165 research outputs found

    Cross-lingual Distillation for Text Classification

    Full text link
    Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories. This paper presents a novel approach to CLTC that builds on model distillation, which adapts and extends a framework originally proposed for model compression. Using soft probabilistic predictions for the documents in a label-rich language as the (induced) supervisory labels in a parallel corpus of documents, we train classifiers successfully for new languages in which labeled training data are not available. An adversarial feature adaptation technique is also applied during the model training to reduce distribution mismatch. We conducted experiments on two benchmark CLTC datasets, treating English as the source language and German, French, Japan and Chinese as the unlabeled target languages. The proposed approach had the advantageous or comparable performance of the other state-of-art methods.Comment: Accepted at ACL 2017; Code available at https://github.com/xrc10/cross-distil

    Cross-Domain Labeled LDA for Cross-Domain Text Classification

    Full text link
    Cross-domain text classification aims at building a classifier for a target domain which leverages data from both source and target domain. One promising idea is to minimize the feature distribution differences of the two domains. Most existing studies explicitly minimize such differences by an exact alignment mechanism (aligning features by one-to-one feature alignment, projection matrix etc.). Such exact alignment, however, will restrict models' learning ability and will further impair models' performance on classification tasks when the semantic distributions of different domains are very different. To address this problem, we propose a novel group alignment which aligns the semantics at group level. In addition, to help the model learn better semantic groups and semantics within these groups, we also propose a partial supervision for model's learning in source domain. To this end, we embed the group alignment and a partial supervision into a cross-domain topic model, and propose a Cross-Domain Labeled LDA (CDL-LDA). On the standard 20Newsgroup and Reuters dataset, extensive quantitative (classification, perplexity etc.) and qualitative (topic detection) experiments are conducted to show the effectiveness of the proposed group alignment and partial supervision.Comment: ICDM 201

    Neural Unsupervised Domain Adaptation in NLP—A Survey

    Get PDF
    Deep neural networks excel at learning from labeled data and achieve state-of-the-art results on a wide array of Natural Language Processing tasks. In contrast, learning from unlabeled data, especially under domain shift, remains a challenge. Motivated by the latest advances, in this survey we review neural unsupervised domain adaptation techniques which do not require labeled target domain data. This is a more challenging yet a more widely applicable setup. We outline methods, from early approaches in traditional non-neural methods to pre-trained model transfer. We also revisit the notion of domain, and we uncover a bias in the type of Natural Language Processing tasks which received most attention. Lastly, we outline future directions, particularly the broader need for out-of-distribution generalization of future intelligent NLP

    Hybrid heterogeneous transfer learning through deep learning

    Full text link
    Copyright © 2014, Association for the Advancement of Artificial Intelligence. Most previous heterogeneous transfer learning methods learn a cross-domain feature mapping between heterogeneous feature spaces based on a few cross-domain instance-correspondences, and these corresponding instances are assumed to be representative in the source and target domains respectively. However, in many realworld scenarios, this assumption may not hold. As a result, the constructed feature mapping may not be precise due to the bias issue of the correspondences in the target or (and) source domain(s). In this case, a classifier trained on the labeled transformed-sourcedomain data may not be useful for the target domain. In this paper, we present a new transfer learning framework called Hybrid Heterogeneous Transfer Learning (HHTL), which allows the corresponding instances across domains to be biased in either the source or target domain. Specifically, we propose a deep learning approach to learn a feature mapping between crossdomain heterogeneous features as well as a better feature representation for mapped data to reduce the bias issue caused by the cross-domain correspondences. Extensive experiments on several multilingual sentiment classification tasks verify the effectiveness of our proposed approach compared with some baseline methods
    • …
    corecore