

ENGINEERING SELF-AWARENESS WITH

KNOWLEDGE MANAGEMENT IN DYNAMIC

SYSTEMS: A CASE FOR VOLUNTEER

COMPUTING

by

ABDESSALAM ELHABBASH

A thesis submitted to

The University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science

College of Engineering and Physical Sciences

The University of Birmingham

May 2017

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

The complexity of the modern dynamic computing systems has motivated software

engineering researchers to explore new sources of inspiration for equipping such

systems with autonomic behaviours. Self-awareness has recently gained considerable

attention as a prominent property for enriching the self-adaptation capabilities in

systems operating in dynamic, heterogeneous and open environments. This thesis

investigates the role of knowledge and its dynamic management in realising various

levels of self-awareness for enabling self-adaptivity with different capabilities and

strengths. The thesis develops a novel multi-level dynamic knowledge management

approach for managing and representing the evolving knowledge. The approach is able

to acquire ‘richer’ knowledge about the system’s internal state and its environment in

addition to managing the trade-offs arising from the adaptation conflicting goals.

The thesis draws on a case from the volunteer computing, as an environment

characterised by openness, heterogeneity, dynamism, and unpredictability to develop

and evaluate the approach. This thesis takes an experimental approach to evaluate the

effectiveness of the of the dynamic knowledge management approach. The results show

the added value of the approach to the self-adaptivity of the system compared to classic

self-adaptation capabilities.

To my parents, wife, sons, brothers, sisters, parents-in-law

with loyalty and love…

Acknowledgement

First, I am extremely grateful to my supervisor Dr Rami Bahsoon for his impressive

support throughout my PhD and related research. Your guidance (during both the

research and writing-up stages), patience, and motivation kept me continuously

engaged in my research and made my time productive. Thank you Dr Rami. Also, I would

like to sincerely thank my co-supervisor Prof. Peter Tino for his generous support and

guidance.

I would like to thank my external supervisor Dr Peter Lewis and the members of my

thesis monitoring group, Dr Eike Ritter and Prof. Joshua Knowles for their valuable

comments and encouragement which triggered me to broaden my investigation.

I express a very special gratitude for the Islamic Development Bank (IDB) for their

generous financial support for my PhD.

I owe enormous thankfulness and gratitude to my wife for her immeasurable moral

and emotional encouragement and patience. I am also grateful to my children for their

‘understanding’ for my busyness.

Many thanks to my previous and current officemates who were the best I could have

hoped for; thanks Christopher Novakovic, Olle Fredriksson, Mohammed Al-Wanain,

Ahmed Al-Ajeli, Xiaodong Jia, Cory Knapp, Richard Thomas, Chris McMahon-Stone,

Christopher Hicks, and Rajiv Singh for the fruitful and entertaining conversations.

Table of Contents

 ... 1

1.1 Motivation ... 1

1.2 Problem Statement .. 6

1.2.1 Areas Requiring Improvement .. 7

1.2.2 Research Questions .. 9

1.3 Research Methodology .. 10

1.4 Thesis Contribution .. 12

1.4.1 Contribution in Brief... 12

1.4.2 Thesis-related Publications ... 14

1.4.3 Thesis Roadmap ... 16

 .. 20

2.1 Overview ... 20

2.2 Self-adaptation in Dynamic Software Systems .. 21

2.2.1 Limitations of Self-adaptive Systems... 25

2.3 Self-Awareness in Software Engineering: A Systematic Literature Review 27

2.3.1 Review Protocol.. 27

2.3.2 Conducting the Review .. 35

2.3.3 Reporting the Review ... 42

2.3.4 Discussion ... 71

2.4 Gaps in Brief ... 75

2.5 Related Reviews ... 76

2.6 Summary ... 77

.............. 80

3.1 Overview ... 80

3.2 Volunteer Computing: Challenges and Characteristics ... 81

3.2.1 Performance Patterns of the Volunteer Hosts ... 84

3.3 Representative Volunteer Computing Systems .. 87

3.3.1 BOINC .. 88

3.3.2 Cloud@Home ... 90

3.3.3 Nebula ... 93

3.3.4 Cloud4Home .. 95

3.3.5 SocialCloud ... 96

3.4 Gaps Analysis .. 99

3.5 Summary ...100

 .. 103

4.1 Overview ...103

4.2 Volunteer Storage As a Service: A Steering Example ..104

4.2.1 Volunteer Storage Scenario ...106

4.2.2 Formulation of Volunteer Service Selection ...108

4.3 Services Selection for Volunteer Composite Services ..114

4.3.1 Exhaustive Search ..115

4.3.2 Random Assignment ...116

4.3.3 A Utility Model for Volunteer Composite Services ...117

4.4 Experimental Evaluation ..123

4.4.1 Experimental Results ...125

4.5 Conclusion ..130

 ... 133

5.1 Overview ...133

5.2 Motivation for Self-awareness ...135

5.3 General Architecture for Self-aware Volunteer Computing ...136

5.4 Architecture of the Self-aware Framework ..140

5.4.1 Overview of the EPiCS Framework ..141

5.4.2 The Self-aware Framework for the Volunteer Computing ...144

5.5 Dynamic Histograms for Dynamic Knowledge Management ..147

5.5.1 Chebyshev’s Inequality ..149

5.5.2 Evolution Operations ...150

5.6 Self-aware Selection and Adaptation Levels ..153

5.6.1 Stimulus-aware Selection and Adaptation ..153

5.6.2 Time-aware Selection and Adaptation ..154

5.6.3 Interaction-aware Selection and Adaptation ...158

5.7 Experimental Evaluation ..160

5.8 Conclusion ..166

.. 169

6.1 Overview ...169

6.2 Symbiotic Simulations: A background ..172

6.3 Symbiotic-based Meta-self-awareness Approach ..176

6.4 Experimental Evaluation ..184

6.4.1 Performance of Meta-self-awareness ..184

6.4.2 Overhead of Meta-self-awareness ..190

6.5 Conclusion ..191

 195

7.1 Reflections ..195

7.1.1 Complexity ..195

7.1.2 Scalability ..198

7.1.3 Overhead ...200

7.1.4 Practical Deployment ...200

7.2 How the Research Questions are Addressed ...202

7.3 Future Work ..207

7.4 Closing Remarks ..210

APPENDIX A GLOSSARY .. 212

REFERENCES ... 213

List of Figures

Figure 1.1: Roadmap of the Thesis………………………………………………………………........... 18

Figure 2.1: Research Methodology………………………………………………………………........... 28

Figure 2.2: Quality Scores for the Primary Studies……………………………………………….. 40

Figure 2.3: Thematic Analysis of Self-Awareness in Software Engineering……………. 41

Figure 2.4: Distribution of Primary Studies over Publication Types……………….……... 43

Figure 2.5: Number of Publications per Year……………….……………….……………….……... 44

Figure 2.6: Distribution of Publications by Affiliation Country……………….…………….. 45

Figure 2.7: Distribution of Studies by Software Paradigms……………….……………….…. 55

Figure 2.8: Distribution of Studies by Engineering Practices……………….……………….. 57

Figure 2.9: Distribution of Studies by Engineering Approaches……………….…………… 59

Figure 2.10: Distribution of Studies by Evaluation Approaches……………….…………… 66

Figure 3.1: Trace of A Random Subsample of the Hosts Availability. Source [5].…… 84

Figure 3.2: Hosts Clustered by Availability. Source [111]. ……………….……………….….. 85

Figure 3.3: Cloud@Home Architecture. Source [118] ……………….……………….………… 91

Figure 3.4: Nebula System's Architecture. Source [121] ……………….……………….……. 94

Figure 3.5: Cloud4Home Architecture. Source [122] ……………….……………….…………. 96

Figure 3.6: Social Storage Cloud Architecture. Source [108] ………………………………… 97

Figure 4.1: Motivating Scenario - Composition Request of S1……………………………… 107

Figure 4.2: Volunteer Service Representation……………………………………………………… 110

Figure 4.3: Storage Request Representation……………………………………………….............. 110

Figure 4.4: Example of a Composite Service………………………………………………………… 112

Figure 4.5: Waste Computation Example…………………………………………………………….. 113

Figure 4.6: Services Storage Utility…………………………………………………………….............. 119

Figure 4.7: Services Time Utility Example…………………………………………………............... 120

Figure 4.8: Services Security Utility…………………………………………………………………….. 121

Figure 4.9: Average Waste in Small-Scale Experiment…………………………………………. 126

Figure 4.10: Average Waste in High-Scale Experiment………………………………………… 127

Figure 4.11: Average PSR in Small-Scale Experiment…………………………………………… 128

Figure 4.12: Average PSR in High-Scale Experiment……………………………………………. 129

Figure 4.13: Average Waiting Time in Small-Scale Experiment…………………………….. 129

Figure 4.14: Average Waiting Time in High-scale Experiment……………………………… 130

Figure 5.1: Architecture for Self-aware Volunteer Storage System ………………………. 137

Figure 5.2: The Conceptual Self-Awareness Framework (Source [14])………………… 142

Figure 5.3: The Self-Awareness Framework for The Volunteer Computing Case…... 145

Figure 5.4: Comparison in Resources Waste……………………….……………………………….. 162

Figure 5.5: Comparison in Percentage of Satisfied Requests………………………………… 163

Figure 5.6: Comparison in Waiting Time……………………….…………………………................ 165

Figure 6.1: The Mutually Beneficial Symbiotic Simulation Paradigm. Adapted from

[145] ……………………….……………………….………………………………………………………………

172

Figure 6.2: Symbiotic Simulation Paradigm (a) Closed-Loop (b) Open-Loop………… 174

Figure 6.3: Architecture of The Meta-Self-Awareness Level…………………………………. 178

Figure 6.4: The State Diagram of The Awareness Levels Switching………………………. 183

Figure 6.5: Comparison in Percentage of Satisfied Requests………………………………… 185

Figure 6.6: Comparison in Resources Waste……………………….………………………………. 187

Figure 6.7: Comparison in Waiting Time……………………….……………………………………. 189

Figure 6.8: Comparison in Computation Time……………………….……………………………. 191

Figure 7.1: Example Showing The Interface of A Subscriber Using A Composite

Service of Two Volunteer Services……………………………………………………………………...

201

List of Tables

Table 2.1: Manual Search Sources……………………………………………………………………….. 31

Table 2.2: Studies Selection Criteria…………………………………………………………………… 33

Table 2.3: Quality Assessment Checklist…………………………………………………………….. 34

Table 2.4: Data Items Extracted from Primary Studies………………………………………... 35

Table 2.5: Search Execution (Search Strings and Settings) …………………………………. 37

Table 2.6: Automated Search Results…………………………………………………………………. 38

Table 2.7: Quality Assessment Total Results………………………………………………………. 40

Table 2.8: Active Research Communities within Self-Awareness………………………… 44

Table 2.9: Definitions of Self-Awareness…………………………………………………………… 46

Table 2.10: Analysis of Self-Awareness Definitions…………………………………………… 49

Table 2.11: Specific Motivations of Using Self-Awareness………………………………….. 52

Table 2.12: Source of Inspiration for Engineering Self-Awareness……………………… 53

Table 2.13: Software Paradigms Employing Self-Awareness……………………………… 54

Table 2.14: Engineering Practices Realising Self-Awareness……………………………... 56

Table 2.15: Engineering Approaches and Related Studies…………………………………. 58

Table 2.16: Evaluation Approaches and Related Studies…………………………………… 64

Table 2.17: Evaluation Criteria and Related Studies………………………………………….. 67

Table 3.1: Summary of the Analysis of the Representative VC Systems……………… 98

Table 4.1: Utility Model Attributes’ and Parameters’ Values……………………………… 124

Table 5.1: The Values of the Parameters…………………………………………………………… 160

1

INTRODUCTION

1.1 Motivation

The complexity of current software applications is a consequence of the evolution of the

computing paradigms. For instance, in 1990, the Grid Computing paradigm was

proposed to enable High-Performance Computing (HPC) by using a collection of

computing machines to obtain high computing power [1]. On top of this paradigm, the

volunteer computing (VC) paradigm was proposed to employ donated idle computing

power for solving complex problems. After that, recent advances in computing

environments, such as services and cloud, had provided a natural platform for

supporting the vision and operation of volunteer cloud computing in which volunteer

resources can incubate a cloud [2]. This paradigm combines the cloud computing and

volunteer computing to make the donated resources available for free1 usage as

services. For example, volunteer resources can be treated as services, which can be

1 It is worth mentioning here that the free usage of the volunteer resources is in terms of the cost of purchasing
computational and storage resources form the end users perspective. However, other aspects e.g. the inefficient
energy consumption, is still a limitation of the volunteer computing paradigm that requires further investigating.

