3 research outputs found

    Cross-Layer Self-Adaptive/Self-Aware System Software for Exascale Systems

    No full text

    Engineering self-awareness with knowledge management in dynamic systems: a case for volunteer computing

    Get PDF
    The complexity of the modem dynamic computing systems has motivated software engineering researchers to explore new sources of inspiration for equipping such systems with autonomic behaviours. Self-awareness has recently gained considerable attention as a prominent property for enriching the self-adaptation capabilities in systems operating in dynamic, heterogeneous and open environments. This thesis investigates the role of knowledge and its dynamic management in realising various levels of self-awareness for enabling self­adaptivity with different capabilities and strengths. The thesis develops a novel multi-level dynamic knowledge management approach for managing and representing the evolving knowledge. The approach is able to acquire 'richer' knowledge about the system's internal state and its environment in addition to managing the trade-offs arising from the adaptation conflicting goals. The thesis draws on a case from the volunteer computing, as an environment characterised by openness, heterogeneity, dynamism, and unpredictability to develop and evaluate the approach. This thesis takes an experimental approach to evaluate the effectiveness of the of the dynamic knowledge management approach. The results show the added value of the approach to the self-adaptivity of the system compared to classic self­adaptation capabilities

    Architectural stability of self-adaptive software systems

    Get PDF
    This thesis studies the notion of stability in software engineering with the aim of understanding its dimensions, facets and aspects, as well as characterising it. The thesis further investigates the aspect of behavioural stability at the architectural level, as a property concerned with the architecture's capability in maintaining the achievement of expected quality of service and accommodating runtime changes, in order to delay the architecture drifting and phasing-out as a consequence of the continuous unsuccessful provision of quality requirements. The research aims to provide a systematic and methodological support for analysing, modelling, designing and evaluating architectural stability. The novelty of this research is the consideration of stability during runtime operation, by focusing on the stable provision of quality of service without violations. As the runtime dimension is associated with adaptations, the research investigates stability in the context of self-adaptive software architectures, where runtime stability is challenged by the quality of adaptation, which in turn affects the quality of service. The research evaluation focuses on the effectiveness, scale and accuracy in handling runtime dynamics, using the self-adaptive cloud architectures
    corecore