310 research outputs found

    Cross layer optimization in 4G Wireless mesh networks

    Get PDF
    Wireless networks have been rapidly evolving over the past two decades. It is foreseen that Fourth generation (4G) wireless systems will involve the integration of wireless mesh networks and the 3G wireless systems such as WCDMA. Moreover their wireless mesh routers will provide service to wireless local networks (WLANs) and possibly incorporate MIMO system and smart admission control policies among others. This integration will not only help the service providers cost effectiveness and users connectivities but will also improve and guarantee the QoS criteria. On the other hand, cross layer design has emerged as a new and major thrust in improving the quality of service (QoS) of wireless networks. Cross layer design involves the interaction of various layers of the network hierarchy which could further improve the QoS of the 4G integrated networks. In this work we seek new techniques for improving the overall QoS of integrated 4G systems. Towards this objective we start with the local low tier WLAN access. We then investigate CDMA alternatives to the TDMA access for wireless mesh networks. Cross layer design in wireless mesh networks is then pursued. In the first phase of this thesis a new access mechanism for WLANs is developed, in which users use an optimum transmission probability obtained by estimating the number of stations from the traffic conditions in a sliding window fashion, thereby increasing the throughput compared to the standard DCF and RTS/CTS mechanism while maintaining the same fairness and the delay performance. In the second phase we introduce a code division multiple access/Time division duplex technique CDMA/TDD for wireless mesh networks, we outline the transmitter and receiver for the relay nodes and evaluate the efficiency, delay and delay jitter performances. This CDMA based technique is more amenable to integrating the two systems (Mesh networks and WCDMA or CDMA 2000 of3G). We compare these results with the TDMA operation and through analysis we prove that the CDMA system outperforms the TDMA counterparts. In the third phase we proceed to an instance of cross layer optimized networks, where we develop an overall optimization routine that finds simultaneously the best route and the best capacity allocation to various nodes. This optimization routine minimizes the average end to end packet delay over all calls subject to various contraints. In the process we use a new adaptive version of Spatial TDMA as a platform for comparison purposes of the MAC techniques involved in the cross layer design. In this phase we also combine CDMA/TDD and optimum routing for cross layer design in wireless mesh networks. We compare the results of the CDMA/TDD system with results obtained from the STDMA system. In our analysis we consider the parallel transmissions of mesh nodes in a mesh topology. These parallel transmissions will increase the capacity resulting in a higher throughput with a lower delay. This will allow the service providers to accommodate more users in their system which will obviously reduce the colt and the end users will enjoy a better service paying a lower amount

    Optimal cross layer design for CDMA-SFBC wireless systems

    Get PDF
    The demand for high speed reliable wireless services has been rapidly growing. Wireless networks have limited resources while wireless channels suffer from fading, interference and time variations. Furthermore, wireless applications have diverse end to end quality of service (QoS) requirements. The aforementioned challenges require the design of spectrally efficient transmission systems coupled with the collaboration of the different OSI layers i.e. cross layer design. To this end, we propose a code division multiple access (CDMA)-space frequency block coded (SFBC) systems for both uplink and downlink transmissions. The proposed systems exploit code, frequency and spatial diversities to improve reception. Furthermore, we derive closed form expressions for the average bit error rate of the proposed systems. In this thesis, we also propose a cross layer resource allocation algorithm for star CDMA-SFBC wireless networks. The proposed resource allocation algorithm assigns base transceiver stations (BTS), antenna arrays and frequency bands to users based on their locations such that their pair wise channel cross correlation is minimized while each user is assigned channels with maximum coherence time. The cooperation between the medium access control (MAC) and physical layers as applied by the optimized resource allocation algorithm improves the bit error rate of the users and the spectral efficiency of the network. A joint cross layer routing and resource allocation algorithm for multi radio CDMA-SFBC wireless mesh networks is also proposed in this thesis. The proposed cross layer algorithm assigns frequency bands to links to minimize the interference and channel estimation errors experienced by those links. Channel estimation errors are minimized by selecting channels with maximum coherence time. On top, the optimization algorithm routes network traffic such that the average end to end packet delay is minimized while avoiding links with high interference and short coherence time. The cooperation between physical, MAC and network layers as applied by the optimization algorithm provides noticeable improvements in average end to end packet delay and success rat

