68 research outputs found

    Multi-Service Radio Resource Management for 5G Networks

    Get PDF

    Autonomous Algorithms for Centralized and Distributed Interference Coordination: A Virtual Layer Based Approach

    Get PDF
    Interference mitigation techniques are essential for improving the performance of interference limited wireless networks. In this paper, we introduce novel interference mitigation schemes for wireless cellular networks with space division multiple access (SDMA). The schemes are based on a virtual layer that captures and simplifies the complicated interference situation in the network and that is used for power control. We show how optimization in this virtual layer generates gradually adapting power control settings that lead to autonomous interference minimization. Thereby, the granularity of control ranges from controlling frequency sub-band power via controlling the power on a per-beam basis, to a granularity of only enforcing average power constraints per beam. In conjunction with suitable short-term scheduling, our algorithms gradually steer the network towards a higher utility. We use extensive system-level simulations to compare three distributed algorithms and evaluate their applicability for different user mobility assumptions. In particular, it turns out that larger gains can be achieved by imposing average power constraints and allowing opportunistic scheduling instantaneously, rather than controlling the power in a strict way. Furthermore, we introduce a centralized algorithm, which directly solves the underlying optimization and shows fast convergence, as a performance benchmark for the distributed solutions. Moreover, we investigate the deviation from global optimality by comparing to a branch-and-bound-based solution.Comment: revised versio

    Fairness-Oriented and QoS-Aware Radio Resource Management in OFDMA Packet Radio Networks: Practical Algorithms and System Performance

    Get PDF
    During the last two decades, wireless technologies have demonstrated their importance in people’s personal communications but also as one of the fundamental drivers of economic growth, first in the form of cellular networks (2G, 3G and beyond) and more recently in terms of wireless computer networks (e.g. Wi-Fi,) and wireless Internet connectivity. Currently, the development of new packet radio systems is evolving, most notably in terms of 3GPP Long Term Evolution (LTE) and LTE-Advanced, in order to utilize the available radio spectrum as efficiently as possible. Therefore, advanced radio resource management (RRM) techniques have an important role in current and emerging future mobile networks. In all wireless systems, the data throughput and the average data delay performance, especially in case of best effort services, are greatly degraded when the traffic-load in the system is high. This is because the radio resources (time, frequency and space) are shared by multiple users. Another big problem is that the transmission performance can vary heavily between different users, since the channel state greatly depends on the communication environment and changes therein. To solve these challenges, new major technology innovations are needed. This thesis considers new practical fairness-oriented and quality-of-service (QoS) -aware RRM algorithms in OFDMA-based packet radio networks. Moreover, using UTRAN LTE radio network as application example, we focus on analyzing and enhancing the system-level performance by utilizing state-of-the-art waveform and radio link developments combined with advanced radio resource management methods. The presented solutions as part of RRM framework consist of efficient packet scheduling, link adaptation, power control, admission control and retransmission mechanisms. More specifically, several novel packet scheduling algorithms are proposed and analyzed to address these challenges. This dissertation deals specifically with the problems of QoS provisioning and fair radio resource distribution among users with limited channel feedback, admission and power control in best effort and video streaming type traffic scenarios, and the resulting system-level performance. The work and developments are practically-oriented taking aspects like finite channel state information (CSI), reporting delays and retransmissions into account. Consequently, the multi-user diversity gain with opportunistic frequency domain packet scheduling (FDPS) is further explored in spatial domain by taking the multiantenna techniques and spatial division multiplexing functionalities into account. Validation and analysis of the proposed solutions is performed through extensive system level simulations modeling the behavior and operation of a complete multiuser cell in the overall network. Based on the obtained performance results, it is confirmed that greatly improved fairness can be fairly easily built in to the scheduling algorithm and other RRM mechanisms without considerably degrading e.g. the average cell throughput. Moreover, effective QoS-provisioning framework in video streaming type traffic scenarios demonstrate the effectiveness of the presented solutions as increased system capacity measured in terms of the number of users or parallel streaming services supported simultaneously by the network

    Radio Resource Management for Ultra-Reliable Low-Latency Communications in 5G

    Get PDF

    Downlink Frequency-Domain Adaptation and Scheduling - A Case Study Based on the UTRA Long Term Evolution

    Get PDF

    Sustainable scheduling policies for radio access networks based on LTE technology

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyIn the LTE access networks, the Radio Resource Management (RRM) is one of the most important modules which is responsible for handling the overall management of radio resources. The packet scheduler is a particular sub-module which assigns the existing radio resources to each user in order to deliver the requested services in the most efficient manner. Data packets are scheduled dynamically at every Transmission Time Interval (TTI), a time window used to take the user’s requests and to respond them accordingly. The scheduling procedure is conducted by using scheduling rules which select different users to be scheduled at each TTI based on some priority metrics. Various scheduling rules exist and they behave differently by balancing the scheduler performance in the direction imposed by one of the following objectives: increasing the system throughput, maintaining the user fairness, respecting the Guaranteed Bit Rate (GBR), Head of Line (HoL) packet delay, packet loss rate and queue stability requirements. Most of the static scheduling rules follow the sequential multi-objective optimization in the sense that when the first targeted objective is satisfied, then other objectives can be prioritized. When the targeted scheduling objective(s) can be satisfied at each TTI, the LTE scheduler is considered to be optimal or feasible. So, the scheduling performance depends on the exploited rule being focused on particular objectives. This study aims to increase the percentage of feasible TTIs for a given downlink transmission by applying a mixture of scheduling rules instead of using one discipline adopted across the entire scheduling session. Two types of optimization problems are proposed in this sense: Dynamic Scheduling Rule based Sequential Multi-Objective Optimization (DSR-SMOO) when the applied scheduling rules address the same objective and Dynamic Scheduling Rule based Concurrent Multi-Objective Optimization (DSR-CMOO) if the pool of rules addresses different scheduling objectives. The best way of solving such complex optimization problems is to adapt and to refine scheduling policies which are able to call different rules at each TTI based on the best matching scheduler conditions (states). The idea is to develop a set of non-linear functions which maps the scheduler state at each TTI in optimal distribution probabilities of selecting the best scheduling rule. Due to the multi-dimensional and continuous characteristics of the scheduler state space, the scheduling functions should be approximated. Moreover, the function approximations are learned through the interaction with the RRM environment. The Reinforcement Learning (RL) algorithms are used in this sense in order to evaluate and to refine the scheduling policies for the considered DSR-SMOO/CMOO optimization problems. The neural networks are used to train the non-linear mapping functions based on the interaction among the intelligent controller, the LTE packet scheduler and the RRM environment. In order to enhance the convergence in the feasible state and to reduce the scheduler state space dimension, meta-heuristic approaches are used for the channel statement aggregation. Simulation results show that the proposed aggregation scheme is able to outperform other heuristic methods. When the aggregation scheme of the channel statements is exploited, the proposed DSR-SMOO/CMOO problems focusing on different objectives which are solved by using various RL approaches are able to: increase the mean percentage of feasible TTIs, minimize the number of TTIs when the RL approaches punish the actions taken TTI-by-TTI, and minimize the variation of the performance indicators when different simulations are launched in parallel. This way, the obtained scheduling policies being focused on the multi-objective criteria are sustainable. Keywords: LTE, packet scheduling, scheduling rules, multi-objective optimization, reinforcement learning, channel, aggregation, scheduling policies, sustainable
    • …
    corecore