
*Corresponding author: Hubert Vogten. Open University of the Netherlands, PO Box

2960, NL-6401DL, Heerlen, The Netherlands. Email: hubert.vogten@ou.nl.

Using the Personal Competence Manager as a

complementary approach to IMS Learning Design

authoring

Hubert Vogten
a*

, Rob Koper
a
, Harrie Martens

a
, Jan van Bruggen

a

a
Open University of the Netherlands, The Netherlands

Abstract: In this article TENCompetence will be presented as a framework for lifelong

competence development. More specifically, the relationship between the

TENCompetence framework and the IMS Learning Design (LD) specification is

explored. LD authoring has proven to be challenging and the toolset currently available is

targeting expert users mostly working for institutions of higher educations. Furthermore

these tools re-enforce a fairly rigid top-down workflow approach towards design and

delivery. This approach it is not always the most suitable model in all circumstances for

all practitioners. TENCompetence provides an alternative bottom-up approach to LD

authoring via its first implementation: the Personal Competence Manager (PCM).

Constructs such as competence profiles and competence development programmes, let

users define, modify, and acquire competences they need for achieving their personal

goals. We will show how the PCM provides support for these constructs and stimulates

the bottom-up development of learning materials. We will also show how these concepts

can be mapped towards LD. This allows the ad hoc designs of the PCM to be captured in

a Unit of Learning (UOL). These UOLs can be enhanced and eventually fed back into the

PCM, therewith closing the edit cycle. This editing cycle allows for a gradual integration

of bottom-up ad hoc designs with more formal top-down designs introducing LD in a

gentle fashion.

Keywords: personal competence manager; competence development; learning design;

authoring.

Introduction

Emerging e-learning standardization initiatives have led to a number of interesting new

specifications and standards. One of those initiatives is IMS Learning Design (IMS,

2003; Koper & Olivier, 2004; Olivier & Tattersall, 2005). LD is a formal language for the

specification of learning designs using semantically meaningful concepts from the

pedagogical domain. The most relevant objectives achieved by applying LD are

formalization, reproducibility and reusability of the learning designs. LD is a very

expressive specification capable of describing a wide variety of learning designs.

However it is also a very complex and complicated specification. The current toolset

supporting LD is still very closely and directly informed by the specification itself and

requires a profound understanding of the specification. Therefore LD is used mainly in

institutions for higher education where sufficient expertise is available to work with the

current toolset.

The recently launched TENCompetence initiative targets the development of an

infrastructure for lifelong competence development. TENCompetence has the ambition to

support formal and informal learning during the lifetime of an individual.

TENCompetence ambitions reach beyond the scope of the educational institutions.

The first release of the TENCompetence software is called the Personal Competence

Manager (PCM). The PCM provides an integrated environment for both learning and

authoring without making a clear distinction between the two modes. This article will

show how this aspect can be beneficial for the easy creation of simple UOLs. A UOL is

the collection of files including the learning design expressed in LD that is ready to be

deployed in a suitable runtime environment. We will also see how UOLs can be

enhanced and in turn be reused in the PCM closing the editing cycle. In this way a gentle

introduction to LD authoring can be achieved using the PCM as an initial more loosely

authoring environment. In later stage LD can be used to capture, enhance and redeploy

the created learning experience when needed.

IMS Learning Design tools

LD is targeted at the educational designer allowing „learning designs‟ to be explicitly

modeled using semantically meaningful concepts from the pedagogical domain. Although

expressive, the specification is also very complex due to the numerous language

constructs, its declarative nature, and its fairly generic vocabulary (Griffiths & Blat,

2007; Olivier, 2004). However LD was developed with a toolset in mind that would help

the educational designer in using LD (Griffiths, Blat, García, Vogten, & Kwong, 2005).

Three years after the release of LD, a user community is established working on the

development and enhancements of these tools. So far this has resulted in a toolset dealing

with LD editing and authoring aspects on the one hand and run-time delivery aspects on

the other hand (Griffiths et al., 2005). These authors categorize the tools on two

dimensions:

Higher vs. lower level tools: This dimension is related to the level of expertise in LD

required from the user of the tool.

General purpose versus specific purpose tools: This dimension deals with the

pedagogical scope of the tools. Specific purpose tools will hide complexity by translating

generics into the specific context and filling in and leaving out optional elements where

appropriate. Generic purpose tools however, will allow authoring and delivery of LD in

all its glory.

Although efforts have been made to create or adapt specialized authoring tools with some

success such as COLLAGE (Hernández-Leo et al., 2006), HyCo-ALD (Berlanga &

García, 2007) and MOT+ (Paquette, De la Teja, Léonard, Lundgren-Cayrol, & Marino,

2005), in general most of the available tools that are LD compliant on levels A, B and C

must be categorized as generic and still rather low level. They allow the editing of the

complete LD specification and keep very close to the specification. A typical example in

this category is Reload (Miligan, Beauvoir, & Sharples, 2005; Reload Learning Design

Editor, 2007) which is by far the most popular LD editor at the moment. However, as a

consequence, an ample understanding of LD is required to use these tools. An even more

profound understanding of LD is required when advanced concepts as described by levels

B and C of LD, are required by the design. In general, this level of understanding is

limited to expert educational designers and is rarely found in practitioners such as

teachers. This leaves many practitioners out of the direct loop of designing and adapting

UOLs. Some LD tools available allow limited post design runtime adaptations through

code introspection (Zarraonandia, Dodero, & Fernández, 2006). However, these post

design runtime adaptations will not be reflected in the UOL and therefore will be lost in

the next run (Tattersall et al., 2005a) of the same UOL.