2

published and used on demand and benefit from modern computing paradigm including

the Cloud.

Heterogeneity, dynamism, and uncertainty are common characteristics across the

current environments. Modern applications are composed of multiple entities, e.g.

services that are supplied by different providers. Taking into consideration that

different providers adopt different computing resources and continuously update their

infrastructures, current applications should be able to combine heterogeneous and

inter-organisational computing resources dynamically [3]. Furthermore, providers

frequently exhibit changes to their infrastructures by publishing new services,

modifying current services, or withdrawing provided services. Such dynamism

necessitates the dealing with large space of configurations at runtime in order to

preserve the goals of the system. Obviously, this is exacerbated by the evolution of the

users’ requirements and fluctuations of their demands. Under these circumstances, the

assumption that the quality of the services’ provision is deterministic cannot be valid [4]

[5]. Furthermore, unpredictable changes (e.g. security attacks) that cannot be

anticipated at design time can occur arbitrarily at runtime; resulting in disrupting the

desired functionality and/or the quality of the system [6]. Consequently, the decisions

made with regards to the management of current software applications need to take into

account the associated uncertainties.

The complexity resulting from the above characteristics (i.e. heterogeneity,

dynamism, and uncertainty) makes the management of software applications beyond

human capabilities [7]. Consequently, self-adaptation has become a vital requirement to

enable the systems to maintain their goals in dynamic and unpredictable environments.

3

In response to this requirement, considerable research efforts have been exerted to

develop approaches for self-adaptive systems [8]. This has been demonstrated by

proposing self-adaptive approaches that equip the system with autonomous and cost-

effective management capabilities [9] [7]. Among several definitions mentioned in [10],

one states that “Self-adaptive software evaluates its own behaviour and changes

behaviour when the evaluation indicates that it is not accomplishing what the software is

intended to do, or when better functionality or performance is possible.” [11].

Meanwhile, these characteristics contribute to the complexity of the modern

computing paradigms with some varying degrees. In other words, although

heterogeneity, dynamism, and uncertainty are common among the different computing

environments, they can be more challenging in certain environments. This can be

illustrated by this brief comparison between the cloud and the volunteer environments.

In the Cloud, service providers agree to adhere to a certain level of service provision, or

quality of service (QoS), encoded as terms of a service level agreement (SLA). Violating

the SLA terms cannot be completely unavoidable and in some cases, service providers

are obliged to pay penalties due to violating SLAs. From the client's perspective,

violations cause dissatisfaction with the service as their requirements may not be

satisfied. On the other hand, providers in the volunteer environment are volunteers.

They offer their physical resources on a voluntary basis. There are no strict SLAs to

oblige the volunteers to provide the promised resources [12], e.g. volunteers may not be

able to continue offering their resources and they can withdraw their resources at any

time without any consequent retribution. Developing applications in VC environments,

thus, is more challenging and requires more attention to the uncertainties related to

unpredictable changes in the provision of services to satisfy users’ requirements.

4

Therefore, the adoption of volunteer computing can benefit from the progress that we

make in making the paradigm more intelligent and its management more seamless. In

this context, the consideration of data and its management is crucial to the operations of

these systems.

Recent research efforts hold the view that current self-adaptive systems tend to

provide limited adaptation capabilities. For example, it has been reported that most self-

adaptive approaches lack the awareness about the implicit effects of the adaptation

decisions taken at runtime, resulting in limited capabilities in facing the continuous

changes and meeting the users' and system's quality requirements [13] [14] [15].

Therefore, this has motivated the need for the concept of self-awareness in computing

systems, which has recently received considerable attention, with solutions drawing

inspirations from Psychology, Cognitive Science, Natural Sciences, and others. The

commonality in these solutions is that self-awareness has been motivated as an enabler

for self-adaptation in dynamic and unpredictable environments. The purpose is to

enrich the self-adaptation capabilities by gaining in-depth knowledge about the system

and the environment while considering both current and future states.

The concept of self-awareness in computing systems has been investigated by some

representative efforts under the EU Proactive Initiative Self-Awareness in Autonomic

Systems [16] and road-mapping agenda of the Dagstuhl seminar [17]. Such efforts aim to

develop a fundamental understanding of what self-awareness in computing means.

However, although the research on self-awareness in computing has been ongoing for a

decade, there is still a lack of common understanding of the concept. A specific definition

of self-awareness in computing and a clear characterisation of self-aware software

5

systems still require further investigation. Moreover, although self-awareness has been

viewed as an enabler for self-adaptation for the sake of realising better autonomy and

more intelligent adaptation decision making, current self-aware approaches do not

sufficiently demonstrate the claimed capabilities of self-awareness. Among the

limitations, the environments that current research has looked at tend to exhibit little

dynamism and divert from one of the core motivations behind introducing self-

awareness in self-adaptive systems. Furthermore, the distinction between self-adaptive

and self-aware systems is still unclear.

Meanwhile, recent research has proposed frameworks for engineering self-aware

systems [18] [14] [19], contributing to advances in the state-of-art and practice of

computational self-awareness. In [18] a system is considered self-aware if it can model

the acquired knowledge at multiple levels of awareness, namely, stimulus-, time-,

interaction-, goal-, and meta-self-awareness (definitions and discussion of these level

are introduced in chapter2). Though the separation and coordination of these awareness

levels were discussed, the attempt is still abstract and lack concrete demonstration. This

observation is attributed to the absence of approaches and frameworks that explicate

dynamic knowledge management in self-awareness. In particular, pending questions

that relate to how the ‘fine-grained’ knowledge, which corresponds to the different

levels of awareness, can be modelled and realised still exist. Invoking the levels of

awareness is subject to knowledge adequacy for the said level. The exercise also entails

understanding for the trade-offs between the benefits that a given level provides and the

overhead of adopting that level. In this context, how these knowledge levels can be

coordinated based on the availability and adequacy of the knowledge to enable the

analysis is still a pending issue. Moreover, though self-awareness is realised through the

6

acquisition and representation of knowledge (which is dynamic in nature in open

systems) there is still a general lack of principled knowledge management approaches,

which are quantitative in nature to realise self-awareness and its engineering principles

in support of self-adaptation.

1.2 Problem Statement

Developing self-aware applications, which are (1) able to satisfy the users’ requirements

and (2) flexible enough to efficiently adapt to the various changes, is still a pending

challenge in software engineering for dynamic software systems. In this context,

knowledge capturing and management constitutes an essential requirement for

achieving self-adaptivity. Recent research on software engineering for self-aware

systems has illustrated that knowledge management is still an open and critical research

challenge (e.g., [14] [20] [19]). For example, [20] argued that coarse-grained knowledge

representation makes it difficult to capture the trade-offs that exist between the

different knowledge concerns that relate to stimuli, time, goal, interaction, etc. That

means, the limited attention given to the granularity of the knowledge can misguide the

adaptation process as the knowledge can relate to different concerns (e.g. events,

historical performance, interactions, changes in goals). Based on that, the work in [14]

takes a fine-grained approach in architecting the knowledge according to the different

concerns of the knowledge. The work proposes a conceptual framework to separate the

different concerns of the captured knowledge where each concern can reason about a

different type of adaptation. Such approach can be considered as a step towards gaining

more in-depth knowledge about the system state, however, the problem is still open and

many related questions are still not answered. For example, in a service-based

7

application, what type of knowledge is assumed to be available about the services and

can such knowledge be used by the system for informing the selection and adaptation

decisions? How can the knowledge be represented so that the system can discover the

performance patterns of services? How can the system dynamically decide on the

knowledge concerns that should be used?

1.2.1 Areas Requiring Improvement

The following areas of current self-aware approaches require further investigation:

● Limited dynamic knowledge management. Self-awareness has been motivated by

the high dynamism and heterogeneity of the environments of the current

software systems. A contribution by this thesis’s author [21] indicates that the

issue of dynamic knowledge management in current self-aware approaches is

considered in an abstract form, where contributions have provided reference and

conceptual models without clear guidance on their implementation. These

approaches explicitly declare their concern of adopting computational self-

awareness as a way for informing the adaptation decision-making process and

consequently improving self-adaptation capabilities of the system. However, they

do not provide explicit and concrete approaches for dynamic knowledge

management. Knowledge needs to be treated as moving targets that continuously

arrive and evolve. That is, knowledge needs to be treated as a ‘stream’ that

continuously arrive and evolve at runtime. Moreover, knowledge needs to be

represented in a way that is able to capture the performance patterns and trends

of the system entities. In the same context, knowledge management needs to be

realised through concrete approaches. Such approaches should also take into

8

consideration that different concerns are attached to the collected knowledge

and that the separation of the knowledge concerns is vital to support different

self-adaptation capabilities. Although there are some attempts for separating the

knowledge concern in the related literature, they are still abstract and lack

realisation.

● Lack of dynamic management of the adaptation capabilities. The ability to

separate the different knowledge concerns in self-aware systems equips the

system with multiple adaptation capabilities. In other words, the system can have

different self-adaptation capabilities due to the existence of multiple levels of

self-awareness, each concerned with a certain type of knowledge. Each of these

awareness levels can model a certain type of knowledge, thus, they can

collectively provide in-depth knowledge that informs the decisions making

process. Naturally, there will be overhead and usefulness for each of those levels.

Based on that, the self-aware system needs to have the capability to manage the

trade-off that exists between those levels, e.g. by switching between them based

on the advantages and disadvantages of each of them.

● Identifying applications and environments, which can better utilise computational

self-awareness. From our systematic literature review [21]; we also noticed that

existing approaches tend to apply their proposals in environments that exhibit

limited dynamism, which shows a lack of consistency with the purpose of using

the computational self-awareness. The current attempts to demonstrate the need

for self-awareness tend to use cases that exhibit limited dynamism, e.g. due to the

existence of SLAs that drive the providers to fulfil the user's requirements. A case

that exhibits high dynamism and dilution of control is required to illustrate that

9

the classic self-adaptive approaches do not sufficiently satisfy the users’ and

systems requirements and that the need for self-awareness is obvious. In

addition, it can be mutually beneficial to adopt self-awareness in such

environment. From one side self-awareness can be better demonstrated and,

from the other side, the self-adaptation capabilities in that environment can be

improved.

1.2.2 Research Questions

This thesis addresses the following research questions:

RQ1) How to characterise self-awareness and what motivated the research and

applications of self-awareness in software engineering for dynamic and scalable

software systems? Answering this question can help us to lay down the foundation of

the thesis in relation to existing work, to identify shortcomings of current solutions in

relation to dynamic systems (such as volunteer computing), and to pin out areas for

improvements that the thesis hopes to address.

RQ2) What are the requirements for enacting self-awareness in dynamic software

systems and how can these requirements be addressed? Among the requirements that

the thesis is interested in are the adequacy of knowledge, its representation,

management, evolution, and separation of concerns.

RQ3) As different knowledge concerns enable different levels of self-awareness, how can

the system seamlessly switch between various levels of awareness while considering the

adequacy and quality of the knowledge in enabling self-awareness? What mechanisms

can help in coordination?

10

RQ4) How does VC, as a representative paradigm, render itself as a sensible

environment for understanding and demonstrating potential improvements related to

knowledge management in self-aware systems?

1.3 Research Methodology

This thesis adopts a classical research methodology, inspired by [22], for carrying out

our research. The methodology defines five steps that are executed iteratively to guide

the research process:

● Problem identification. The first step is to acquire knowledge about the problem

domain, i.e. self-awareness in software systems. For this purpose, a systematic

literature review (SLR) has been conducted. The SLR also identified the progress

in this research topic along with the open problems. As the understanding of the

problem domain is gained, the research direction converged to the most

interesting problem related to knowledge management in self-aware systems,

which is the pivotal problem handled in this thesis.

