6 research outputs found

    A reliable cross layer routing scheme (CL-RS) for wireless sensor networks to prolong network lifetime

    Get PDF
    Design of conventional protocols for wireless sensor networks(WSN) are mainly based on energy management. The solutions for layered protocol of the WSN network are inefficient as sensors network mainly delivers real-time content thus, cross layer communication between layers of the protocol stack is highly required. In this paper, a reliable cross layer routing scheme (CL - RS) is proposed to balance energy to achieve prolonged lifetime through controlled utilization of limited energy. CL - RS considers 2 adjacent layers namely, MAC layer and network layer. Optimization issues are identified in these two layers and solutions are provided to reduce energy consumption thereby increasing network lifetime. To achieve higher energy efficiency MAC layer protocols compromise on packet latency. It is essential to attempt reduce the end-to-end delay and energy consumption using low duty cycle cross layer MAC (CL-MAC). The joint optimization design is formulated as a linear programming problem. The network is partitioned into four request zones to enable increase in network performance by using an appropriate duty cycle and routing scheme. We demonstrate by simulations that the strategy designed by combining (CL - RS) and (CL-MAC) algorithms at each layer significantly increases the network lifetime and a relation exists between the network lifetime maximization and the reliability constraint. We evaluate the performance of the proposed scheme under different scenarios using ns-2. Experimental results shows that proposed scheme outperforms the layered AODV in terms of packet loss ratio, end-to-end delay, control overhead and energy consumption

    Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model

    Full text link
    Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime.This work is supported by the National Science Foundation of China under Grand No. 61370210 and the Development Foundation of Educational Committee of Fujian Province under Grand No. 2012JA12027.Cheng, H.; Su, Z.; Lloret, J.; Chen, G. (2014). Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model. Sensors. 14(11):20940-20962. https://doi.org/10.3390/s141120940S2094020962141

    AN ENERGY EFFICIENT CROSS-LAYER NETWORK OPERATION MODEL FOR MOBILE WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are modern technologies used to sense/control the environment whether indoors or outdoors. Sensor nodes are miniatures that can sense a specific event according to the end user(s) needs. The types of applications where such technology can be utilised and implemented are vast and range from households’ low end simple need applications to high end military based applications. WSNs are resource limited. Sensor nodes are expected to work on a limited source of power (e.g., batteries). The connectivity quality and reliability of the nodes is dependent on the quality of the hardware which the nodes are made of. Sensor nodes are envisioned to be either stationary or mobile. Mobility increases the issues of the quality of the operation of the network because it effects directly on the quality of the connections between the nodes

    AN ENERGY EFFICIENT CROSS-LAYER NETWORK OPERATION MODEL FOR MOBILE WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are modern technologies used to sense/control the environment whether indoors or outdoors. Sensor nodes are miniatures that can sense a specific event according to the end user(s) needs. The types of applications where such technology can be utilised and implemented are vast and range from households’ low end simple need applications to high end military based applications. WSNs are resource limited. Sensor nodes are expected to work on a limited source of power (e.g., batteries). The connectivity quality and reliability of the nodes is dependent on the quality of the hardware which the nodes are made of. Sensor nodes are envisioned to be either stationary or mobile. Mobility increases the issues of the quality of the operation of the network because it effects directly on the quality of the connections between the nodes
    corecore