Furthermore, the current toolset imposes a, be it an implicit, top-down approach of the

overall design and delivery process. This is further encouraged by the separation of the

authoring environments and runtime delivery environments (Tattersall, Vogten, & Koper,

2005b). Typically, elicitation and selection of the type of educational scenarios is the first

step in the design process followed by the coding of the scenario into a UOL using the

authoring environment. Next this UOL is published so it can be delivered to teachers and

learners via a runtime environment such as CopperCore (Martens, Vogten, Van

Rosmalen, & Koper, 2004). This UOL can be adapted, refined and improved in following

design cycles repeating the whole process again. This workflow resembles the waterfall

approach of traditional software development and has advantages especially in cases

where the same UOL is offered to different groups for lengthy periods of time (Tattersall

et al., 2005b). This approach can help enhance the quality of the learning experience

because educational scenarios are made elicit in a very explicit and formal manner

allowing reflection on the quality and effectiveness of the designs. This quality control

can be further enhanced by collecting runtime data as is demonstrated in aLFanet (Van

Rosmalen et al., 2007). Concluding it can be said that with the current toolset

practitioners must adopt this top-down approach and need to have ample knowledge of

LD. Therefore, LD has been taken up mainly by institutions for higher education where

the required expertise can be found.

In the following sections we will present the TENCompetence domain model (Koper,

2006) followed by the first implementation based on this domain model called the

Personal Competence Manager. We will discuss how the PCM can complement the

current toolset available for LD. We will discuss how the PCM empowers individual

users to create basic UOLs using a bottom-up approach without the need for any specific

LD expertise. Furthermore we will discuss how these UOLs can be fed back into the

PCM allowing a more controlled and reproducible provisioning of the learning process.

TENCompetence Domain Model

The aims of TENCompetence has been defined on the web site (TENCompetence

consortium, 2007) as:

“A competence-based approach to lifelong learning aims to take account of all the

informal and experiential learning that an individual acquires during the course of his or

her lifetime rather than focusing solely on academic or theoretical achievement. This way

an individual can make the most of his or her achievements, be they scholastic, work-

based or the result of a leisure pursuit. The concept of competence development bridges

the worlds of education, training, knowledge management, human resource management

& informal learning in all domains which, hitherto, operated in relative isolation in

respect of one another. A competence approach to lifelong learning ensures that the

pursuit of a learning goal does not happen in a vacuum, but instead is bound to a

precisely defined purpose such as an occupation, a profession, a market or a particular

life or work situation.”

TENCompetence is finding solutions for seven major problem areas (Koper & Specht,

2007) currently preventing an infrastructure for lifelong competence development to

become a reality. TENCompetence is focusing at the needs of the individual lifelong

learner that want to maintain their autonomy and control as much as possible. This aspect

of user empowerment is typical for initiatives in the area of Personal Learning

Environments (CETIS, 2007). Users are expected to develop their own competences, not

merely by taking up competence development courses, but also by actively contributing

to these courses.

Before discussing the TENCompetence domain model we have to give our definition of a

competence. We define a competence as the estimated ability of an actor to deal with

certain critical events, problems or tasks that can occur in a certain situation. This

estimation can be based on: self assessment, informal assessments by others, formal

assessments by others or automated assessments. Competences can be attributed to an

individual person, but also to a team or to an organization. We will use the term actor as a

container for individuals, teams or organizations. Dealing with these critical events,

problems or tasks requires a number of different competences. This set of required

competences is called the competence profile (CP). Actors will develop and maintain

many competences during their lifetime and these competences can be considered

dispositions of these actors. A competence is a highly situational concept meaning that

the definition and understanding of a competence is attributed to the relationship between

actor and environment. Some of these competences are highly specific and others are

transferable to more general situations. The specific labels we give to competences and

CPs are determined by a community of practice that consists of all participants who are

regular actors in that situation. Therefore, the competences for the same profession, job or

function may vary from community to community even though the required behaviors are

exactly the same. Finally a competence is a latent characteristic of an actor: it is neither

directly visible nor measurable. Only the concrete performances of actors are visible.

From these performances we infer these latent characteristics and get an idea of the

competences these actors have acquired.

The TENCompetence domain model is the conceptual model for lifelong competence

development and it describes the various entities and their relationships that play a role.