● Objectives of the solution. Driven by the aforesaid problem, the main objective of

this thesis is to develop an approach for dynamic knowledge management in self-

aware software systems. This main objective is twofold, on the one hand, it is

related to separate the knowledge concerns and develop multiple levels of

knowledge management where each level is concerned with a certain type of

knowledge. On the other hand, it is related to dynamically manage the trade-offs

that exist among these levels. In addition to that, other objectives emerged from

the main objective. As self-awareness has been motivated as an imperative need

in dynamic environments, a representative environment that exhibits high

11

dynamism and dilution of control is required for presentation of the proposed

approach. This objective requires the development of a concrete decision-making

scenario that is used as a basis for the development of the dynamic knowledge

management approaches.

● Design and development. The results of the SLR revealed that there are many

approaches that incorporate self-awareness in dynamic software systems. For

the purpose of achieving the objectives mentioned above, one ‘flavour’ of these

approaches, namely the EPiCS framework [18], is selected in this thesis to

fundamentally improve it by introducing the knowledge management to it. This

framework conceptually introduces multi-levels of self-awareness to enrich the

self-adaptivity. By fundamentally improving this framework, this thesis proposes

multiple knowledge management approaches along with the capability of

autonomous switching between those approaches according to system state. For

this objective, this thesis proposes leveraging a symbiotic simulation to perform

what-if analysis in order to investigate the alternative decisions that could be

taken by the different awareness levels using the collected knowledge.

● Demonstration. This thesis adopts the volunteer computing paradigm for

demonstrating the usefulness of the proposed self-aware approach. A motivating

scenario of volunteer storage services is developed in order to steer the

development of the knowledge management approaches. This scenario requires

the development of a selection and adaptation approach for volunteer services

that is used as a basis for the development and steering the presentation of the

dynamic knowledge management approaches. On the other hand, the proposed

self-aware approach (with dynamic knowledge management) contributes to

12

enriching the adaptation capabilities of the VC paradigm, which are found to be

limited as shown in chapter 3.

● Evaluation. Experimental quantitative evaluation is used to compare the

performance of the self-aware framework in the cases of the presence and the

absence of the dynamic knowledge management approach. The evaluation is

based on simulations-based experiments run in a controlled environment.

1.4 Thesis Contribution

1.4.1 Contribution in Brief

The thesis treats evolving knowledge as moving targets that need to be dynamically

managed in order to improve self-adaptivity in dynamic software systems. The thesis

investigates the problem of dynamically managing knowledge in self-aware software

systems and its implications on improving self-adaptivity and its dependability. The

main contributions of this thesis are:

● Systematic Literature Review of Self-awareness in Software systems. Dynamic

knowledge management is the fundamental characteristics that we call for

improving the self-adaptivity of software systems. That is, the self-aware system

should be able to acquire in-depth knowledge about its state and the

environment. A systematic literature review (SLR) was conducted to build the

required understanding of the computational self-awareness and the related

latest developments. The review aimed also at identifying the gaps in the current

approaches and motivated the need for knowledge management approaches.

This contribution deals with the research question RQ1.

13

● Novel Approach for Dynamic Knowledge Management. This thesis proposes a

novel multi-level knowledge management approach for self-aware software

systems. The presentation of the approach is steered by the VC services selection

scenario. The approach uses dynamic histograms [23] to store the evolving

knowledge so that the performance patterns of the volunteer services are

captured. The multi-level knowledge management approach is able to separate

the knowledge related to stimulus, historical performance of the services, and the

historical interactions between the services. We develop the algorithms related

to the dynamic histograms update and maintenance as well as services selection

and adaptation approaches. This contribution deals with the research question

RQ2.

● A novel approach for meta-level adaptation. This thesis proposes a novel approach

for self-adaptation at the meta level. Such adaptation is represented as the

switching between the different levels of awareness based on the advantages and

disadvantages of the levels taking into consideration the current state of the

system in terms of the stability of the system’s queue. The meta-level adaptation

approach makes novel use of a symbiotic simulation – in the heart of the self-

adaptive process – to provide the basis for what-if analysis in cases where the

knowledge for adaptation is stringent. This contribution deals with the research

question RQ3.

● Application of the self-awareness to a timely computing paradigm, the VC. The

results of the SLR revealed that although computational self-awareness has been

introduced as an approach for fertilising self-adaptivity in highly dynamic

environments, the scenarios which have been used to demonstrate this ‘claim’

14

tend to show limited dynamism. Therefore, this thesis builds on the volunteer

computing (VC) paradigm, which is a highly dynamic environment and lacks the

existence of stringent SLAs. We review the representative VC systems. The

objective of the review is to identify the self-adaptation capabilities of the

systems and to draw conclusions on the need for self-awareness. The review

results show limited adaptation capabilities of the current VC systems. In

addition, the review identified gaps related to the services selection problem in

the case of storage services. Thus, we contribute to a novel utility-based approach

for informing the selection of the volunteer storage services, which is necessary

to build the motivating scenario. This contribution deals with the research

question RQ4.

● Evaluation. Using non-trivial simulations, we evaluate our approaches with

different scales, e.g. the number of services and number of requests. The results

demonstrate the advantage of our approach in terms of the ability to satisfy the

user's requirements. This advantage is accompanied with computational

overhead, which needs further investigation of the cost of accepting such

overhead.

1.4.2 Thesis-related Publications

Publications arising from this thesis are [21], [24], [25], [26], [27], [28], and [29], which

are respectively the following:

 Abdessalam Elhabbash, Maria Salama, Rami Bahsoon, and Peter Tino, “Self-

Awareness in Software Engineering: A Systematic Literature Review”, 2017,

submitted to ACM TAAS.

15

 Abdessalam Elhabbash, Rami Bahsoon, and Peter Tino, and Peter R. Lewis

“Symbiotic-based Meta-self-awareness for Self-adaptive Systems: A Case for

Volunteer Services”, 2017, submitted.

 Abdessalam Elhabbash, Rami Bahsoon, and Peter Tino. "Self-awareness for

dynamic knowledge management in self-adaptive volunteer computing", The 24th

IEEE International Conference on Web Services (ICWS 2017), (Full paper in

Research Track), Honolulu, Hawaii, USA, 2017, (Acceptance rate: 21%), to

appear.

 Abdessalam Elhabbash, Rami Bahsoon, and Peter Tino. "Interaction-awareness

for self-adaptive volunteer computing", The IEEE 10th International Conference

on Self-Adaptive and Self-Organizing Systems (SASO), Augsburg, 2016, pp. 148-

149. (Acceptance rate: 26%)

 Abdessalam Elhabbash, Rami Bahsoon, Peter Tino, and Peter Lewis. "Self-

adaptive Volunteered Services Composition through Stimulus- and Time-

awareness", The 22nd IEEE International Conference on Web Services (ICWS 2015),

(Full paper in Research Track), New York, USA, 2015. (Acceptance rate: 17.4%)

 Abdessalam Elhabbash, Rami Bahsoon, Peter Tino, and Peter Lewis. "A Utility

Model for Volunteer Service Composition". The 7th ACM/IEEE International

Conference on Utility and Cloud Computing (UCC 2014). Full paper, London, UK,

2014. (Acceptance rate: 19%)

 Abdessalam Elhabbash, Rami Bahsoon, and Peter Tino. "Towards Self-aware

Service Composition". In Proceedings of the 16th IEEE International Conference on

High Performance Computing and Communications (HPCC 2014), Paris, France,

2014. (Acceptance rate: 25%)

16

1.4.3 Thesis Roadmap

Figure 1.1 shows the roadmap of this thesis. The structure of the rest of this thesis is as

the following:

 Chapter 2 conducts a systematic literature review on self-awareness in software

engineering. It aims at building the required background and understanding of

the field, exploring the current approaches, and identifying the gaps in the

literature. This chapter is partially derived from [21].

 Chapter 3 presents a background about the volunteer computing paradigm and

reviews the representative VC systems. The review identifies the limitations of

the autonomic behaviour of the systems and motivates the need for self-

awareness. Also, the review reveals inadequacies in the selection approaches of

the volunteer resources in terms of resources utilisations and requests

satisfaction. This chapter is partially derived from [28].

 Chapter 4 draws on the conclusions of chapter 3. The chapter develops a

volunteer storage scenario and proposes a utility model that informs the

selection of the volunteer storage resources. The chapter compares the utility-

based selection approach with two basic approaches. This chapter is derived

from [28].

 Chapter 5 proposes the multi-level self-aware approach for dynamic knowledge

management. Benefiting from existing analysis of the performance of the

volunteer hosts, the volunteer services selection scenario is used to steer the

presentation of the approach. An experimental evaluation is conducted to show

17

the pros and cons of the proposed approach compared to the basic adaptation

approach used in VC. This chapter is derived from [29] [25], [27], and [26].

 Chapter 6 proposes an approach, namely meta-self-awareness, for switching

between the levels of self-awareness according to the system state and the

usefulness of each of the levels. The chapter introduces the symbiotic simulation

paradigm and reasons about using it in the meta-self-awareness approach. The

chapter compares the meta-self-awareness with the non-meta-self-awareness

approaches. The results show that the meta-self-awareness approach selects the

optimal awareness level. This chapter is derived from [24].

 Chapter 7 reflects the findings of the thesis on the research questions, concludes

the outcome of the thesis, and discusses the open issues.

In addition, we find it useful to highlight the following terms to make them clear to the

reader, as they frequently appear in the thesis:

 Fine-grained vs coarse-grained knowledge. Treating knowledge at fine-grained

levels means taking into consideration that different insights can be extracted

from the collected data. That means, considering different concerns of the

collected data can support structuring the knowledge into multiple levels where

each level can provide a different type of knowledge (e.g. stimuli, historical

performance, and interaction). The ignorance of the potential structure of the

knowledge is considered coarse-grained treatment.

 Highly-dynamic environment. In general, current computing environments (e.g.

the Cloud, services computing, and VC) are dynamic. However, the dynamism of

environments like VC can be more challenging due to the lack of strict SLAs that

18

oblige the providers to provide the resources. We use the term high-dynamic to

highlight such cases, which can benefit from self-awareness.

Figure 1.1: Roadmap of the Thesis

Chapter 1: Introduction

Chapter 2:

Systematic Review of Self-awareness

in Software Systems

Chapter 3:

Motivating Self-awareness for

Volunteer Computing

Chapter 4:

Services Selection for Volunteer

Composite Services: A Utility Model

Chapter 6:

Symbiotic-based Meta-self-

awareness for Self-aware Systems

Chapter 5:

Self-Aware Framework for VC with

Dynamic Knowledge Management

Chapter 7:

Reflections, Conclusion Remarks,

and Future Work

19

20

SYSTEMATIC REVIEW OF SELF-

AWARENESS IN SOFTWARE SYSTEMS

2.1 Overview

This chapter introduces a background on self-adaptive systems and investigates the

motivations behind adopting self-awareness to empower self-adaptivity in software

systems. After that, the chapter surveys the landscape of self-aware software systems to

review the state of the art and identify challenges and open problems. The objective of

the review is to verify and provide a better understanding of the research questions that

have been posed in chapter 1. More specifically, the chapter reviews the solutions and

advances that have been done in self-awareness and how they can benefit the case of

dynamic open systems such as VC. Another objective is to investigate the limitations of

the current solutions so that we can attempt to provide enhancements that benefit our

case.

21

We follow the guidelines for conducting SLRs proposed by Kitchenham [30]. The

SLR guidelines aim at documenting the steps of the review process. This enables

assessing the search protocol and results by re-executing the search protocol, e.g. by an

independent assessor.