    Network Coding For Star and Mesh Networks

    Get PDF
    This thesis introduces new network coding techniques to improve the file sharing and video streaming performance of wireless star and mesh networks. In this thesis we propose a new XOR based scheduling algorithm for network coding in cooperative local repair. The proposed algorithm commences in three phases. In the first phase, nodes exchange packets availability vectors. These vectors are functions of the probability of correct packet reception over the channel. This is followed by a short period of distributed scheduling where the nodes execute the processing algorithm which tries to minimize the total transmission time. In the third phase, nodes transmit the encoded packets as per the decision of the scheduling algorithm. Simulation results show improvement in system throughput and processing delay for the proposed algorithm. We also study the trade-offs between file sizes, processing delays, number of users and packet availability. In the sequel we display the favorable effects of file segmentation on the performance of the proposed scheduling algorithm. Furthermore, the upper bound on the performance and the analysis of the proposed scheduling algorithm are derived. Also, in this thesis, the effects of random network coding on code division multiple access/time division duplex (CDMA/TDD) platforms for wireless mesh networks are studied and evaluated. A multi-hop mesh network with single source and multiple receiving nodes is assumed. For reliable data transfer, a Selective Repeat ARQ protocol is used. Two scenarios are evaluated for their efficiency. In scenario 1, but not in scenario 2, random network coding is applied to CDMA/TDD wireless mesh networks. The delay and delay jitter for both scenarios are computed. The study also focuses on the effects of uncontrolled parameters such as the minimum number of neighbors and the network connectivity, and of controlled parameters such as Galois Field (GF) size, packet size, number of Walsh functions employed at each node and the Processing Gain. The analysis and simulation results show that applying random network coding to CDMA/TDD systems in wireless mesh networks could provide a noticeable improvement in overall efficiency. We also propose a cross layer approach for the Random Network coded-Code Division Multiple Access/Time Division Duplex (RNC-CDMA/TDD) wireless mesh networks. The proposed algorithm selects the number of assigned Walsh functions depending on the network topology. Two strategies of Walsh function assignments are proposed. In the first, nodes determine the number of their assigned Walsh functions depending on the neighbor with the maximum number of neighbors, which we call the worst case assignment. In the second, nodes determine the number of their assigned Walsh functions depending on the need for each transmission. Simulation results show the possible achievable improvement in the system performance, delay and delay jitter due to cross layer design

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Design and Implementation of a Narrow-Band Intersatellite Network with Limited Onboard Resources for IoT

    Get PDF
    Satellite networks are inevitable for the ubiquitous connectivity of M2M (machine to machine) and IoT (internet of things) devices. Advances in the miniaturization of satellite technology make networks in LEO (Low Earth Orbit) predestined to serve as a backhaul for narrow-band M2M communication. To reduce latency and increase network responsivity, intersatellite link capability among nodes is a key component in satellite design. The miniaturization of nodes to enable the economical deployment of large networks is also crucial. Thus, this article addresses these key issues and presents a design methodology and implementation of an adaptive network architecture considering highly limited resources, as is the case in a nanosatellite (≈10 kg) network. Potentially applicable multiple access techniques are evaluated. The results show that a time division duplex scheme with session-oriented P2P (point to point) protocols in the data link layer is more suitable for limited resources. Furthermore, an applicable layer model is defined and a protocol implementation is outlined. To demonstrate the technical feasibility of a nanosatellite-based communication network, the S-NET (S band network with nanosatellites) mission has been developed, which consists of four nanosatellites, to demonstrate multi-point crosslink with 100 kbps data rates over distances up to 400 km and optimized communication protocols, pushing the technological boundaries of nanosatellites. The flight results of S-NET prove the feasibility of these nanosatellites as a space-based M2M backhaul.BMWi, 50YB1225, S-Band Netzwerk für kooperierende SatellitenBMWi, 50YB1009, SLink - S-Band Transceiver zur Intersatelliten-Kommunikation von NanosatellitenDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Connection admission control and packet scheduling for IEEE 802.16 networks

    Get PDF
    Includes bibliographical references.The IEEE 802.16 standard introduced as one of the Wireless Metropolitan Area Networks (WMAN) for Broadband Wireless Access (BWA) which is known as Worldwide Interoperability for Microwave Access (WiMAX), provides a solution of broadband connectivity to areas where wired infrastructure is economically and technically infeasible. Apart from the advantage of having high speeds and low costs, IEEE 802.16 has the capability to simultaneously support various service types with required QoS characteristics. ... While IEEE 802.16 standard defines medium access control (MAC) and physical (PHY) layers specification, admission control and packet scheduling mechanisms which are important elements of QoS provisioning are left to vendors to design and implement for service differentiation and QoS support

    Resource Allocation in Ad Hoc Networks

    No full text
    Unlike the centralized network, the ad hoc network does not have any central administrations and energy is constrained, e.g. battery, so the resource allocation plays a very important role in efficiently managing the limited energy in ad hoc networks. This thesis focuses on the resource allocation in ad hoc networks and aims to develop novel techniques that will improve the network performance from different network layers, such as the physical layer, Medium Access Control (MAC) layer and network layer. This thesis examines the energy utilization in High Speed Downlink Packet Access (HSDPA) systems at the physical layer. Two resource allocation techniques, known as channel adaptive HSDPA and two-group HSDPA, are developed to improve the performance of an ad hoc radio system through reducing the residual energy, which in turn, should improve the data rate in HSDPA systems. The channel adaptive HSDPA removes the constraint on the number of channels used for transmissions. The two-group allocation minimizes the residual energy in HSDPA systems and therefore enhances the physical data rates in transmissions due to adaptive modulations. These proposed approaches provide better data rate than rates achieved with the current HSDPA type of algorithm. By considering both physical transmission power and data rates for defining the cost function of the routing scheme, an energy-aware routing scheme is proposed in order to find the routing path with the least energy consumption. By focusing on the routing paths with low energy consumption, computational complexity is significantly reduced. The data rate enhancement achieved by two-group resource allocation further reduces the required amount of energy per bit for each path. With a novel load balancing technique, the information bits can be allocated to each path in such that a way the overall amount of energy consumed is minimized. After loading bits to multiple routing paths, an end-to-end delay minimization solution along a routing path is developed through studying MAC distributed coordination function (DCF) service time. Furthermore, the overhead effect and the related throughput reduction are studied. In order to enhance the network throughput at the MAC layer, two MAC DCF-based adaptive payload allocation approaches are developed through introducing Lagrange optimization and studying equal data transmission period
    corecore