1,673 research outputs found

    Nanoscale Studies of Energy Band Gaps and Band Offsets in Compound Semiconductor Heterostructures.

    Full text link
    The identification of the precise band offsets at semiconductor interfaces is crucially important for the successful development of electronic and optoelectronic devices. However, issues at the interfaces, such as strain or defects, needs to be investigated for precise band tuning of semiconductor heterostructures. In this dissertation, the nanometer-scale structural and electronic properties of InGaAs(Sb)N/GaAs interfaces, InGaN/GaN QDs, and GaSb/GaAs QDs are investigated using a combination of XSTM and STS. The influence of Sb incorporation on the InGaAs(Sb)N/GaAs band alignment is investigated. At the InGaAsN/GaAs (InGaAsSbN/GaAs) interfaces, type II (type I) band offsets are observed, due to strain-induced splitting of the valence band and the incorporation of Sb. Band tuning of both conduction and valence band edges with the incorporation of Sb can be used to engineer the band structure with strong confinement of electrons and holes in the InGaAsSbN quantum well layer, which is promising for light emitting applications. The influence of the growth substrate on InGaN/GaN QD formation and properties is examined. The QD density, dimension, and band gaps are compared for different InGaN QDs on free-standing GaN or GaN/AlN/sapphire substrates. We present different sources using nucleation on different substrates, and discuss their influences on the electronic band structure. Our work suggests that a wide variety of InGaN QD dimension, density, and band structure can be achieved by using different starting substrate and number of layers of InGaN QD stacks. Furthermore, the influence of strain and dislocation on the GaSb/GaAs QD band alignment is investigated using both experimental and computational tools. A combination of cross-sectional transmission electron microscopy (XTEM), XSTM, and STS reveals the formation of misfit dislocations and both coherent and semi-coherent clustered QDs, independent of Sb- vs. As-termination of the GaAs surface. Furthermore, finite element analysis simulation on GaSb/GaAs QD band alignment reveal that the dislocation and misfit strains in the vicinity of GaSb/GaAs QD interfaces lead to a transition from type I to type II band offsets.PhDMaterials Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120730/1/asjang_1.pd

    Piezoresponse force microscopy for polarity imaging of GaN

    Get PDF
    The polarity distribution of GaN based lateral polarity heterostructures is investigated by piezoresponse force microscopy (PFM). Simultaneous imaging of surface morphology, as well as the phase and magnitude of the piezoelectric response, is performed by PFM on a GaN film with patterned polarities on a c-Al2O3 substrate. We demonstrate that the polarity distribution of GaN based lateral polarity heterostructures can be deduced from the phase image of the piezoresponse with nanometer scale spatial resolution

    Absence of quantum-confined Stark effect in GaN quantum disks embedded in (Al,Ga)N nanowires grown by molecular beam epitaxy

    Get PDF
    Several of the key issues of planar (Al,Ga)N-based deep-ultraviolet light emitting diodes could potentially be overcome by utilizing nanowire heterostructures, exhibiting high structural perfection and improved light extraction. Here, we study the spontaneous emission of GaN/(Al,Ga)N nanowire ensembles grown on Si(111) by plasma-assisted molecular beam epitaxy. The nanowires contain single GaN quantum disks embedded in long (Al,Ga)N nanowire segments essential for efficient light extraction. These quantum disks are found to exhibit intense emission at unexpectedly high energies, namely, significantly above the GaN bandgap, and almost independent of the disk thickness. An in-depth investigation of the actual structure and composition of the nanowires reveals a spontaneously formed Al gradient both along and across the nanowire, resulting in a complex core/shell structure with an Al deficient core and an Al rich shell with continuously varying Al content along the entire length of the (Al,Ga)N segment. This compositional change along the nanowire growth axis induces a polarization doping of the shell that results in a degenerate electron gas in the disk, thus screening the built-in electric fields. The high carrier density not only results in the unexpectedly high transition energies, but also in radiative lifetimes depending only weakly on temperature, leading to a comparatively high internal quantum efficiency of the GaN quantum disks up to room temperature.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters (2019), copyright (C) American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.9b01521, the supporting information is available (free of charge) under the same lin

    Nanoscale Structural and Emission Properties within - Russian Doll- - Type InGaN/AlGaN Quantum Wells

    Full text link
    Due to the increasing desire for nanoscale optoelectronic devices with green light emission capability and high efficiency, ternary III- N- based nanorods are extensively studied. Many efforts have been taken on the planar device configuration, which lead to unavoided defects and strains. With selective- area molecular- beam epitaxy, new - Russian Doll- - type InGaN/AlGaN quantum wells (QWs) have been developed, which could largely alleviate this issue. This work combines multiple nanoscale characterization methods and k- p theory calculations so that the crystalline structure, chemical compositions, strain effects, and light emission properties can be quantitatively correlated and understood. The 3D structure and atomic composition of these QWs are retrieved with transmission electron microscopy and atom probe tomography while their green light emission has been demonstrated with room- temperature cathodoluminescence experiments. k- p theory calculations, with the consideration of strain effects, are used to derive the light emission characteristics that are compared with the local measurements. Thus, the structural properties of the newly designed nanorods are quantitatively characterized and the relationship with their outstanding optical properties is described. This combined approach provides an innovative way for analyzing nano- optical- devices and new strategies for the structure design of light- emitting diodes.The chemical components of the nanorods, shape effects and strain effects given by this unique - Russian Doll- - type geometry of InGaN/AlGaN quantum wells are quantitatively related with the optical properties. This combined approach reported here provides an innovative way for analyzing nano- optical- devices and new strategies for the structure design of light- emitting diodes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162759/3/adom202000481_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162759/2/adom202000481.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162759/1/adom202000481-sup-0001-SuppMat.pd

    Characterisation of polar (0001) and non-polar (11-20) ultraviolet nitride semiconductors

    Get PDF
    UV and deep-UV emitters based on AlGaN/AlN heterostructures are very inefficient due to the high lattice mismatch of these films with sapphire substrates, leading to high dislocation densities. This thesis describes the characterisation of the nanostructures of a range of UV structures, including c-plane (polar) AlGaN epilayers grown on AlN template, and nonpolar GaN/AlGaN MQWs grown on a-plane GaN template. The results are based primarily on transmission electron microscopy (TEM), cathodoluminescence in the scanning electron microscope (SEM-CL), high-resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM) measurements. The structural and optical properties of various types of defect were examined in the c-plane AlGaN epilayers. Strain analysis based on in-situ wafer curvature measurements was employed to describe the strain relief mechanisms for different AlGaN compositions and to correlate the strain to each type of defect observed in the epilayers. This is followed by the investigation of AlN template growth optimisation, based on the TMA pre-dose on sapphire method to enhance the quality and the surface morphology of the template further. The initial growth conditions were shown to be critical for the final AlN film morphology. A higher TMA pre-dose has been shown to enable a better Al coverage leading to a fully coalesced AlN film at 1 ÎŒm thickness. An atomically smooth surface of the template was achieved over a large 10 x 10 ÎŒm AFM scale. Finally, the investigation of UV emitters based on nonpolar crystal orientations is presented. The SiNx interlayer was able to reduce the threading dislocation density but was also found to generate voids with longer SiNx growth time. The relationship between voids, threading dislocations, inversion domain boundaries and their associated V-defects and the variation in MQW growth rate has been discussed in detail
    • 

    corecore