The main findings of the review show that there is a growing attention to

incorporate self-awareness for better reasoning about the adaptation decision making in

autonomic systems. The motivation behind leveraging computational self-awareness is

to provide the system with the required knowledge to handle the complexity of the

systems. Yet, the current works have given little attention to realising self-awareness

with dynamic knowledge management. In addition to that, the review indicates that the

usefulness of self-awareness needs to be demonstrated more sufficiently. The reason

can be that the environments in which self-awareness has been applied possess some

controls that, to some extent, restrain the environment dynamics. Addressing these

pending issues is likely to better inform the self-adaptivity and provide better seamless

management of the system, taking into consideration the core properties which relate to

the heterogeneity, uncertainty, and dynamism.

2.2 Self-adaptation in Dynamic Software Systems

Self-adaptive software systems are empowered by the capabilities of autonomously

adjusting their attributes and/or structures in response to the internal and external

changes. While internal changes arise from the system itself, e.g. unexpected failure,

external changes arise from the operating environment, e.g. a sudden increase in the

workload. In order to be able to adapt, a self-adaptive system incorporates a feedback

loop system to continuously feed information about the current state of the system and

22

the environment. The fed information is analysed at runtime to assess whether the

system is able to meet the intended requirements. If it is not the case, then an adaptation

action will be taken to adapt the system behaviour [31].

There is a unanimity that the increased cost and complexity in dealing with such

situations at runtime by humans raised the need for self-adaptive systems. Adaptation

based on humans’ supervision is unreliable, slow, expensive, and error-prone due to the

imperfect nature of humans and their limited ability to react in a timely manner, and

also due to the complexity of the system itself [32]. Based on that, self-adaptation has

received a considerable level of interest in different research areas like Cloud

Computing, Service Computing, Robotics etc. Researchers have made significant efforts

to design self-adaptive systems which resulted in a considerable literature, which has

been explicitly discussed in many surveys, e.g., [33] [9] [34] [35]. The representative

works are presented in the following.

In [10] [33] the authors introduced six questions to address the requirements of

self-adaptive systems, namely, “Who has to perform the adaptation?”, “When to adapt?”,

“Where do we have to implement change?”, “What kind of change is needed?”, “Why do we

have to adapt?”, and “How is the adaptation performed?”. The answer of the Who

question is obvious; the system needs to adapt autonomously, ideally, with no human

interventions. The When question addresses the temporal aspects of adaptation in terms

of the time of applying the change decisions. The mentioned types of adaptation are

reactive adaptation and proactive adaptation. Each of the types has its pros and cons in

terms of benefits and overheads. The reactive adaptation is to apply the adaptation

decisions after a need for adaptation arises, e.g. after a violation of the SLA occurs. The

23

proactive adaptation is to apply the adaptation decision before the need arises in order

to avoid undesirable situations, which requires the forecast of the system and the

environment states. The Where question addresses the level at which the adaptation

applied. For example, in a cloud-based system, this can be the application level,

architecture level, or the infrastructure level. The What is concerned with the kind of

the required change [33], which can be adapting parameters, components, or context.

The Why question is concerned with the feasibility of applying the adaptation action - in

terms of its necessity to achieving the system’s and users’ goals. The How question is

about the plan of adaptation. That is, which actions should be taken to apply the

adaptation; taking into consideration the benefits and costs of each adaptation actions.

In 2001, IBM released a conceptual architecture to engineering self-adaptive

systems, namely, the MAPE-K [7]. According to this architecture, a self-adaptive system

contains basically of two elements, namely, the managing element and the managed

element. The managing element is the autonomous part of the self-adaptive system,

which is responsible for adapting the managed element behaviour. For achieving such

autonomous behaviour, the managing element basically adopts a closed-loop controller

that involves five main components, namely, Monitor, Analyse, Plan, Execute, and

Knowledge. The Monitor component is responsible for gathering information about the

system and the environment states. Typically this is achieved by implementing different

sensors as the need entails. The gathered information is passed to the Analysis

component which analyses the received information in order to investigate whether the

system and/or the environment states call for adapting the managed element. In the

case of detecting a change that calls for adaptation, the Analysis component reports to

the Plan component which constructs the system strategy in the new situation. The

24

planned strategy involves the actions needed to be undertaken to alternate the managed

element so that the system goals are achieved. After that, the Execute component

executes the recommended plan in order to change the managed element. The above

four components share access to the Knowledge component which stores the

information (e.g. topology, available services, performance logs, etc.) fed and updated by

the sensors and the Execute component.

The MAPE-K architecture [7], introduced above, represents the conceptual

architecture which inspired many other works that built on and extended the MAPE-K.

In [36] Garalan et al. proposed the RAINBOW framework for engineering software

systems. The framework addresses the problems of generality and adaptation cost

reduction by dividing the software system into three layers, namely, the architecture

layer, the system layer, and the translation layer. The architecture layer contains

reusable components that provide common functionalities and hence can be reused

across different systems to define the adaptation plans. The system layer provides

system-specific mechanisms to monitor and report the system state to the translation

layer. The translation layer controls the mapping of the monitored state and the

adaptation plans among the system and the architecture layers.

In [37] a three-layer architecture has been introduced to self-adaptive software

systems. The bottom layer, Component Control, monitors the current state of the system

and effects actions in response to known detected changes. When the changes are new,

the Component Control layer reports the changes to the middle layer, the Change

Management. The Change Management inspects the predefined adaptation plans that

can be applied in response to the new changes and effects the plan to the Component

25

Control to apply the corresponding actions. In the case of no plans exist to treat the

situation; the Change Management reports the case to the upper layer, the Goal

Management. The Goal Management then produces new plans which are injected to the

Change Management.

Another framework inspired by the control theory is the Observe-Decide-Act (ODA)

loop [38]. The Observe component is concerned with monitoring both the system and

the environment. The Decide component is concerned with making adaptation decisions

using a set of available actions. Then the Act component executes the selected

adaptation action.

In [39] Elkhodary et al. present a learning-based framework called FUSION in which

adaptation decisions are taken based on monitoring the system at runtime to learn the

system’s runtime behaviour unforeseen at design time. The framework defines a

particular system capability as a feature. FUSION realises the self-adaptability of the

system through two cycles, namely Learning cycle and Adaptation cycle. In the former,

the framework observes the behaviour of the features and estimates the impact of the

feature’s selection, and then stores the learnt models in a knowledge base. In the later,

the system is capable of detecting the violation of goals, planning adaptation strategies

using the knowledge base, and effecting the adaptation.

2.2.1 Limitations of Self-adaptive Systems

In spite of the existence of the considerable literature of self-adaptive systems, these

systems exhibit limited self-adaptation capabilities due to the following reasons [40]

[41]:

26

 Most self-adaptive systems lack the awareness about the implicit effects of the

adaptation decisions taken at runtime resulting in limited capabilities in facing

the continuous changes and meeting the users’ and system’s quality

requirements.

 Proactivity and the anticipation of adaptation action have been limited in self-

adaptive systems due to the lack of treatment of knowledge; limiting the

capability of avoiding violations and reducing interruptions.

 Knowledge representation has been considered at a coarse-grained level which

limits the quality of adaptation. Gaining in-depth knowledge on system

performance and representing that knowledge at a fine-grained level helps

taking more intelligent adaptation decisions. For example, in service-based

applications, representing knowledge on the performance of the services helps

to select the services that perform well. However, representing the knowledge

on the interactions between the services helps to select services that perform

well when composed together.

Such limitations of the self-adaptive systems resulted in the emergence of the

concept of ‘self-awareness’, which has been receiving more attention in computing

systems. Over the past ten years, researchers have been proposing approaches for

adopting self-awareness as an enabler for self-adaptation in the dynamic environments.

The purpose is to enrich the self-adaptation capabilities by gaining ‘richer’ knowledge of

the system and the environment’s current and future states. The concept of self-

awareness in computing systems has been demonstrated by some representative

efforts, e.g. the EU Proactive Initiative Self-Awareness in Autonomic Systems [16] and

27

road-mapping agenda of the Dagstuhl seminar [17], to develop a fundamental

understanding of the computational self-awareness. In the next section, we conduct a

systematic review on self-awareness in software engineering in order to compile the

related studies.

2.3 Self-Awareness in Software Engineering: A Systematic Literature

Review

A systematic literature review is a methodical process to build a body of knowledge on a

certain subject or topic [42]. In this section, we aim at building knowledge on the

computational self-awareness in software systems. We focus on the studies that have an

explicit claim of using self-awareness in software engineering. The review explores and

investigates (i) how the studies have defined and characterised self-awareness, (ii) what

sources have inspired researchers and motivated them to use self-awareness, (iii) what

software engineering practices and software paradigms have employed self-awareness,

(iv) how computational self-awareness is engineered to encode self-awareness within

software systems, and (v) the evaluation approaches of the proposed self-aware systems

to examine the accompanied benefits and overheads.

2.3.1 Review Protocol

In this section, we describe the research method used to conduct this systematic review.

The procedure of this study followed the guidelines for conducting systematic literature

reviews [42]. The process has also been informed by other reviews relevant to software

engineering [30] [43] [44]. The review process includes three main phases: (i) planning,

(ii) conducting, and (iii) reporting the review. We first define the research questions that

28

drive our research, and then we describe the planned protocol to be followed for

conducting the review. The research methodology is depicted in Figure 2.1.

Figure 2.1: Research Methodology

2.3.1.2 The Review Research Questions

The overall research objective of the review is to give an overview of the current state-

of-the-art related to self-awareness in software engineering in research and practice.

The review surveys the existing approaches and paradigms to investigate how those

works tackled self-awareness. It also aims to identify the potential issues and limitations

in current research. In this context, in order to inform our work and obtain a better

understanding of the thesis research questions, we conduct the review using the

following questions:

 Q1. How to define and characterise self-awareness?

This question is motivated by the need for defining and consequently

characterising self-awareness in software systems; i.e. how to consider that a

29

system is self-aware. Answering this question supports understanding the thesis

RQ1 by investigating the characteristics that the self-aware system should

possess.

 Q2. What did motivate the application of self-awareness in software

engineering and what are the sources of inspiration for its engineering?

This question aims to identify the motivations and the sources of inspiration that

stimulated the adoption of computational self-awareness in software

engineering. The sources of inspiration for engineering self-awareness are also

identified, in order to investigate how these sources helped to advance self-

aware software systems. Answering this question supports understanding the

thesis RQ1 by investigating the reasons behind adopting self-awareness.

 Q3. In which software engineering practices and software paradigms is

self-awareness employed?

The goal of Q3 is to find the software paradigms that employed self-awareness

and to explore the characteristics of the environments that can benefit from

computational self-awareness. This question is related to the thesis RQ4, as we

leverage from the existing application of self-awareness to inform the case of VC

that we are using to steer the presentation of our approach.

 Q4. What are the approaches for engineering self-awareness?

This question identifies the approaches of engineering self-aware software

systems and investigates how computational self-awareness has been realised.

In other words, this question investigates the engineering of knowledge

management in current self-aware approaches. This question supports the

understanding of the thesis RQ2 and RQ3 as it helps to find guidance to engineer

30

a framework for introducing self-awareness with dynamic knowledge

management.

 Q5. How are self-aware software systems evaluated?

This question explores the significance of adopting self-awareness, in terms of

performance evaluation, in order to inform the evaluation of our approach.

2.3.1.3 Search Strategy

Our search strategy includes determining the data sources and the search string, as they

appear in the sub-sections below.

Data sources The search process for this study is based on automated search in

the following digital libraries and indexing systems that are considered as the largest

and most complete scientific databases for conducting literature reviews in computer

science [45] [46]:

 IEEE Xplore (http://ieeexplore.ieee.org/)

 ACM Digital Library (http://dl.acm.org/)

 ScienceDirect (http://www.sciencedirect.com/)

 Web of Science (http://www.webofknowledge.com/)

 SpringerLink (http://link.springer.com/)

 Wiley InterScience (http://onlinelibrary.wiley.com/)

As technical reports do not appear in these libraries, we considered Google Scholar

(http://scholar.google.co.uk/) for this type of publications only.

31

Furthermore, we identified the most relevant conference proceedings and journals

in the field of software engineering for manual search, according to our previous

experience and the results obtained during trial searches. The full list of sources

considered for the manual search is presented in Table 2.1.

