8 research outputs found

    PID controller design and tuning in networked control systems

    Get PDF
    Networked control systems (NCS) are distributed real-time computing and control systems with sensors, actuators and controllers that communicate over a shared medium. The distributed nature of NCS and issues related to the shared communication medium pose significant challenges for control design, as the control system no longer follows the rules of classical control theory. The main problems that are not well covered by the traditional control theory are varying time-delays due to communication and computation, and packet losses. During recent years, the control design of NCS and varying time-delay systems has been extensively researched. This investment has provided us with new results on stability. Often the proposed methods and solutions are far too complex for industrial use, especially if wireless automation applications are considered. The algorithms are computationally heavy, possibly requiring complete information from say, a network of hundreds or thousands of nodes. In the wireless case this is not feasible. The above justifies the use and research of simple controller structures and algorithms for NCS. Despite the growing interest towards more advanced control algorithms, the Proportional-Integral-Derivative (PID) controller still has a dominant status in the industry. Nevertheless, using PID for NCS has not been thoroughly investigated, especially with regard to controller tuning. This thesis proposes several PID tuning methods, which provide robustness against the challenges of NCS, namely varying time-delays (jitter) and packet loss. The doctoral thesis consists of a summary and eight publications that focus on the PID controller design, tuning and experimentation in NCS. The thesis includes a literature review of recent stability and control design results in NCS, a summary of publications and the original publications. The control design methods applied in the publications are also reviewed. In the thesis, several new methods for PID tuning in NCS are proposed. To make the methods usable, a PID tuning tool that implements one of the tuning methods is also developed. In order to verify the results of control design with real processes, the thesis suggests using the MoCoNet platform developed at the Helsinki University of Technology, Finland. The platform provides the tools for remote laboratory experiments in NCS settings. The results of the thesis indicate that the PID controller is well suited for NCS provided that the properties of the integrated communication and control system are taken into account in the tuning phase

    An Optimal Medium Access Control with Partial Observations for Sensor Networks

    Get PDF
    We consider medium access control (MAC) in multihop sensor networks, where only partial information about the shared medium is available to the transmitter. We model our setting as a queuing problem in which the service rate of a queue is a function of a partially observed Markov chain representing the available bandwidth, and in which the arrivals are controlled based on the partial observations so as to keep the system in a desirable mildly unstable regime. The optimal controller for this problem satisfies a separation property: we first compute a probability measure on the state space of the chain, namely the information state, then use this measure as the new state on which the control decisions are based. We give a formal description of the system considered and of its dynamics, we formalize and solve an optimal control problem, and we show numerical simulations to illustrate with concrete examples properties of the optimal control law. We show how the ergodic behavior of our queuing model is characterized by an invariant measure over all possible information states, and we construct that measure. Our results can be specifically applied for designing efficient and stable algorithms for medium access control in multiple-accessed systems, in particular for sensor networks

    Fault Estimation Schemes of Wireless Networked Control Systems for Real-Time Industrial Applications

