2,987 research outputs found

    Sentiment analysis for Hinglish code-mixed tweets by means of cross-lingual word embeddings

    Get PDF

    Latent sentiment model for weakly-supervised cross-lingual sentiment classification

    No full text
    In this paper, we present a novel weakly-supervised method for crosslingual sentiment analysis. In specific, we propose a latent sentiment model (LSM) based on latent Dirichlet allocation where sentiment labels are considered as topics. Prior information extracted from English sentiment lexicons through machine translation are incorporated into LSM model learning, where preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. An efficient parameter estimation procedure using variational Bayes is presented. Experimental results on the Chinese product reviews show that the weakly-supervised LSM model performs comparably to supervised classifiers such as Support vector Machines with an average of 81% accuracy achieved over a total of 5484 review documents. Moreover, starting with a generic sentiment lexicon, the LSM model is able to extract highly domainspecific polarity words from text

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Cross-lingual Distillation for Text Classification

    Full text link
    Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories. This paper presents a novel approach to CLTC that builds on model distillation, which adapts and extends a framework originally proposed for model compression. Using soft probabilistic predictions for the documents in a label-rich language as the (induced) supervisory labels in a parallel corpus of documents, we train classifiers successfully for new languages in which labeled training data are not available. An adversarial feature adaptation technique is also applied during the model training to reduce distribution mismatch. We conducted experiments on two benchmark CLTC datasets, treating English as the source language and German, French, Japan and Chinese as the unlabeled target languages. The proposed approach had the advantageous or comparable performance of the other state-of-art methods.Comment: Accepted at ACL 2017; Code available at https://github.com/xrc10/cross-distil

    A Multiplicative Model for Learning Distributed Text-Based Attribute Representations

    Full text link
    In this paper we propose a general framework for learning distributed representations of attributes: characteristics of text whose representations can be jointly learned with word embeddings. Attributes can correspond to document indicators (to learn sentence vectors), language indicators (to learn distributed language representations), meta-data and side information (such as the age, gender and industry of a blogger) or representations of authors. We describe a third-order model where word context and attribute vectors interact multiplicatively to predict the next word in a sequence. This leads to the notion of conditional word similarity: how meanings of words change when conditioned on different attributes. We perform several experimental tasks including sentiment classification, cross-lingual document classification, and blog authorship attribution. We also qualitatively evaluate conditional word neighbours and attribute-conditioned text generation.Comment: 11 pages. An earlier version was accepted to the ICML-2014 Workshop on Knowledge-Powered Deep Learning for Text Minin
    • …
    corecore