Table 2.1: Manual Search Sources

Search String The aim of the search string is to capture all results related to self-

awareness in the context of software engineering. Trial searches were performed in

each database with the intention of checking the number of returned papers and their

Type Data Source Publisher

Journal ACM Transactions on Software Engineering and

Methodology

ACM

 ACM Transactions on Autonomous and Adaptive

Systems

ACM

 IEEE Transactions on Software Engineering IEEE

 Journal of Software and Systems Elsevier

 Information and Software Technology Elsevier

 Software and System Modelling Springer

Conference ACM SIGSOFT International Symposium on the

Foundations of Software Engineering (FSE)

ACM

 International Conference on Software Engineering

(ICSE)

IEEE

 International Symposium on Software Engineering

for Adaptive and Self-Managing Systems (SEAMS)

IEEE

 IEEE International Conference on Self-Adaptive and

Self-Organizing Systems (SASO)

IEEE

Magazine Software IEEE

 Computer IEEE

 Awareness Magazine: Self-Awareness in Autonomic

Systems

European

Commission

(FP7)

 Dagstuhl Reports Schloss Dagstuhl -

Leibniz Center for

Informatics

32

relevance. The objective of the trial searches is to check the feasibility of the search

string and adjust it accordingly.

The general search string used on all databases is: (self-aware*) AND

(software). The first term captures the different ways self-awareness could be used,

i.e. self-aware or self-awareness. The second term makes it explicit for software. The

keywords system(s) and computing have returned a huge number of results related

to computing systems, hardware, robots and networks. Other combined keywords, such

as software engineering and software systems - when tried - had led to a vast

wide set of irrelevant results. The simplicity and generality of the search string help in

maximising the number of returned relevant papers, as it places as few restrictions as

possible on the search string. We used the search string in the automated search engines

of the data sources defined earlier, searching by meta-data (i.e. title, abstract and

keywords).

Regarding the search in the specialised data sources, we first checked whether the

papers published in these venues are retrieved in the databases included in the

automated search. We found that manual search is needed only for the Awareness

Magazine (http://www.awareness-mag.eu/index.php) and the Dagstuhl Reports

(http://drops.dagstuhl.de/opus/institut_dagrep.php?fakultaet=07).

2.3.1.4 Studies Selection Criteria

After the search has been executed, the study selection has been performed on the

resulting set of studies. During the screening of search results, the title, abstract,

introduction and conclusion for each candidate paper has been examined closely to

determine the relevance of the paper. In some cases when these do not provide enough

33

information to decide the relevance of the paper, the whole paper has been read. The

selection is to be performed with respect to the inclusion and exclusion criteria defined

in Table 2.2. It is worth mentioning here that the inclusion of non-peer-reviewed (e.g.

technical reports) is motivated by our understanding that the field of computational self-

awareness is emergent. This supports our goal of understanding the advances made in

engineering self-awareness by capturing the relevant outcomes of the relevant projects

that addressed self-awareness.

When similar studies are reported in several papers as work-in-progress, the most

comprehensive version is to be considered, unless significant details were reported in

the earlier version.

Table 2.2: Studies Selection Criteria

 Inclusion Criteria

I1. Papers published in conferences and journals, as full research paper, short and

position paper presenting new and emerging ideas, as well as doctoral symposiums

I2. Literature published as books, book chapters and technical reports

I3. Papers employing self-awareness concepts in engineering software systems (e.g.

cloud-based, service-oriented)

I4. Papers implementing or extending self-awareness concepts

I5. Papers discussing general or particular aspects of self-awareness

 Exclusion Criteria

E1. Papers not in the form of a full research paper, i.e. in the form of abstract, tutorials,

presentation, or essay.

E2. Papers with abstract not available.

E3. Papers not written in the English language.

E4. Papers focusing on awareness or context-, situation-awareness or any other form of

awareness (i.e. not self-awareness), or not explicitly addressing self-awareness.

E5. Papers not focusing on self-awareness in software engineering; i.e. other computer

science fields, such as networking or robotics or hardware.

2.3.1.5 Cross-references Check

In order not to miss any relevant studies, we designate the cross-referencing technique

to find potentially relevant studies, by applying the ‘snow-balling’ search method [47]

34

[43]. This is performed by tracking the references contained in the ‘References’ section

in each selected primary study [47] [43].

2.3.1.6 Quality Assessment Criteria

Primary studies are evaluated according to the quality assessment criteria shown in

Table 2.3, in order to assess the quality of the studies under consideration. The quality

assessment checklist is based on the assessment method for research studies proposed

in [48] [44].

The scoring procedure is 1 if the quality item is present, 0.5 if it is partially present,

0 if not present or unknown. Based on that, the quality assessment score (maximum of

7) for a study is calculated by summing up the scores for all the quality items.

Table 2.3: Quality Assessment Checklist

 Quality item

QA1. Problem definition of the study

QA2. Reporting on background and context

QA3. Description of the research method

QA4. Evaluation of the research method

QA5. Contributions of the study

QA6. Reporting on the insights derived from the study

QA7. Reporting on the limitations of the study and threats to validity

2.3.1.7 Data Extraction Items

For each selected primary study, the whole paper has been read to extract the data

items, which will help in answering the research questions. Data items to be extracted

and their relevant research questions are listed in Table 2.4.

2.3.1.8 Data Synthesis and Analysis Approach

Data synthesis involves collating and summarising data extracted from primary studies.

In this stage, statistics are also extracted and the results are further analysed. For the

35

data synthesis, the extracted data should be inspected for similarities in order to define

how results could be encapsulated. Our approach for synthesising findings will be based

on the synthesis method ‘thematic analysis/synthesis’ [49], with the difference that

instead of identifying themes derived from the findings reported in each primary study,

we consider the synthesis and analysis targeted to answer the research questions.

Table 2.4: Data Items Extracted from Primary Studies

Data item Description Relevant SLR

question

BibTeX key a unique key identifying the study for reference Documentation

Title title of the study Documentation

Year publication year Demographics

Authors’
affiliations

the affiliations of all authors as appearing in the

study

Demographics

Affiliation
Countries

the countries of the authors’ affiliations Demographics

Definition definition of the self-awareness concept Q1

Characteristics characteristics to consider a software as a self-
aware one

Q1

Motivation the motivation for employing self-awareness Q2

Source of
inspiration

what inspired the self-aware approach Q2

Software
Engineering
Practices

the software engineering practices that employed
self-awareness; i.e. requirements engineering,
architecture design

Q3

Software
paradigm

which types of software considered self-
awareness; i.e. cloud-, mobile-, service-based

Q3

Engineering
Approach

what is the approach used to realise self-
awareness; i.e. prediction, machine learning

Q4

Evaluation tool how the self-aware system is evaluated; i.e.
simulation, experiments

Q5

Performance how the self-aware system performed compared
with non-self-aware

Q5

Overhead what is the overhead caused by self-awareness Q5

2.3.2 Conducting the Review

This section summarises the execution of the review protocol.

36

2.3.2.1 Search Execution

The search was executed according to the search strategy defined in section 2.3.1.3. In

practice, particular settings were built for each search engine (details in Table 2.5), since

each digital library works in a specific manner. This was attempted to minimise

duplications and rejections by setting the appropriate options in each search engine.

Particularly, filters were applied - when available - for setting the search engine to

retrieve only studies published by its own engine or to retrieve documents in English

language only. Minimising results by excluding irrelevant disciplines was also used,

whenever available. In cases where the search engine does not imply enough filters and

a large number of irrelevant results were retrieved, we used the first sets of search

results sorted by relevance. This decision was made after a careful checking of the next

set of search results to ensure their complete irrelevance.

During the course of executing the search, we used a spreadsheet to keep track of the

search execution process and perform quantitative analysis on the results. This

spreadsheet contains:

 Data source - the name of the data source;

 URL - the URL of the data source;

 Search Query - the query string as entered to the search engine;

 Search filters - further filters used to refine the search results (e.g., language,

discipline);

 Search results - the total number of search results retrieved;

 Considered results - the total number of search results considered for primary

studies selection;

37

 Search results file - the bibliography file of the search results;

Table 2.5: Search Execution (Search Strings and Settings)

Database Search string Search settings

ACM Digital Library “self-aware*”

AND software

N/A

IEEE Xplore “self-aware*”

AND software

refined by Publisher: IEEE

ScienceDirect

“self-aware*”

AND software

Publications titles:
- Procedia Computer Science
- Journal of Systems and Software
- Future Generation Computer Systems
- Expert Systems with Applications
- Science of Computer Programming
- Computer Standards & Interfaces
- Decision Support Systems
- Journal of Network and Computer Applications

Web of Science “self-aware*”

AND software

Language: English
Categories:
- Computer Science Theory Methods
- Computer Science Information Systems
- Computer Science Software Engineering
- Computer Science Interdisciplinary Applications

SpringerLink

“self-aware*”

AND software

Discipline: Computer Science
SubDiscipline: SWE
Language: English

Wiley InterScience

self-aware* AND

software

N/A

Google Scholar “self-aware*”
AND software

N/A

Search results were extracted as a bibliography in BibTeX format, having a final

collection of bibliographies for each data source. We have also created a spreadsheet

listing the search results with their meta-information. We, then, used JabRef [50] to

merge the search results files into one .bib file after detecting and removing duplicates.

As a result of the automated search execution, we found 47,787 studies in total,

without the Awareness Magazine and Dagstuhl Reports (where we performed a manual

38

search for all articles). In case a large number of results was retrieved, we used the first

sets of search results sorted by relevance. More specifically, we considered the first 200

results from SpringerLink and the first 100 results from Google Scholar sorted by

relevance. Table 2.6 shows the total results of automated search execution in each data

source and the considered results.

Table 2.6: Automated Search Results

Database Search results Considered results

ACM Digital Library 48 48

IEEE Xplore 73 73

ScienceDirect 80 80

Web of Science 56 56

SpringerLink 30,430 200

Wiley InterScience 0 0

Google Scholar 17,100 100

Total 47,787 557
Total after removing duplicates - 532

The end results of the automated search execution are 557 studies to be considered

with 25 duplicates. We then performed primary studies selection on the 532 candidate

studies and all the articles published in the two specialised data sources considered for

manual search; i.e. 51 articles in the Awareness Magazine and 6 volumes (with 12 issues

each) of the Dagstuhl Reports.

2.3.2.2 Selection of Primary Studies

Selection of primary studies was performed using the inclusion and exclusion criteria

(defined earlier in Table 2.2). We used a spreadsheet to collect data related to this stage.

This spreadsheet contains:

 Selection - whether the study is selected or not;

 BibTeX key - a unique key identifying the study for reference;

39

 Title - title of the study;

 Year - publication year;

 I1 - I5 - whether the study fulfils the inclusion criteria;

 E1 - E5 - whether the study fulfils the exclusion criteria;

This step results in 33 selected primary studies.

2.3.2.3 Cross-references Check

Cross-references check was performed on the References section of each selected

primary study. Bibliography data about every cited reference was collected, similar to

the search results. We collected 712 new studies. Then, we performed the same study

selection process as described in section 2.3.1.4. This results in 13 more studies after

removing duplicates. The final set of primary studies includes 46 studies.

2.3.2.4 Quality Assessment

We performed quality assessment check on the 46 collected studies, according to the

criteria defined earlier in section 2.3.1.6. Figure 2.2 shows the number of studies with

different scores for each quality assessment criterion. The results show that researchers

explicitly provide descriptions of the problem they tackle (QA1), report on background

and context (QA2), as well as a description of the research method (QA3). Evaluation of

the research method (QA4) and insights (QA6) are also reported, but not always

explicitly. This reflects that the evaluation of self-aware software systems needs to

receive more attention, as we will discuss in the next section. Not the majority of the

studies reported significant contributions to self-awareness (QA5). This reflects the

need for clear vision and roadmap for self-awareness in the community. Most studies

ignore reporting limitations of the results and threats to validity (QA7). This could

40

reflect some weakness to the studies addressing self-awareness in software systems.

However, reporting the limitations deserves attention, as this should be part of any

research study.