The domain model is informed by our definition of competences, by the principles of LD

and finally by the concepts of learning networks (Koper,

2005).

competence profile

level

-target-function/job-level

-description

-period of validity

competence profile

goal

-type

-description

-pending : boolean

competence map

-domain

activity competence

{}

-description

-creator

-competence-type

competence

assessment

proficiency

level

-target-proficiency-level

-description

-period of validity

knowledge

resource

actor

-role

action

-description

-start-time

-end-time

-b/logged : boolean

unit of

lear ning

(UOL)

competence

development

progr amme

(CD P)

lear ning network

-creator

-domain

competence

observ atory

communication &

collabor ation

facilities

Common

Competence

Interoperability

Framework

topic

Unit of

Assessment

assessment

result

assessment

activity

competence

assessment

result

process

Log

product

lear ning

activity

support

activity

assessment

spec

IMS QTI

schedule

IMS LD

learning

path

spec

ePortfolio

spec

RSS

fake

*

*

*

*

export

0..1

1

<<use>>

*

*

result

-completed

objective/

prerequisite

*

*

*

1

export

import

***1..*

export

import

import

export

import

*

*

export

1..*

*

import

1..*

1*

*

export

1..*

1

*

*

export

import

export

import

import
export

*

*

*

<<use>>

Figure 1 UML Class Diagram of the TENCompetence Domain Model.

Figure 1 depicts the UML (OMG, 2003) class diagram of the TENCompetence domain

model. The model is divided into four separate modeling areas: learning materials, actor

performance, competence model and finally the learning network, or community of

practice, as a container for all these concepts. The domain model will now be elaborated

in more detail through these concepts and their relationships.

Actors will perform actions in order to achieve their goals. Typical goals are: keeping up-

to-date with a profession; improving particular competences; comparing competences

with peers. These actions are always performed in the context of a community of practice

which is represented by a learning network in the domain model. While performing

actions, actors have the possibility and are stimulated to provide support to each other by

means of communication and collaboration facilities.

By performing the actions actors leave traces of their performance behind. These traces

can take many forms ranging from mere activity logs to learning outcomes. These traces

will be used to infer the measure in which an actor has acquired certain competences.

Because competences are highly situational concepts their definitions are specific to the

learning network. Competences can be acquired at different levels. These levels are

modeled via proficiency levels, each representing a discrete ordinal measure to which a

competence has been acquired. Competences can alternatively and/or additionally be

assessed through specific competence assessments.

A CP is a collection of competences, targeted at specific proficiency levels which are

required to be able to deal with certain critical events, problems, or tasks in a certain

situation. CPs can be further split up into competence profile levels representing the

levels of a profession, e.g. like trainer, master and trainee.

Each learning network will define and describe its own set of competences and CPs. This

set makes up the competence map of that community of practice. Some of these

competences are generic and/or common to a domain but merely described differently for

a particular community. A competence observatory will maintain the common and more

formal definitions and descriptions for these generic competences ensuring transferability

between communities of practice. Communities may contribute their competences and

CPs to this observatory and thereby share their definitions with other communities.

Equally communities may decide to reuse competences and CPs present in the

competence observatory.

Finally, the model for actions is informed by the concepts of learning design. Actions can

be divided into: knowledge resources, activities, units of learning, and competence

development programmes (CDP). A CDP is an ordered set of activities and units of

learning that have to be mastered to attain a certain competence or CP. CDPs can be

exported to a learning path specification. We will see how the PCM, besides using LD as

formalism for learning design which is quite natural, also uses LD as formalism for this

learning path specification.

The Personal Competence Manager

The PCM is a client server application implementing a simplified version of the

TENCompetence domain model. The PCM lets users manage their own competence

profiles in the context of learning networks for which they are registered. These

competence profiles can be used to reflect on their personal competences with respect to

this profile. The PCM helps users find most suitable learning materials and learning

opportunities for acquiring these competences. Furthermore the PCM encourages users to

create and share their personal contributions with the rest of the community. For this

purpose design and runtime are closely integrated in the PCM. The PCM does not work

with concepts like releases or versions and the learning opportunities are continuously

changing and hopefully thereby improving. This is very much in contrast with the top-

down approach supported by the current LD toolset.

At the time of writing of this article the design stages have been concluded and coding of

the PCM has started. The software is available as open source on SourceForge at:

http://sourceforge.net/projects/tencompetence/. Figure 2 depicts the overall architecture

for the PCM. The PCM is developed as a desktop client application using the Eclipse

Rich Client Platform (Eclipse, 2007) allowing it to run on a range of platforms. The client

is extensible via the Eclipse plug-in framework. The client communicates with the server

using REST (Fielding, 2000) providing an easy to use interface for other clients in the

future. The PCM server is deployed on a Tomcat application server. It provides several

services which are governed by a servlet handler which in effect is acting as a simple

service bus. The server core provides basic provisioning and query services for the data

model objects we already encountered in the TENCompetence domain model.