    Get PDF
    Bedingt durch das rasante Wachstum der Mikroelektronik sowie der Informations- und Kommunikationstechnologien wurde viel Aufmerksamkeit der Erforschung von drahtlos vernetzten Regelsystemen (W-NCS) gewidmet. Die Entwicklung der W-NCS schuf neue Herausforderungen fĂŒr die Technologien zur FehlerabschĂ€tzung (FE) bezĂŒglich Störungen bei der DatenĂŒbertragung, wie zum Beispiel Übertragungsverzögerung, Paketverlust und Jitter. Um die Sicherheit und ZuverlĂ€ssigkeit des Systems zu gewĂ€hrleisten, ist die Entwicklung eines effektiven FE Ansatzes in vernetzten Systemen von zentraler Bedeutung. Andererseits sollten mit der Ausrichtung auf Anwendungen in der Echtzeit-Industrieautomatisierung die spezifischen Eigenschaften der Netzwerke angemessen berĂŒcksichtigt werden. Da die Aufgabe der Übertragung von Messungen und Steuerbefehlen in der Regel ĂŒber einen Zeitraum deterministisch ist, sollten ein deterministischer Übertragungsmechanismus und die entsprechenden FE Verfahren vorgeschlagen werden. Motiviert durch die weit verbreitete Verwendung von sowohl zentralen und als auch dezentralen Strukturen in industriellen Prozesse, ist die Entwicklung sowohl von zentralen und als auch von dezentralen FE Methoden fĂŒr W-NCS in der Industrieautomation das primĂ€re Ziel dieser Arbeit. Diese Arbeit widmet sich zuerst der Modellierung der Prozesse und der Kommunikationsstruktur. FĂŒr die Modellierung der Kommunikation wird das Medium Access Control (MAC) Protokoll basierend auf dem Mehrfachzugriff im Zeitmultiplex (TDMA) modifiziert, um die EchtzeitfĂ€higkeit zu gewĂ€hrleisten. Das Prozessmodell wird unter BerĂŒcksichtigung der Abtastraten auf Basis der hierarchischen Struktur des W-NCS aufgestellt. Durch die BerĂŒcksichtigung der Unsicherheit von Netzwerken und Auswirkungen von Fehlern wird ein linear periodisches (LP) Systemmodell, durch die Integration des Kommunikationsmodells und des Prozessmodells, als Basis fĂŒr die spĂ€tere Entwicklung prĂ€sentiert. Die weiteren Untersuchungen konzentrieren sich auf die Entwicklung von FE Modellen fĂŒr zentrale und dezentrale W-NCS. Um eine erhöhte Robustheit gegen unbekannte Störungen und den SchĂ€tzfehler des Anfangszustandes zu erreichen, wird ein zentraler FE Ansatz mit Hilfe des stochastischen Modells im Krein Raum vorgeschlagen. FĂŒr die dezentrale FE wird der Algorithmus fĂŒr jedes Teilsystem implementiert und die Kopplungsbeziehungen zwischen den Teilsystemen entsprechend berĂŒcksichtigt. Basierend darauf werden die FE AnsĂ€tze mit zwei Arten von Residuensignalen prĂ€sentiert, nicht-verteilten Residuen und verteilten Residuen,. Um die Wirksamkeit der entwickelten FE AnsĂ€tze darzustellen, wird in dieser Arbeit die Industrieplattform WiNC, zumammen mit einem Dreitanksystem verwendet. Die FE Algorithmen wurden in den drei DatenĂŒbertragungsfĂ€llen Fehlerfrei, mit Verzögerungen und mit Paketverlust verifiziert, so dass die Robustheit gegenĂŒber einer unvollkommenen Kommunikation demonstriert wird. DarĂŒber hinaus wurde die LeistungsfĂ€higkeit bezĂŒglich Sensor- und Aktuator-FE ausgiebig auf der WiNC Plattform getestet.With the rapid growth of microelectronics, information and communication technologies, much attention has been paid on the research of wireless networked control systems (W-NCSs). The development of W-NCSs raises new challenges in fault estimation (FE) technology regarding to the imperfect data transmission, such as transmission delay, packet loss, jitter and so on. To ensure the system safety and reliability, an effective FE approach over networks is of prime importance to be developed. On the other hand, aiming for the applications on real-time industrial automation, the specific characteristics of network should be properly considered. Since the transmission tasks of measurements and control commands are normally deterministic over a period of time, a deterministic transmission mechanism and the relevant FE scheme should be proposed. Motivated by the widespread popularity of centralized and decentralized structures for industrial processes, development of both centralized and decentralized FE schemes for W-NCSs, which can be applied on industrial automation, is the primary objective of this thesis. This thesis is first dedicated to the modeling of communication and process. For the communication modeling, time division multiple access (TDMA) based medium access control (MAC) protocol is modified to guarantee the real-time performance. The process model is built considering multirate sampling based on the hierarchical structure of W-NCSs. By observing the uncertainty of networks and effects of faults, a linear periodic (LP) system model, which is the integration of communication model and process model, is presented as a basis for the later developments. The further study focuses on the development of FE schemes for both centralized and decentralized W-NCSs. To reach an enhanced robustness against unknown disturbance and initial state estimate error, the centralized FE approach is proposed with the help of stochastic model in Krein space. For decentralized FE, the algorithm is implemented by every sub-system, and the coupling relations between sub-systems should be properly considered. Based on it, the FE approaches are presented with two kinds of residual signals, i.e., non-shared residuals and shared residuals, respectively. To illustrate the effectiveness of the derived FE approaches, an industrial platform WiNC integrated with three-tank system is utilized in this thesis. The FE algorithms have been verified for three data transmission cases, i.e., sampling-based, delay and packet loss, so that the robustness against imperfect communication is demonstrated. Moreover, the performances of sensor and actuator FE have also been tested well on WiNC platform