Figure 2.2: Quality Scores for the Primary Studies

The results of the quality assessment show that the average quality score is 4.54. The

number of studies with respect to different score ranges is shown in Table 2.7. The

quality score for the majority of studies (33 studies) ranges between 4.0 and 6.0 with an

average of 4.71. A small percentage of studies highly scored with an average of 6.6 and

another small percentage had a score of 3.5 or lower with an average score of 2.56.

Table 2.7: Quality Assessment Total Results

 Number of studies Percentage Mean score

score ≥ 6.5 5 17.4 6.6

score 4.0-6.0 33 71.7 4.71

score ≤ 3.5 8 10.9 2.56

Average QA score 4.54

45
41 41

13

25

11

5
0

3 2

15 15 17

4
1 2 3

18

6

18

37

0

10

20

30

40

50

QA1 QA2 QA3 QA4 QA5 QA6 QA7

N
u

m
b

e
r

o
f

st
u

d
ie

s

QA Criteria

score 1 score 0.5 score 0

41

Generally, the mean quality score of the majority of studies ranging between 4.0 and

6.0 could be attributed to the quality criteria that were scored low for a large number of

studies. These include the lack of strong evaluation (QA4), reporting on future insights

(QA5), and reporting on limitations and threats to validity (QA7).

2.3.2.5 Data Extraction

Finally, we performed data extraction and synthesis on the primary studies. For each

study, data items defined earlier in section 2.3.1.7 were extracted and recorded in a

spreadsheet.

2.3.2.6 Data Synthesis

We constructed a thematic map from the data extracted from the primary studies. The

thematic map is depicted in Figure 2.3. Further results of data synthesis and analysis are

reported in the next section with respect to each of the SLR research question.

Figure 2.3: Thematic Analysis of Self-Awareness in Software Engineering

42

2.3.3 Reporting the Review

In this section, we present an overview of the selected studies, as well as the findings

and answers to the SLR research questions.

2.3.3.1 Overview of Primary Studies

This section describes the primary studies with respect to their publication types and

year. Research communities that are active in the field of self-awareness are also

presented.

All the primary studies were published in journals, conferences or seminal books

that belong to well-established data sources in the software engineering community, as

defined in the search strategy in section 2.3.1.3. Most of the studies fulfilled the criteria

for quality assessment above average as described in section 2.3.2.4. These represent

the degree of high quality and potential impact of the selected studies and provide

confidence in the overall quality of the systematic review.

Publication Types As shown in Figure 2.4, a significant number of studies were

published in conference proceedings (63%), followed by a smaller number of

publications (19%) in journals. A limited number of publications were published as

book chapters (9%) and technical reports (11%). Ideas and solutions are still being

proposed in conferences, and some of them have matured and reported through

journals and books. This indicates that research in this area is still considered maturing.

The presence of a number of technical reports reflects the transition between research

and practice, as well as the technical work done in this area.

43

Figure 2.4: Distribution of Primary Studies over Publication Types

Publication Years Checking the distribution of publications over years as shown in

Figure 2.5, it is noticed that the interest on self-awareness has started on 2005, with the

exception of very few studies scattered over years starting 1997. As defined in the

search strategy in section 2.3.1.3, we did not set filters on the publication year, yet the

time frame of the studies reflects the time frame of interest and advancements in self-

awareness. Following the year of 2005, the number of publications is increasing, though

it is not constant increase over years. Note that the search process has covered only

publications for the first two quarters of 2016. The increase in the number of

publications indicates that self-awareness has taken its place as the next property

among self-* properties, as self-adaptivity and software systems are becoming more

complex.

63%

17%

9%

11%

Conference Paper

Journal Article

Book Chapter

Technical Report

44

Figure 2.5: Number of Publications per Year

Active Research Communities To identify the active research communities within

the area of self-awareness, we look at the affiliations that appeared in the publications.

Table 2.8 summarises the active research communities (with at least two publications in

self-awareness) along with the number of publications. Publications are mostly

dominated by University of Birmingham UK, University of Modena and Reggio Emilia

Italy and Polytechnic University of Milan, Italy (note that we follow the authors’

affiliations as appeared at the time of publication, and some studies appear multiple

times under different affiliations).

Table 2.8: Active Research Communities within Self-Awareness

Affiliation Number of studies

University of Birmingham, UK 9

University of Modena and Reggio Emilia, Italy 7

Polytechnic University of Milan, Italy 5

Karlsruhe Institute of Technology, Germany 3

Massachusetts Institute of Technology, USA 3

Irish Software Engineering Research Centre, Ireland 3

University of Oslo, Norway 2

Volkswagen AG, Germany 2

Aston University, UK 2

University of Würzburg, Germany 2

Vienna University of Technology, Austria 2

1
0 0 0

1
0 0

1

5

0 0

2

0

5

9

3 3

8
7

1

0

2

4

6

8

10

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

N
u

m
b

e
r

o
f

st
u

d
ie

s

Year of publication

45

Analysing the demographic distribution of the researchers by their affiliation

countries, Figure 2.6 illustrates the distribution of this analysis. This shows that self-

awareness research is receiving the highest attention in Italy, USA, UK, and Germany.

Figure 2.6: Distribution of Publications by Affiliation Country

2.3.3.2 Defining and Characterising Self-Awareness in Software Engineering

(Q1)

This question looks at the definition of self-awareness as provided in the primary

studies. We found that there is no general agreement on the definition of the

computational self-awareness. Some authors provided an explicit definition for self-

awareness based on how they view this concept in software engineering or computation

in general. Others used the term interchangeably with the term ‘self-adaptive’, i.e.

according to their view, a self-aware system is a self-adaptive system and vice versa.

Table 2.9 lists the explicit definitions of self-awareness found in the primary studies.

UK
20%

Germany
14%

Austria
7%

Switzerland
5%

Ireland
5%

Norway
3%

Italy
21%

USA
21%

Japan
1%

Taiwan
1%

Sweden
1%

China
1%

Other
4%

46

Table 2.9: Definitions of Self-Awareness

Study Definition

[51] “Self-awareness is the ability of an element to autonomously detect deviations in its

behaviour that are meaningful.”

[52] “Systems are self-aware if they have an information subsystem which generates an

adaptive self-model of the system providing reference for identity check

communications. In other words, self-awareness implies the evolution of an

information sub-system in the first place, and evolution of particular properties of this

information subsystem.”

[53] “Self-awareness is information contained in a system about its global state that feeds

back to adaptively control the system’s low-level components.”

[54] “By self-awareness I am referring to an awareness of one’s own thought processes

along with the insight that those thought processes can be captured, conceptualised,

and named — and when applied to software, externalised as code.”

[55] “Self-aware computer systems will be able to configure, heal, optimise and protect

themselves without the need for human intervention.”

[56] “A self-aware Cloud market is a market has the ability to change, adapt or even

redesign its anatomy and/or the underpinning infrastructure during runtime in order

to improve its performance.”

[13] “To be Self-Aware a node (component of a software system) must contain total

information about its internal state along with enough knowledge of its environment

to determine the current state of the system as a whole. It may either be focused on its

own state or the environments state at any time, but not both at once.”

[57] “By self-awareness, we mean the ability of each node in the Cloud infrastructure to

monitor the level of compliance to SLAs associated with the tasks under its control.”

[58] A component or an ensemble of components is self-aware if it is “able to recognize

the situations of their current operational context requiring self-adaptive actions.”

[59] “Awareness is a product of knowledge and monitoring.”

[60] “The SOTA model identifies an n-dimensional virtual-state space in which the execution

of a system situates. In the SOTA space, a system is self-aware if it can autonomously

recognize its current position and direction of movement in the space, and self-

adaptation means that the system is able to dynamically direct its trajectory.”

[61] A self-aware computational node is defined “as one that possesses information about

its internal state and has sufficient knowledge of its environment to determine how it is

perceived by other parts of the system.”

[62] A self-aware system is defined as “a system has detailed knowledge about its own

entities, current states, capacity and capabilities, physical connections and ownership

relations with other (similar) systems in its environment.”

[63] “A system that can be called aware should be able to sense or store at least some

information about its environment or itself.”

47

Besides the definitions in Table 2.9, some research works ([64] and [65]) intended to

characterise a self-aware software system using a set of sub-properties and they

provided more comprehensive definitions.

According to [64], “To be self-aware a node must:

 Possess information about its internal state (private self-awareness).

 Possess sufficient knowledge of its environment to determine how it is perceived by

other parts of the system (public self-awareness).

Optionally, it might also:

 Possess knowledge of its role or importance within the wider system.

 Possess knowledge about the likely effect of potential future actions/decisions.

 Possess historical knowledge.

 Select what is relevant knowledge and what is not.”

According to [65], self-awareness is considered by “the combination of three

properties that a system should possess:

 Self-reflective: Aware of its software architecture, execution environment, and

hardware infrastructure on which it is running as well as of its operational goals,

 Self-predictive: Able to predict the effect of dynamic changes (e.g., changing service

workloads) as well as predict the effect of possible adaptation actions (e.g.,

changing system configuration, adding/removing resources),

 Self-adaptive: Proactively adapting as the environment evolves in order to ensure

that its operational goals are continuously met.”

48

We extracted the different aspects and characteristics of self-awareness from the

definitions cited above. We, then, analysed these definitions to show how each of the

definitions found in the primary studies characterises self-awareness and how

comprehensive they are. The characteristics are defined as follows:

 Domain-specific: determines whether the definition is restricted to the problem

domain or is general to cross-cut different domains.

 Behaviour: determines whether the definition considers the behaviour of the

system implicitly or explicitly.

 Knowledge: determines the aspects that the definition considers regarding the

treatment of the knowledge, i.e. at a coarse- or fine-grained level. Fine-grained

knowledge treatment means that the knowledge is structured into levels, which

allows for different levels of adaptation. On the contrary, coarse-grained

knowledge treatment does not consider such structure.

 Internal State: determines how the definition considers modelling the internal

state of the system; implicitly or explicitly.

 Environment: determines how the definition considers modelling the

environment state of the system; implicitly or explicitly.

 Adaptation time: determines what type of adaptation is supported by the self-

aware system (according to the definition) in terms of the time to perform the

adaptation; reactively (reacting to the incident after detecting it) or proactively

(attempting to avoid the occurrence of an incident).

Table 2.10 shows the analysis of the definitions. It is worth noting here that the

absence (declared using ‘-’) of any of the characteristics in this table does not mean that

49

the corresponding work does not support that characteristic. It means that the definition

or characterisation of self-awareness in that work does not explicitly mention that

characteristic. That is, in such cases, inconsistency between the work and the definition

may exist.

Table 2.10: Analysis of Self-Awareness Definitions

Study

Aspects of Self-Awareness

Domain Behaviour Knowledge Internal

State

Environment Adaptation

time

[51] General Explicit Coarse Explicit - -

[52] General Implicit Coarse Implicit - -

[53] General Implicit Coarse Explicit - -

[54] General Implicit Coarse Implicit - -

[55] General Implicit Coarse Implicit - -

[56] Cloud Implicit Coarse Explicit Explicit -

[13] General Implicit Coarse Explicit Explicit -

[57] Cloud Implicit Coarse Implicit - Reactive

[58] General Implicit Coarse Implicit - -

[59] General Implicit Coarse Implicit Implicit -

[60] General Implicit Coarse Implicit - -

[61] General Implicit Coarse Explicit Explicit -

[62] General Implicit Coarse Explicit Explicit -

[63] General Implicit Coarse Explicit Explicit -

[64] General Implicit Fine Implicit Explicit -

[65] General Explicit Coarse Explicit Explicit Proactive

It is notable from the surveyed literature that there is no comprehensive definition

that covers all aspects of self-awareness. It is also worth to note that there is no unified

distinction between self-aware and self-adaptive systems. Based on the studies

considered in this review, most of the researchers use the two terms interchangeably.

Among the studies considered in this review, the works of [64] and [65] are the only

works that have clearly differentiated between the two terms. Both of them view self-

aware systems as a sub-category of self-adaptive systems. The former considers a self-

50

adaptive system to be self-aware if the system defines multi-levels of knowledge

modelling and representation and correspondingly supports different levels of self-

adaptation. The latter considers the self-adaptive system to be self-aware if the system

supports proactive adaptation.