MySQL Database Server

Personal Competence Manager

<<artifact>>

Eclipse RCP

<<artifact>>

Personal Competence Manager

<<artifact>>

ReST Conduit

<<artifact>>

Core GUI Components

<<artifact>>

Client Data Model

<<artifact>>

Eclipse Plugin Framework

<<artifact>>

Rating Service Plugin

<<artifact>>

Forum Service Plugin

<<artifact>>

Message Service Plugin

Tomcat Application Server

<<artifact>>

ObjectRelational Mapping (Hibernate)

<<artifact>>

Authentication

<<artifact>>

Servlet Handler

<<artifact>>

Core Provisioning Service

<<artifact>>

Server Data Model

<<artifact>>

Query Service

<<artifact>>

Authorization

<<artifact>>

Forum Service

<<artifact>>

Rating Service

<<artifact>>

Message Service

REST

JDBC

Figure 2 Personal Competence Manager Architecture.

Besides the core service, a number of additional, more autonomous services are provided

by the server such as the forum, rating and message services. The idea is that these

services will be extensible in future releases. Access to these services is governed by an

authorization module. Finally, data persistence is managed through an object relational

mapping using Hibernate.

The core functionality of the PCM will be discussed using detailed screen designs that

were available at the time of writing of this article.

Figure 3 Screenshot of the Personal Competence Manager User Interface Design.

Figure 3 depicts the main application window of the PCM. The PCM user interface can

be roughly divided into two areas. The top half area (1 & 2) contains views and editors

intended for viewing and editing CPs, competences, and actions. The lower half of the

main window (3, 4 & 5) contains views that help and support the users in their task

performed in the upper half. In Figure 3 the „Plan for Basic Guitar Skills‟ is the active

editor (2) and therefore provides the context for all views in the lower part of the screen.

Figure 3 represents a snapshot of a situation where a learning network, in the PCM

represented by it synonymous term community, already has been created and some

content has been added to this network. Furthermore any user may decide to start a new

learning network at any moment in time. Learning networks are not governed by any

central authority and can be set up by anyone. The creator of a learning network is also

the owner of the community and determines policies for the learning network access.

This principle of an entity owner controlling its access rights applies for almost all

entities. The general idea is that the PCM should tend to openness whenever possible in

order to stimulate active participation and contributions of all community members. The

PCM relies on the principles of self-organization to regulate this process (Hadeli,

Zamifirescu, van Brussel, Holvoet, & Steegmans, 2003).

View 1 of Figure 3 shows the CP selected by the user. A user can select CPs via the

competence selection dialog shown in Figure 4.

Figure 4 Competence Profile Selection Dialog.

Once the profile has been selected, the user may access the competence development

plans for these competences. These will be opened in the CDP editor depicted in Figure 3

(2). For any competence many CDPs may exist. The CDP is a container for a number of

actions that represent a learning design targeted at the associated competence. A user may

decide to simply start performing one of these actions by selecting them from the list, but

can alternatively also decide to get some advice about the best next actions to take by

clicking the „Show best route‟ link. The PCM will now show a flow chart like

navigational view of the CDP revealing the relations between the actions of the CDP.

Figure 5 Navigation View.

Figure 5 depicts this navigation view of the CDP. Actions in the CDP can be structured

into sequences and selections. These concepts are very much informed by LD. By

clicking „Show me what to do next‟ the user activates the navigation service to receive

help in selecting the best next action. In the first release of the PCM this navigation

service will be implemented using the simplest of algorithms possible: suggest the next

action which is not yet completed, but needs completing. In the future advanced

navigation services will be available that also take personal preferences, learning styles

and past performances of others into account.

Users can actively contribute to a CDP by adding new actions or modifying the detailed

learning path as shown in Figure 5. By applying these changes to a CDP the user is

sharing the changes with others. A shared CDP is behaving like a Wiki with regard to this

sharing aspect. Alternatively, a user has may decide to create a different CDP for the

selected competence all together. This CDP will show up as alternative when another

user is selecting a CDP in order to acquire this competence.

When a user decides to perform an action from the CDP the action editor depicted in

Figure 6 is opened.

Figure 6 Action Editor.

The concept of an action was also informed by LD. Actions can take two forms: a link to

an external implementation like for instance a link to a run of a UOL, or an action that is

managed by the PCM itself. An action has a description instructing the learner what he is

expected to do. Furthermore there are resources available helping the learner to perform

this action. An action can be modified by changing the description and/or by modifying

the resource associated with it.

The bottom half of Figure 3 that is composed out of 3, 4 & 5 contain services that will

help the users in performing their tasks. The agent view (3), informs the user about events

occurring in the community. Next (4) there is a group of services that are helping the user

to perform the selected action (2) which consists of a rating service, a support forum, and

a general discussion forum. Finally, there is a member services showing all the members

of the community. The PCM will support FOAF (FOAF project, 2007) to support the

creation of ad hoc user communities. The PCM may be extended with additional services

via the standard plug-in mechanism provided by Eclipse.

