersall, C., Koper, R. Representing Computer-Supported Collaborative Learning macro-scripts using IMS Learning Design Proceedings of the Second European Conference on Technology Enhanced Learning, CEUR Workshop Proceedings, EC-TEL'07, Crete, Greece, September 2007.This paper analyses how CSCL (Computer-Supported Collaborative Learning) macro-scripts can be implemented using IMS Learning Design (LD). CSCL macro-scripts are machine-readable collaboration scripts that structure the activities making up a learning process. In order to support a systematic analysis of the problem, we point out the requirements of CSCL macro-scripts for their representation using LD. These requirements include common collaborative learning mechanisms (group composition, role and resource distribution and coordination) and flexibility demands (such as flexible group composition). Each of these needs is described and illustrated by means of two examples proposed in the literature and which reflect the identified requirements well: Universanté and ArgueGraph Scripts. These scripts are used in the article to expose and exemplify the realization of the requirements using LD. The problem is approached from two angles – that of the LD notation itself and also from related tools and specifications. The paper positions related work and discusses the possibility of generalizing the lessons learned to the representation of CSCL micro-scripts

    Design and Implementation Strategies for IMS Learning Design

    Get PDF
    SIKS Dissertation Series No. 2008-27The IMS Learning Design (LD) specification, which has been released in February 2003, is a generic and flexible language for describing the learning practice and underlying learning designs using a formal notation which is computer-interpretable. It is based on a pedagogical meta-model (Koper & Manderveld, 2004) and supports the use of a wide range of pedagogies. It supports adaptation of individual learning routes and orchestrates interactions between users in various learning and support roles. A formalized learning design can be applied repeatedly in similar situations with different persons and contexts. Yet because IMS Learning Design is a fairly complex and elaborate specification, it can be difficult to grasp; furthermore, designing and implementing a runtime environment for the specification is far from straightforward. That IMS Learning Design makes use of other specifications and e-learning services adds further to this complexity for both its users and the software developers. For this new specification to succeed, therefore, a reference runtime implementation was needed. To this end, this thesis addresses two research and development issues. First, it investigates research into and development of a reusable reference runtime environment for IMS Learning Design. The resulting runtime, called CopperCore, provides a reference both for users of the specification and for software developers. The latter can reuse the design principles presented in this thesis for their own implementations, or reuse the CopperCore product through the interfaces provided. Second, this thesis addresses the integration of other specifications and e-learning services during runtime. It presents an architecture and implementation (CopperCore Service Integration) which provides an extensible lightweight solution to the problem. Both developments have been tested through real-world use in projects carried out by the IMS Learning Design community. The results have generally been positive, and have led us to conclude that we successfully addressed both the research and development issues. However, the results also indicate that the LD tooling lacks maturity, particularly in the authoring area. Through close integration of CopperCore with a product called the Personal Competence Manager, we demonstrate that a complementary approach to authoring in IMS Learning Design solves some of these issues

    Crosscutting Runtime Adaptations of LD Execution

    No full text
    In this paper, the authors describe a mechanism for the introduction of small variations in the original learning design process defined in a particular Unit of Learning (UoL). The objective is to increase the UoL reusability by offering the designers an alternative to introduce slight variations on the original design instead of creating a new one each time they want to reuse it. No changes or extensions to the Learning Design definition are required to perform these modifications. The use of design patterns to include the adaptations offers the possibility to easily introduce new operations, such as tracing the activity progress, for instance. The structure of a Learning Design player that is able to process the desired adaptation information and to apply it at runtime will be outlined. The player will be part of an architecture for the automatic adaptation of UoLs to their actual context of execution

    Scénarisation pédagogique pour des EIAH ouverts (une approche dirigée par les modèles et spécifique au domaine métier)