It is also noteworthy that the majority of the definitions mention explicitly the act of

obtaining knowledge. This indicates that knowledge management is central to self-

awareness. However, more attention should be given to the in-depth knowledge

acquisition and dynamic knowledge management, which will distinguish self-awareness

systems from self-adaptive systems.

Based on the above, we propose the following definition of self-awareness in

software systems; adapted from the definitions and characterisations of [64] and [65]:

A software system is self-aware if it:

 possesses knowledge about its internal state and its environment,

 supports fine-grained knowledge management,

 able to capture the performance patterns of its components (internal and external),

 supports both autonomic reactive and proactive adaptation at different levels, and

 is able to predict the likely effect of the adaptation actions/decisions.

2.3.3.3 Motivation and Inspiration for Employing Self-Awareness (Q2)

This question looks at the motivation that derived the studies in employing self-

awareness, as well as what inspired the self-awareness engineering process.

The majority of studies have clearly identified the motivation behind having self-

awareness as a capability in software systems. Extracted from all studies, we have found

51

that the general motivation that has directed researchers towards self-awareness is the

complexity, heterogeneity, scale of modern software systems, evolving functionality and

quality requirements during run-time, emergent behaviours, and unpredictable changes

in the highly dynamic operating environment [66] [67] [61] [68] [63].

More specifically, the motivation of employing self-awareness in software systems

varied between a general one related to realising better autonomy for software systems

and others that are more specific. With respect to the former, researchers considered

self-awareness for: (i) reasoning and engineering better adaptations with guaranteed

functionalities and quality of service during runtime [52] [69] [38] [64] [60] [66] [70]

[71] [72] [73] [67] [63] [74], (ii) managing complex systems without human

intervention [40] [75], (iii) dealing with real-world situations, operational contexts and

dynamic environments of modern software systems to respond to such fluctuating

environment and associated uncertainty [76] [66] [58] [77] [68] [63] [78], (iv)

managing complex trade-offs arising from adaptation conflicting goals [79] and the

heterogeneity of the system [61], and (v) realising intelligent software systems with

sophisticated abilities [53] [64] [80] [59].

Specific motivations varied between domain-specific according to the software

paradigm (e.g. ubiquitous applications, pervasive services, cloud-based services) and

others driven by software engineering practices (e.g., formal specification, performance

management, data access). Table 2.11 summarises these motivations.

Unlike in the case of motivation, a few number of studies have clearly identified their

source of inspiration in engineering self-awareness. Generally, nature and sciences

inspired from nature are the main sources of inspiration in all studies. Examples of

52

Table 2.11: Specific Motivations of Using Self-Awareness

Study Motivation

Driven by Software Paradigm

[81] Autonomous adaptations of hardware/software functionalities in

ubiquitous computing applications to meet the dynamic requirements of

various environmental situations and provide better QoS

[56] Creating cloud markets platforms with self-* properties harmoniously

working together in order to be able to adapt effectively to dynamic changes

in user requirements, services, and variability in resources.

[82] Modelling integrated pervasive services and their execution environments,

in a way that diverse issues of context-awareness, dependability, openness,

flexible and robust evolution, can be addressed

[83] The need for runtime self-adaptive interactions between pervasive

computing services

[84] Achieving parallelism within a reasonable cost and time range for data

streaming applications operating in distributed environments

Driven by Engineering Practices

[85] The motivation of including the notion of self within object-oriented formal

specification languages is to facilitate reasoning about object interaction.

[51] The detection of anomalies in the functioning of internet-based services and

fault localisation (i.e., locating the responsible sub-services) is easier if

service elements are aware of their own health status, determined by

whether the current observed behaviour is consistent with expectations.

[86] The need to access distributed and dynamic high-dimensional data about

resources heterogeneity in a timely fashion in large, decentralised, resource-

sharing environments

[54] The invention of new abstractions as conceptualisation necessary to

determine the behaviour of a software needed by users and the

implementation details.

[87] Enabling change at run-time for evolution purposes

[88], [89],

[65]

The need to predict the performance of running services at run-time and

related resources management.

[55] Balancing resources usage in order to improve performance, utilisation,

reliability and programmability

[68] Solving problems caused by QoS interference in shared resources

environment to achieve auto-scaling for cloud-based services

[19] The complexity of managing end-to-end application performance

nature’s inspiration include: biological systems [52] [53] [64], natural ecosystems [55]

[82] [83] and human beings [52] [54] [80]. Sciences inspiring self-awareness are control

53

theory [38], biology [64], psychology [13] [66] [61] [18] and cognitive science [64].

Table 2.12 summarises inspirations cited in primary studies.

Table 2.12: Source of Inspiration for Engineering Self-Awareness

Study Inspiration

Inspiration from Nature

[52] biological cell and the system of a human organisation (e.g., a

company or government department)

[53] biological systems: the immune system and ant colonies

[54] human beings

[55] biological organic nature

[80] human wisdom

[82], [83] natural ecosystems

Inspiration from Sciences

[38] Control Theory

[64] Biology and cognitive science

[66] Psychology, philosophy and medicine

[13], [61], [18] Psychology

Within the studies mentioning their source of inspiration, we have found that the

majority of studies named only their source of inspiration. More details, albeit in an

abstract form, on how self-awareness approaches are inspired by nature or sciences are

found in a few number of studies; such as [52] [53] [80] [13] [66] [83]. The exception

that could be found is [64], where the authors have explicitly mentioned how self-

awareness have been inspired from biology and cognitive science. The mapping

between the source of inspiration and the research work conducted in the study is

expected to be clearly communicated. Further, studies investigating how self-awareness

could be inspired from nature and other sciences can help advance self-aware software

systems.

54

2.3.3.4 Software Paradigms and Engineering Practices Realising Self-

Awareness (Q3)

This question looks at the software paradigms that employed self-awareness and the

software engineering practices that realised it.

Regarding the software paradigms found in the primary studies, we have found that

the majority of studies considered self-awareness for autonomous computing; i.e.

engineering self-adaptive software systems as a general software paradigm. Service-

oriented systems and cloud-based services also received attention in a good number of

studies, and less attention to ubiquitous computing. Regarding distributed systems,

some studies considered a certain type of applications operating in decentralised

environments; such as artificial intelligence systems [53], distributed smart cameras

[66] [18]. Single works focused on software-intensive systems [59], and stream

programming [84]. Table 2.13 summarises software paradigms found in the studies

(note that some studies appear multiple times under different categories, which

interprets the total number of studies appearing in the table is greater than the number

of primary studies).

Table 2.13: Software Paradigms Employing Self-Awareness

Software Paradigms Studies

Self-adaptive software systems [90], [69], [52], [54], [87], [55], [38], [80], [79], [60],

[66], [70], [75], [67], [73], [72], [62], [63], [19]

Service-oriented Systems [51], [15], [88], [58], [77], [29], [65], [74]

Cloud-based services [89], [56], [57], [66], [61], [18], [68], [78]

Distributed Systems [86], [53], [66], [71], [18]

Ubiquitous Computing [76], [81], [64], [82], [83]

Software-Intensive Systems [59]

Stream Programming [84]

55

Figure 2.7 shows the number of studies by software paradigms. The observation that

the majority of the proposed work tends to be generic and not explicitly designed for a

particular paradigm or application type implies that generality can come with

advantages and disadvantages. Generality can imply application and evaluation of the

proposed work under different contexts and applications, reflection on their strengths

and weaknesses in dealing with the said paradigm. This can consequently provide inputs

for further improvements and extensions. On the other hand, employing self-awareness

can take simplistic assumptions, or tend to be limited when addressing the

requirements of some paradigms, where speciality and customisation are desirable for

more effective adaptations. Self-awareness that considers characteristics of particular

software paradigms will result in advancing these paradigms. Yet, the validity of these

observations can be subject to further empirical studies.

Figure 2.7: Distribution of Studies by Software Paradigms

With respect to the software engineering practices that addressed self-awareness,

Table 2.14 summarises practices found in the primary studies. The results reflect that

40%

17%

17%

11%

11%

2% 2%

Self-adaptive software systems

Service-oriented Systems

Cloud-based services

Distributed Systems

Ubiquitous Computing

Software-Intensive Systems

Stream Programming

56

architecture design is the practice that most contributed in realising self-awareness, as

well system design and engineering adaptations. A number of studies also contributed in

realising self-awareness for QoS resources management (with some explicitly focusing

on performance), system specification (including formal methods), as well as knowledge

representation and reasoning. Operation management during runtime and service

composition also received some attention. Single research efforts also considered

various practices; such as system development for stream programming [84] and

language semantics for Object-Z [85]. These studies are domain-specific, which

interprets their minimal number.

Table 2.14: Engineering Practices Realising Self-Awareness

Engineering Practices Studies

Architecture design [51], [90], [81], [38], [60], [70], [77], [61], [18],

[78]

System design [76], [53], [73], [72], [65], [19]

Engineering adaptations [87], [79], [66], [71], [83], [63]

QoS and resources management [88], [89], [57], [75],

[68]

System specification [54], [67], [74]

Knowledge engineering [86], [80], [62]

Operation management [82], [56]

Service composition [58], [29]

System development [84]

Language semantics [85]

Meanwhile, some studies investigated the concept of self-awareness in software

engineering. For instance, the works of [69] [13] [64] [58] reviewed the concept of self-

awareness and its applications in computing systems. Other studies presented

roadmaps for realising self-awareness in software systems [52], developing sustainable

systems [40] and software-intensive systems [59], as well as realising service

57

composition [58] and enabling change and evolution [87]. The work of [55] discussed

related technologies for enabling self-awareness. Though these studies did not explicitly

consider certain engineering practices, yet they are contributing in formalising the

concept of self-awareness and guiding the research community. Figure 2.8 shows the

number of studies by engineering practices (also note that some studies appear multiple

times under different categories, which explains why the total number of studies

appearing in the figure is greater than the number of primary studies).

Figure 2.8: Distribution of Studies by Engineering Practices

2.3.3.5 Approaches for Engineering Self-Awareness (Q4)

Engineering self-awareness aims for encoding self-aware properties within the software

systems in an attempt to provide systematic treatment for managing the software

system state, knowledge, and execution environment. This question looks for the

approaches that have been used to engineer self-aware software systems and

categorises these approaches.

4

6

10

6

6

5

3

3

2

2

1

1

0 2 4 6 8 10 12

Reviews

Roadmaps

Architecture design

System design

Engineering adaptations

QoS and resources management

System specification

Knowledge engineering

Operation management

Service composition

System development

Language semantics

Number of studies

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g
 P

ra
ct

ic
e

s

58

In literature, different approaches for engineering self-awareness in software

engineering are found. On one hand, we have observed that 8 out of the 46 primary

studies did not provide any engineering approaches for self-awareness in software

engineering. These works have presented visions, outlined challenges, and raised

questions. On the other hand, the remaining 38 studies claimed to provide engineering

approaches for self-awareness. We have categorised these approaches into model-

driven, architecture-centric, programming-driven, knowledge-representation, and

development lifecycle-based approaches. Table 2.15 lists the engineering approaches

categories and their related studies.

Table 2.15: Engineering Approaches and Related Studies

Engineering Approach Studies

Model-driven [88], [89], [56], [60], [65], [74], [63], [19]

Architecture-centric [51], [90], [76], [55], [81], [38], [82], [57], [79], [58],

[66], [70], [75], [77], [29], [61], [73], [72], [18], [83],

[68], [78]

Programming-driven [85], [84]

Knowledge-representation [86], [80], [59], [62], [67]

Development lifecycle-based [71]

Figure 2.9 shows the distribution of studies with respect to the classification of

engineering approaches. Architecture-centric and model-driven approaches are found

the most dominant approaches in the current literature. Other categories of approaches

have taken less attention in the research community.

59

Figure 2.9: Distribution of Studies by Engineering Approaches

Model-driven approaches In general, the model-driven approaches attempt to

create abstract models that represent the software system and its execution

environment [91]. In dynamic systems, environments are characterised by changing

behaviours and a demanding need for self-adaptation. This calls for runtime model-

driven approaches [92] which capture the runtime system state, in order to help the

system to decide when and how to adapt to accommodate changes.