Capturing the Competence Development Plan using LD

We have seen that the TENCompetence domain model and therefore also the PCM are

informed by LD, especially the part dealing with learning materials. Concepts such as

learning activities, support activities, learning resources and units of learning can be

directly mapped onto concepts defined in LD. Furthermore, competences themselves can

be mapped through LD prerequisites and objectives. Although this mapping may seem

not that obvious at first, LD started out as a specification for modeling competence based

learning (Tattersall, Vogten, & Hermans, 2005). In the LD specification references are

made to the „IMS Reusable Definition of Competency or Educational Objective‟

specification (IMS, 2007) for both the prerequisites and objectives sections. Finally, the

CDP brings all these components together and can be mapped onto the method section of

LD. The CDP consists of a simple list of actions that may be performed by the user. This

list can be mapped directly to a selection in LD. In more advanced designs of the learning

path within the CDP there can be a mix of selections and sequences of actions. These

constructs map directly onto the selections and sequences as defined in LD. So all CDPs

main constructs can be mapped to equivalent LD constructs. Table 1 depicts the global

mapping of the main entities found within the TENCompetence domain model onto the

LD elements. Note that most elements have a direct one-to-one mapping with the

exception of the CDP which requires a more elaborate mapping because it provides the

container for all other elements.

Table 1 Translation of main TENCompetence Domain Model entities

onto IMS Learning Design elements.

TENCompetence

domain model entity

IMS Learning Design element(s)

knowledge resource learning-object

learning activity learning-activity

support-activity support-activity

assessment-activity learning-activity with IMS Question and Test

Interoperability content.

unit-of-learning No mapping required because this is a place

holder for the UOL itself. This allows a UOL to

be fed back into the PCM.

Competence prerequisite or learning-objective

CDP unit of learning containing one learner role, the

competences addressed by the associated CP

expressed as objectives, selections and

sequences as defined by the learning path of the

CDP and a play for wrapping the activities.

The user can initiate the transformation by clicking the „Export to LD‟ option. The

resulting UOL can be stored for publication or if needed, for further refinements and

enhancements.

Just as important as the data model entities themselves, is the way how they are created.

We have shown via the wire frames that editing a CDP and its components can be done

without any knowledge or awareness of LD whatsoever. The PCM does not presume any

particular workflow and allows a bottom-up approach because no distinction is made

between design time and runtime. Via the principle of “what you see is what you get”, the

PCM allows the active participation of learners in the creation of educational materials

and scenarios. A learning design can become an emergent property of the work of a

whole community. At any point in time a user may decide to capture the outcomes of this

process in the form of a UOL by performing an export. The reasons for doing so can be

numerous like being able to:

- Reflect on the quality of the learning design which can be achieved more easily

now because the design is made explicit and formal;

- Reuse the same materials for another group of learners making the learning

experience reproducible;

- Improve the design by adding more sophisticated features adding a great deal of

extensibility and flexibility to the PCM;

- Share the design with other practitioners who could be using other e-learning

environments. LD provides this interoperability;

- Capture a design as a permanent record for the learning experience provided. This

record in the form of a UOL can provide accountability independent of a

particular version of particular software.

The PCM uses LD as an export format for its CDPs. The exported UOL only captures

parts of the functionality offered by the PCM because it is merely a snapshot of the

design modeled through the CDP, not of the process that has lead to it. The context in

which the CDP has been created, like the groups discussion, ratings of alternatives CDPs,

creation of ad hoc communities working together on the topic, building of reputations of

users within the community etc. is not captured by the resulting UOL. Also personalized

data such as the planned start and end dates for activities are not captured in the UOL

because LD specifies a learning design at the level of user roles rather than at the level of

an individual. This is also the reason that a UOL needs to be populated through the run

mechanism before it can be deployed: the personal information has to be added by the

runtime engine in order to deliver the design.

The example depicted by Figure 2 and Figure 5 would result in the following LD

fragment which has been greatly simplified for readability purposes.

<learning-design>

 <title>Plan for Basic Guitar Skills</title>

 <learning-objectives>

 <item identifierref=”basic_guitar_skills"/>

 </learning-objectives>

 <components>

 <roles>

 <learner identifier="learner"><title>Learner</title></learner>

 </roles>

 <activities>

 <learning-activity identifier="a_beginners_course_guitar_playing">

 <title>Beginners course guitar playing</title>

 </learning-activity>

 <learning-activity identifier="a_interactive_lessons:_scales">

 <title>Interactive lessons: scales </title>

 </learning-activity>

 <learning-activity identifier="a_rhythm">

 <title>Rhythm</title>

 </learning-activity>

 <learning-activity identifier="a_basic_guitar_skills">

 <title>Basic Guitar Skills</title>

 </learning-activity>

 <learning-activity identifier="a_basic_chords">

 <title>Beginners course guitar playing</title>

 </learning-activity>

 <activity-structure identifier="seq_1" structure-type="sequence">

 <learning-activity-ref ref=" a_beginners_course_guitar_playing " />

 <activity-structure-ref ref="sel_1"/>

 <learning-activity-ref ref=" a_basic_chords "/>

 </activity-structure>

 <activity-structure identifier="sel_1" structure-type="selection">

 <learning-activity-ref ref="a_interactive_lessons:_scales" />

 <learning-activity-ref ref="a_rhythm"/>

 <learning-activity-ref ref="a_basic_guitar_skills"/>

 </activity-structure>

 </activities>

..</components>

 <method>

 <play>

 <act>

 <role-part>

 <role-ref ref="learner"/><activity-structure-ref ref="seq_1"/>

 </role-part>

 </act>

 </play>

 </method>

<learning-design>

The translation of the constructs in the PCM has been fairly straightforward according to

the rules described in Table 1. All exported CDPs have such a fairly basic learning design

because the possibilities to vary this design are relatively limited compared to the

modeling possibilities and freedom offered by LD.