    Get PDF
    Dans cette thèse, nous nous sommes intéressés à l ouverture des EIAH (EnvironnementsInformatiques pour l'Apprentissage Humain), pour répondre à leur faible déploiement dansles établissements de formation, en facilitant leur appropriation par des usagers. Notre travailde recherche s'inscrit dans le cadre du projet REDiM (Réingénierie des EIAH Dirigée par lesModèles) mené au LIUM (Laboratoire d'Informatique de l'Université du Maine), dont un desobjectifs est d intégrer les enseignants dans le processus de conception des scénariospédagogiques d un EIAH.Nous proposons une approche d ingénierie et de réingénierie pour rendre un EIAH ouvertà la conception et à l adaptation de ses scénarios pédagogiques par les enseignantsutilisateurs. Nous avons défini un processus de conception basé sur la modélisationde scénarios pédagogiques ouverts (SPO), qui permet l instrumentation des enseignantspour les aider dans la conception continue (i.e. qui se poursuit dans l usage) d une activitéd apprentissage. Nous faisons trois propositions scientifiques :- Un modèle de représentation des SPO, qui permet de les structurer en variantes enfonction des contextes d exécution. Nous qualifions ce modèle de rationnel puisqu il s appuieprincipalement sur l approche du Design Rationale que nous avons adaptée à notreproblématique.- Un processus itératif et incrémental d ingénierie et de réingénierie qui guide lesenseignants pour concevoir et adapter des SPO conformes au modèle que nous avonsdéfini.- Une méthode dirigée par les modèles et spécifique au domaine métier pour instrumenterle processus d ouverture des scénarios pédagogiques d un EIAH existant. Cette méthoded instrumentation, reposant sur l IDM (Ingénierie Dirigée par les Modèles) et le DSM(Domain-Specific Modeling), implique les enseignants utilisateurs de l EIAH, considérés icicomme des experts du domaine. Elle est structurée en plusieurs phases qui amènentprogressivement à définir, de façon spécifique à l EIAH considéré, un langage d expressiondes SPO (ADSGEML - Adaptive Domain-Specific Graphical Educational ModelingLanguage) et un éditeur associé permettant la conception et l adaptation des SPO dansl univers métier de l EIAH.Afin d évaluer et de raffiner nos propositions, nous les avons appliquées sur l EIAH Hop3x , préalablement conçu au LIUM dans le cadre d un autre projet pour pratiquer laprogrammation orientée objet. Nous avons donc élaboré un ADSGEML et un environnementd édition graphique pour permettre aux enseignants de concevoir et d adapterdynamiquement des sessions ouvertes de Hop3x, à un niveau élevé d abstraction.In this thesis, we are interested in opening TEL systems (Technology EnhancedLearning) up in order to respond to the problem of their low deployment in teachinginstitutions, we need to facilitate their adoption by users. Our research work is part ofthe REDiM (French abbreviation which means Model-Driven Re-engineering of TELsystems ) project led by the LIUM Computer Science Laboratory of Le MansUniversity in France. One of the main objectives of this project is to involve teachersin the design process of learning scenarios of a TEL system.We propose an engineering and re-engineering approach for opening TEL systemsin order to facilitate for teachers the design and adaptation of pedagogical scenarios.We defined a design process based on the modeling of Open Pedagogical Scenarios(OPS), which allows the building of supports helping teachers in the continuousdesign of a learning activity (i.e. design which continues in the use process). Wemake three scientific proposals:- A model of OPS representation which defines a structure based on variantsaccording to execution contexts. We consider this model to be rational because it isbased mainly on the Design Rationale approach that we have adapted for ourresearch problem.- An iterative and incremental engineering and re-engineering process that guidesteachers to design and adapt OPS according to the rational model that we define inthis work.- A model-driven and domain-specific method for supporting the process of openingpedagogical scenarios of a legacy TEL system. This method, based on the MDE(Model-Driven Engineering) and DSM (Domain-Specific Modelling), involves teachersusing the TEL system, as they are considered to be domain experts. Our method isdivided into several phases that lead progressively to define the TEL system sADSGEML (Adaptive Educational Graphical Domain-Specific Modelling Language)and an associate editor allowing the design and adaptation of OPS in the businessfield of the TEL system to open for teachers.To evaluate and refine our proposals, we have applied them on the TEL system"Hop3x" which was designed at LIUM under another project for practicing objectorientedprogramming. We therefore developed an ADSGEML and a graphicalediting environment to enable teachers to design and adapt dynamically the openHop3x s learning sessions at a high level of abstraction.LE MANS-BU Sciences (721812109) / SudocSudocFranceF
    corecore