    Distributed Operation of Uncertain Dynamical Cyberphysical Systems

    Get PDF
    In this thesis we address challenging issues that are faced in the operation of important cyber-physical systems of great current interest. The two particular systems that we address are communication networks and the smart grid. Both systems feature distributed agents making decisions in dynamic uncertain environments. In communication networks, nodes need to decide which packets to transmit, while in the power grid individual generators and loads need to decide how much to pro-duce or consume in a dynamic uncertain environment. The goal in both systems, which also holds for other cyber-physical systems, is to develop distributed policies that perform efïŹciently in uncertain dynamically changing environments. This thesis proposes an approach of employing duality theory on dynamic stochastic systems in such a way as to develop such distributed operating policies for cyber-physical systems. In the ïŹrst half of the thesis we examine communication networks. Many cyber-physical systems, e.g., sensor networks, mobile ad-hoc networks, or networked control systems, involve transmitting data over multiple-hops of a communication network. These networks can be unreliable, for example due to the unreliability of the wireless medium. However, real-time applications in cyber-physical systems often require that requisite amounts of data be delivered in a timely manner so that it can be utilized for safely controlling physical processes. Data packets may need to be delivered within their deadlines or at regular intervals without large gaps in packet deliveries when carrying sensor readings. How such packets with deadlines can be scheduled over networks is a major challenge for cyber-physical systems. We develop a framework for routing and scheduling such data packets in a multi-hop network. This framework employs duality theory in such a way that actions of nodes get decoupled, and results in efïŹcient decentralized policies for routing and scheduling such multi-hop communication networks. A key feature of the scheduling policy derived in this work is that the scheduling decisions regarding packets can be made in a fully distributed fashion. A decision regarding the scheduling of an individual packet depend only on the age and location of the packet, and does not require sharing of the queue lengths at various nodes. We examine in more detail a network in which multiple clients stream video packets over shared wireless networks. We are able to derive simple policies of threshold type which maximize the combined QoE of the users. We turn to another important cyber-physical system of great current interest – the emerging smarter grid for electrical power. We address some fundamental problems that arise when attempting to increase the utilization of renewable energy sources. A major challenge is that renewable energy sources are unpredictable in their availability. Utilizing them requires adaptation of demand to their uncertain availability. We address the problem faced by the system operator of coordinating sources of power and loads to balance stochastically time varying supply and demand while maximizing the total utilities of all agents in the system. We develop policies for the system operator that is charged with coordinating such distributed entities through a notion of price. We analyze some models for such systems and employ a combination of duality theory and analysis of stochastic dynamic systems to develop policies that maximize the total utility function of all the agents. We also address the issue of how the size of energy storage facilities should scale with respect to the stochastic behavior of renewables in order to mitigate the unreliability of renewable energy sources

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    corecore