The exported UOL can be edited with all available LD authoring tools, enhancing the

design where needed. These tools allow more sophisticated editing of the UOL because

they make all constructs of LD available to the user. However, this also implies that from

this point onwards ample LD expertise is required to maintain the UOL. An enhanced

design can be fed back into PCM by creating a new action that wraps this UOL. The

PCM integrates the CopperCore (Martens et al., 2004) LD runtime environment in order

to deploy the modified UOL. Without this integration reuse of the enhanced UOL with in

the PCM would not be impossible because the PCM would not be capable of interpreting

the enhanced design itself. This also implies that once a UOL has been enhanced it can

only be re-edited via the regular LD tools.

This action that wraps the exported UOL, can replace the original CDP because its

learning objectives are targeted towards the same competence as the CDP it was derived

from. The action containing referring to the UOL could also be included into a bigger

CDP which in turn could be exported to another UOL resembling the Russian dolls

model. This way the bottom-up authoring approach provided by the PCM can be

integrated with the more formal top-down design approach associated with current LD

authoring environments, providing the best of both worlds. Figure 7 depicts this editing

cycle.

In order for the round-trip editing cycle to succeed, a specific deployment approach for

the exported UOL has to be chosen. Because the PCM relies on the ad hoc formation of

communities per CDP, the resulting runtime delivery of the UOL should adhere to these

communities as well. The proper integration of the PCM and the CopperCore runtime

engine is crucial because the CDP membership and the UOL run subscriptions have to be

kept synchronized at all time. Therefore exactly one run will be created of a UOL for

every CDP containing that UOL. Users are added and removed from a run in accordance

to their registration for the containing CDP. So de-facto, the CDP population and the run

population are kept in sync. For this first release of the PCM it is assumed that the UOL

will allow users to be “rolled on” and “rolled off”. It is however possible to use LD

constructs that forbid this type of continues registration by forcing users to be added in

cohorts. These restrictions will simply be ignored in the first release of the PCM and need

further investigation in the future.

Because the exported UOL is wrapped with its own action when it is imported in the

PCM, all regular support tools such as ratings and forums and self assessments are

available when executing the UOL. Therefore there is no need to synchronize outcomes

of the CopperCore runtime engine with the PCM. However in future releases, this could

be the case. The CopperCore Service Integration framework (Vogten & Martens, 2006)

provides a first direction towards a closer integration when the need should arise in future

release of the PCM.

The assignment of roles is another issue that needs to be resolved for the editing cycle of

Figure 7 to work. In LD, users can fulfill multiple roles in one design. A user needs to be

assigned to one or more of such roles before the user can actively participate in a run. In

those cases where a UOL is merely exported and not modified, this assignment is simple

and can be done without any additional actions because there will be only one role

Figure 7 The Editing Cycle.

Initial

authoring
of CDP via

PCM

Export

CDP to LD

Enhance

LD

Incorporate

LD in CDP

defined in the exported UOL as we have seen a few paragraphs ago in the simplified

example. However when the generated UOL is enhanced it is perfectly reasonable to

have a more complex role structure. When the role mappings are the same for every user

this is no real problem because the role assignments can still be handled automatically.

However when the design assumes users to take on different roles, the mapping is not

that straightforward anymore. Intervention by a user or intelligent role mapping services

may be required in those cases. For the first release of the software, simple mappings are

assumed by default and user interaction is required for these more complex situations.

For future releases this is an issue that needs further exploration.

Conclusion and future work

In this paper we have argued that LD is a very generic, complete and therefore also a

complex specification. For a non specialist the use of LD in the daily teaching practice is

only feasible with the help of sophisticated and probably specialized tools. The current

state-of-the-art LD tools can be categorized as generic and LD aware, requiring a

specialist‟s expertise. Furthermore, an external data representation such as LD, leads to a

natural separation of design time and runtime tooling. This in turn introduces a top-down

workflow approach to provisioning of learning through consecutive stages of design,

authoring, publication, user management, and finally delivery.

Although this is a perfectly sound approach, it can also be problematic in cases where

practitioners prefer a more bottom-up approach without having a very elicit view on the

design. These practitioners will probably prefer an environment where there is no strict

separation between design time and runtime. This approach is often more appealing,

intuitive, and suitable for the initial stages of a design. The PCM provides this type of

editing. Especially the CDP editor provides an easy means for creating a learning design

that is build up from actions which in turn can be organized into sequences and

selections. In a later stage, especially when a design has matured and proven to be

particularly successful, there may be a need to redeploy the same design for a different

group of learners. The ad hoc design can be exported to a UOL making the design formal.

Other reasons for exporting the design could be the need to reuse the same design with

other resources. It could also be the case that it would be worthwhile to redeploy the

same design in a totally different e-learning environment. Quality assurance could be

another reason for formalizing an ad hoc design into a UOL. The exported basic designs

can be improved upon with the normal LD tools and then be reused in the context of the

PCM itself or by any other LD compliant environment. The PCM integrates LD tools

such as CopperCore for this purpose.

The approach presented in this paper allows for an easy introduction of users to LD in

cases when there are clear benefits for the user to do so. The generated LD can be used as

it is, but can also be improved upon. Whatever is the case, the user will need ample LD

knowledge from that point onwards. Nevertheless, the user has a clear motivation, one of

the aforementioned reasons, to make the additional effort needed to become familiar with

LD. Although the user can feed back the altered UOL into the PCM, once exported and

modified, the point of no return has been passed. The PCM will not be able to help the

user maintain the UOL. The reason for this is that advanced LD concepts have no

equivalent in the PCM such as e.g. support for advanced personalization, support for

different pedagogies, support for multiple roles and support for advanced role based

workflow. Therefore, the PCM will never be able to really replace the existing LD tools

but must rather be considered to offer a gentle introduction to LD for those practitioners

who are new to the tools and concepts and do not have or see a need to invest in them

right from the start.

When exporting the CDP to a UOL two distinct approaches can be defined. First, the one

discussed so far, where the produced UOL is reused in the context of the CDP. This

export may assume that the services offered by the CDP will be available to the UOL as

well because the UOL is reused in the same context. However, if the UOL is reused in a

totally different context from the CDP, another type of export may be required because

referenced and implicit services have to be defined and bundled in some form into the

UOL. Although initial steps have been taken in this direction with e.g. the integration of

assessment services through IMS Question and Test Interoperability (IMS, 2006; Vogten

et al., 2007), there is still further work to be done in this area especially regarding the

standardization of service interfaces. For now the PCM will only support the first type of

LD export requiring the PCM to run the constructed UOL.

At the moment of writing several initiatives are improving on the available LD tools. In

fact some of these initiatives have been bundled in the TENCompetence integrated

project (TENCompetence consortium, 2007). It will be interesting to see how these tools

develop and what this means for the integration in the PCM. A first step towards this

integration is the harmonization of the look and feel of both the CDP editor and the

Reload based LD editor. Work towards this direction has recently started and although at

the time of writing this development is still very much in its early stages it looks like a

promising step towards a more seamless integration of the PCM and LD.

Until that time, the approach presented in this article combining the implicit bottom-up

design method provided by the PCM and the more formal elicit top-down design favored

by the current LD toolset offers a practical alternative.

Acknowledgements

The authors wish to thank the management and staff of the Schloss Dagstuhl

International Conference and Research Center for Computer Science for providing a

pleasant, stimulating and well organized environment for the writing of this article.

Authors‟ efforts were (partly) funded by the European Commission in TENCompetence

(IST-2004-02787) (http://www.tencompetence.org).

References

Berlanga, A., & García, F. (2007, August 17). IMS LD reusable elements for adaptive

learning designs. Journal of Interactive Media in Education,from

http://jime.open.ac.uk/2005/11.

http://jime.open.ac.uk/2005/11

CETIS (2007). PLE Report. Retrieved August 01, 2007, from the website of CETIS:

http://wiki.cetis.ac.uk/Ple.

Eclipse (2007, May 1). Eclipse. Retrieved May 07, 2007, from Website of Eclipse

Consortium: http://www.eclipse.org.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures.

FOAF project (2007). FOAF. Retrieved from Website of the Friend of a Friend project:

http://www.foaf-project.org/.

Griffiths, D., & Blat, J. (2007, October 1). The Role of Teachers in Editing and

Authoring Units of Learning Using IMS Learning Design. International Journal on

Advanced Technology for Learning, 2(4).

Griffiths, D., Blat, J., García, R., Vogten, H., & Kwong, K.-L. (2005). Learning Design

Tools. In R. Koper & C. Tattersall (Eds.). Learning Design, a Handbook on

Modelling and Delivering Networked Education and Training (pp. 109-135) (chap.

7). Heidelberg: Springer.

Hernández-Leo, D., Villasclaras-Fernández, E., Asensio-Pérez, J., Dimitriadis, Y., Jorrín-

Abellán, I., Ruiz-Requies, I., et al. (2006). COLLAGE: A collaborative Learning

Design editor based on patterns. Educational Technology & Society, 9(1), 58-71.

IMS (2003). IMS Learning Design Specification. Retrieved July 03, 2003, from Website

of IMS Global Learning Consortium:

http://www.imsglobal.org/learningdesign/index.cfm.

IMS (2006). IMS Question and Test Interoperability. Retrieved January 12, 2006, from

Website of IMS Global Learning Consortium:

http://www.imsglobal.org/question/index.html.

IMS (2007). IMS Reusable Definition of Competency or Educational Objective.

Retrieved from Website of IMS Global Learning Consortium:

http://www.imsglobal.org/competencies/index.html.

Koper, R. (2005). Designing Learning Network for Lifelong Learners. In R. Koper & C.

Tattersall (Eds.). A Handbook on Modelling and Delivering Networked Education

and Training (pp. 239-252) (chap. 14).Springer.

Koper, R. (2006). TENCompetence Domain Model. Retrieved May 12, 2007, from

http://hdl.handle.net/1820/649.

http://wiki.cetis.ac.uk/Ple
http://www.eclipse.org/
http://www.foaf-project.org/
http://www.imsglobal.org/learningdesign/index.cfm
http://www.imsglobal.org/question/index.html
http://www.imsglobal.org/competencies/index.html
http://hdl.handle.net/1820/649

Koper, R., & Olivier, B. (2004). Representing the Learning Design of Units of learning.

Educational Technology and Society, 7(3), 97-111.

Koper, R., & Specht, M. (2007). TenCompetence: Lifelong Competence Development

and Learning. In M. Sicilia (Ed.). Competencies in Organizational E-Learning:

Concepts and Tools (pp. 230-247) (chap. 11). Idea Group Inc.

Martens, H., Vogten, H., Van Rosmalen, P., & Koper, E. J. R. (2004). CopperCore.

Retrieved January 14, 2005, from SourceForge: http://coppercore.org.

Miligan, C., Beauvoir, P., & Sharples, P. (2005, July 1). The Reload Learning Design

Tools. Journal of Interactive Media in Education,from

http://jime.open.ac.uk/2005/06.

Olivier, B. (2004). Learning Design Update. Retrieved August 4, 2006, from

http://www.jisc.ac.uk/uploaded_documents/Learning_Design_State_of_Play.pdf.

Olivier, B., & Tattersall, C. (2005). The Learning Design Specification. In R. Koper & C.

Tattersall (Eds.). Learning Design. A Handbook on Modelling and Delivering

Networked Education and Training (pp. 21-40) (chap. 2).

OMG (2003). Unified Modeling Language (UML). Retrieved November 06, 2003, from

http://www.omg.org.

Paquette, G., De la Teja, I., Léonard, M., Lundgren-Cayrol, K., & Marino, O. (2005). An

Instructional Engineering Method and Tool for the Design of Units of Learning. In

R. Koper & C. Tattersall (Eds.). Learning Design. A Handbook on Modelling and

Delivering Networked Education and Training (pp. 161-184) (chap. 9).Springer.

Reload Learning Design Editor (2007). Reload Learning Design Editor. Retrieved June

12, 2006, from the website of the Reload Project: http://www.reload.ac.uk/.

Tattersall, C., Vogten, H., Brouns, F., Koper, R., Rosmalen, P. v., Sloep, P., et al.

(2005a). How to create flexible runtime delivery of distance learning courses.

Educational Technology & Society, 8(3), 226-236.

Tattersall, C., Vogten, H., & Hermans, H. (2005). The Edubox Learning Design Player.

In R. Koper & C. Tattersall (Eds.). Learning Design, a Handbook on Modelling and

Delivering Networked Education and Training (pp. 303-310) (chap. 19). Heidelberg:

Springer.

Tattersall, C., Vogten, H., & Koper, R. (2005b). An Architecture for the Delivery of E-

learning Courses. In R. Koper & C. Tattersall (Eds.). Learning Design. A Handbook

http://coppercore.org/
http://jime.open.ac.uk/2005/06
http://www.jisc.ac.uk/uploaded_documents/Learning_Design_State_of_Play.pdf
http://www.omg.org/
http://www.reload.ac.uk/

on Modelling and Delivering Networked Education and Training (pp. 63-73) (chap.

4).Springer.

TENCompetence consortium (2007). TENCompetence Project. Retrieved February 01,

2006, from Website of the TENCompetence project: http://www.tencompetence.org

Van Rosmalen, P., Vogten, H., van Es, R., Passier, H., Poelmans, P., & Koper, R. (2007).

Authoring a full life cycle model in standards-based, adaptive e-learning.

Educational Technology & Society, 9(1), 72-83.from

http://www.ifets.info/journals/9_1/7.pdf

Vogten, H., & Martens, H. (2006). CopperCore Service Integration. Retrieved February

02, 2006, from Website of the CopperCore Service Integration framework:

http://sf.net/projects/ccsi

Vogten, H., Martens, H., Nadolski, R., Tattersall, C., Rosmalen, P. v., & Koper, E. J. R.

(2007, in press). CopperCore Service Integration. Journal on Interactive Learning

Environments,(special issue)

Zarraonandia, T., Dodero, J. M., & Fernández, C. (2006). Crosscutting runtime

adaptations of LD execution. Educational Technology & Society, 9(1), 123-137.

http://www.tencompetence.org/
http://www.ifets.info/journals/9_1/7.pdf
http://sf.net/projects/ccsi