In the literature of self-aware software systems, few model-driven approaches have

been proposed. In [56], the authors have proposed a model-driven monitoring

methodology to enable self-awareness in cloud platforms. The methodology presents a

model for mapping the low-level metrics to the cloud market goals, in order to evaluate

the performance of the goals. The work of [74] has presented a model for expressing

self-adaptive behaviour of service-oriented applications using the SCA-ASM modelling

language [93]. This extension of the SCA-ASM offers mechanisms to monitor the

environment and the system itself and to perform adaptation actions. In [63], authors

58%
21%

13%

5%

3%

Architecture-centric
approaches

Model-driven approaches

Knowledge-representation
approaches

Programming-driven
approaches

Development lifecycle-
based approaches

60

have introduced a novel graphical language, namely, Extended Behaviour Trees (XBTs),

for modelling adaptive and self-aware agents. The approach introduces a new

reinforcement learning strategy that allows the interleaving of reasoning, learning and

actions.

The works of Kounev et al. [88], [89] and [19] have taken the model-driven self-

aware systems a step further by introducing the dynamic performance models as a

‘mind’ that controls a self-aware system. Such models enable predicting changes in the

system workload and the execution environments leading to proactively adapting the

system in order to avoid the requirements violation. In [65], the authors designed the

Descartes Modelling Language (DML) as a tool for modelling QoS and resource

management aspects of self-aware systems.

Architecture-centric approaches The architecture-centric approaches

introduce reference architectures for representing the system’s design decisions and

constraints [94]. In general, the architecture-centric approaches have similar design

trends, i.e. they consist of the following five components (which are basically the MAPE-

K [7] or extended versions of the MAPE-K) [95]. The architectural framework proposed

by [18] brings forward the MAPE-K by extending the knowledge modelling component,

to enrich the self-adaptation capabilities by adopting the computational self-awareness

principles. Inspired by the concept of self-awareness in Psychology, the architecture

introduces five levels of self-awareness:

 Stimulus-awareness: This level is related to the knowledge about the basic events

affecting the system. It does not support any ability of learning or prediction.

61

Hence, it provides knowledge for basic levels of adaptation, e.g. replacing a failed

service in SOA-based applications.

 Goal-awareness: This level models the knowledge about the goals and objectives

of the system and the extent to which the goals are being achieved.

 Interaction-awareness: This level is able to model the knowledge about the

interactions among the different systems components and the interactions of the

system with the environment. This enables to anticipate of how adaptations

decisions can affect the interacted components and the environment.

 Time-awareness: This level enables modelling the knowledge about the past

performance of the different system components, e.g. the historical performance

of the services in an SOA-based application.

 Meta-self-awareness: This level acts as a ‘brain’ that reasons about the adoption of

any of the other levels of awareness, based on the benefits and overhead of each

of them.

Also, different architecture-centric approaches have been proposed to monitor the

system and environment states to reason about the autonomous adaptation decisions at

different levels; the infrastructure level, the architecture level, or the application level.

The work of [68] is an example of adopting self-awareness in cloud computing at the

infrastructure level, where self-awareness is used in the process of auto-scaling the

physical resources in the cloud based on the changes in the workload. Introducing a set

of quality-driven architectural patterns [78], one of the patterns, namely the Meta-self-

awareness pattern is an example of using self-awareness to adapt at the architectural

level, where an architecture adaptation manager manages the trade-offs between

62

different QoS requirements to switch between different architectural patterns. The work

of [79] is an example of a self-aware architecture-centric approach for adaptation at the

application level, where the approach presents an architectural framework that enables

automatic scheduling of adaptation actions to react to the changes and fluctuations in

the available resources.

In general, the architecture-centric approaches provide conceptual frameworks to

engineer self-awareness. These frameworks are in abstract form and lack the

demonstration of how self-awareness can be concretely and quantitatively achieved.

Furthermore, the majority of these frameworks treat knowledge as a coarse-grained

element, rather than refining the knowledge.

Programming-driven approaches Self-awareness has been rarely

incorporated in an explicit way to propose self-aware programming paradigms.

The work of [84] proposed the inclusion of self-awareness in stream programming

model in which stream data arrive continuously and change dynamically in rate or

content due to the changes in computing resources or communication infrastructure.

The proposed model, called StreamAware, enables dynamic and automatic task

rescheduling, as well as data parallelism in response to the changes of the stream data.

The work of [85] has proposed the inclusion of the notion of ‘self’ in object-oriented

formal specification languages, in order to express the awareness by an object of its own

identity. This results in ‘self-aware’ objects which support the reasoning about object

interaction in object-oriented programming paradigm.

63

Knowledge representation approaches Knowledge representation is a key

activity towards achieving self-aware systems. It enables modelling the acquired

knowledge (whether it is related to the internal system state or the system

environment) that is needed to reason about the adaptation decision making.

Few approaches have been proposed for the knowledge representation in self-aware

software systems. [86] proposed a multi-dimensional access structure, called

Heterogeneity-Aware Distributed Access Structure (HADAS), that can be used in self-

aware systems to make the system’s nodes self-aware by storing reflective information

about its own state, such as processing power, storage, etc. In [80], the authors

introduced an abstract approach for knowledge representation to show that knowledge

can be represented by rule-based models, frames, semantic networks, concept maps,

ontologies and logic. Following this work, an approach for implementing self-awareness

based on the KnowLang framework [96] was later proposed in [59] and [62]. The

framework provides a knowledge base that abstracts some context and a reasoner that

allows for knowledge access in that context. In [67], the authors have introduced the

SCEL (Software Component Ensemble Language), that is an approach for providing

linguistic abstractions for describing the behaviour and knowledge of self-aware

systems taking into consideration the evolution of the system ensembles and

interactions among them. These works address knowledge representation at a coarse-

grain level. They provide less focus on the potential structure of the collected knowledge

and do not explicitly deal with dynamic knowledge management in self-adaptive

systems, which have the effect of limiting the effectiveness of the adaptation.

64

Development lifecycle-based approaches The work in [71] proposed a

general software development life-cycle to engineer self-adaptive systems. The

approach is based on the decomposition of a complex system into service components.

The local awareness of a component informs local adaptive behaviour. Then, a collective

awareness is achieved by grouping the inter-related elementary components into

ensembles to enable communication and knowledge exchange.

2.3.3.6 Evaluation of Self-Aware Software Systems (Q5)

This question investigates the approaches that have been used to evaluate the proposed

self-aware approaches. The question also looks at the evaluation criteria, reported

performance and overhead of the approaches.

Evaluation Approaches We observed that 28 papers out of the 38 (that

proposed engineering approaches) have provided some kind of evaluation for their

approaches. We categorise these approaches into the following categories: analysis-,

illustrative example-, illustrative application-, and simulation-based evaluation. Table

2.16 lists the evaluation approaches categories and their related studies.

Table 2.16: Evaluation Approaches and Related Studies

Evaluation Approach Studies

Analysis [85]

Illustrative example [90] [88] [55] [89] [58] [60] [70] [67] [65] [61] [74]

[63]

Illustrative application [51] [81] [38] [79] [66] [75] [77] [73] [72] [18] [83]

[84] [19]

Simulation [56] [29]

65

 Analysis-based evaluation. The approach presented in [85] has provided an

analysis-based evaluation approach to show how the concept of self-awareness

supports the reasoning about object interaction in object-oriented programming

paradigm.

 Illustrative example. The studies listed under this category have presented case

studies to explore their approaches and validate the applicability of the

approaches. But, they do not provide any measurements related to the

performance of the proposed approaches. For instance, [65] provides examples

to show how their modelling languages can be used to model the self-adaptive

systems. [67] provides examples to show how the proposed knowledge

representation approach can be used to represent the captured knowledge to

reason about the adaptation.

 Illustrative application. The approaches listed under this category have

provided real implementation as an illustrative application of their approaches,

in order to demonstrate the applicability of the approach in real life. However,

the experiments are performed on small-scale cases due to the complexity of

performing large-scale experiments in a real setting. For example, [18] evaluates

the proposed self-aware approach using a cloud-based application that has the

ability to select the adaptation strategy according to the demand of the cloud-

based services at runtime. The illustrative application demonstrates the

adaptation capabilities of the approach. However, the experiments have been

performed using two physical machines with one or two virtual machines hosted

on each of them; a case in which the scale is too small compared to the large scale

of cloud systems.

66

 Simulation-based evaluation. Studies adopting simulation-based evaluation

have provided an experimental evaluation based on simulations featuring large-

scale experiments. Such simulations provide the possibility to perform scalable

and repeated experiments in a relatively fast and inexpensive controlled

environment. However, these approaches still need to demonstrate the

applicability of the approaches in real environments.

Figure 2.10 illustrates the distribution of studies by evaluation approach categories.

The majority of studies have evaluated their work using either illustrative example or

illustrative application. Simulation-based evaluation, featuring scalability, is significantly

less used.

Figure 2.10: Distribution of Studies by Evaluation Approaches

Evaluation Criteria Below, we present the evaluation criteria that have been

used in the mentioned studies, and then we present how each of the approaches

addressed them. Table 2.17 lists the evaluation criteria and the corresponding studies.

46%

43%

7%
4%

Illustrative application

Illustrative example

Simulation

Analysis

67

Table 2.17: Evaluation Criteria and Related Studies

Study Evaluation Criteria Trade-offs

[51] Accuracy -

[38] [79] [75] Accuracy, Efficiency Accuracy, Efficiency

[81] Processing Time -

[56] Number of bids, asks, allocations,

average price, Market revenue

-

[66] Reduction in communication -

[29] Number of violations -

[73] Power efficiency, Execution time Power efficiency, Execution

time

[77] Power Consumption

[72] Lookahead, Latency, Number of

achieved goals

Lookahead, Latency, Number

of achieved goals

[18] Accuracy, Adaptation Quality,

Overhead, Reliability

Accuracy, Overhead

[83] Local resources consumption,

Time performance

-

[84] Performance per Watt -

[19] Number of violations -

Performance The studies listed under the illustrative application and simulation

categories have reported on the performance of the proposed approaches. Though the

motivation behind adopting self-awareness in the proposed approaches is to enrich the

adaptation capabilities and to manage the trade-offs that exist among the different

evaluation criteria, we observed that most of the evaluation approaches do not

demonstrate how the improvements in one or more of the considered evaluation criteria

affected the performance in terms of one or more of the ‘conflicting’ criteria. Also, we

observed that some approaches claim the benefits of their self-aware systems without

comparing their performance with non-self-aware or other self-aware approaches.

68

The approaches presented in [38], [79] and [75] have been evaluated using the

accuracy and efficiency criteria. Accuracy measures the extent to which the actual

performance of the system meets the performance goals. On the other hand, efficiency

reflects the ability to minimise the power consumption while meeting the performance

goal. The results show that the proposed approach has achieved higher accuracy, but

with higher power consumption compared with a static approach. Similarly, [51] has

evaluated the work using the accuracy criteria. They view accuracy as the probability of

detecting email anomaly based on some adaptive measures, such as the mean and

standard deviation of the captured data, which are application-specific evaluation

criteria.

The evaluation of [73] has considered both power efficiency and execution time. The

results highlight that the self-aware solution can achieve low execution time with

minimal power consumption. The work of [77] has also considered power consumption

in the smartphone case study. The results show that applying the self-aware strategies

to activate system components on-demand has reduced the power consumption

compared to a naive non-adaptive method.

The work of [72] has used three evaluation criteria, that are: lookahead that

specifies the planning window in the future, latency that is the time required to finish

planning, and the number of achieved goals. The results show that the larger the

lookahead the higher the latency and the number of achieved goals. However, the above

works do not demonstrate how their self-aware approaches are compared to non-self-

aware (or other self-aware) approaches.

69

In [81], the authors evaluate the performance of their approach in terms of

processing time. The results show that the proposed approach exhibit better

performance compared to a ‘conventional’ approach. The work of [18] has used the

weighted sum of accuracy, adaptation quality, overhead, and reliability, (assuming that

the corresponding thresholds are specified in the Service Level Agreement) to evaluate

the proposed approach. The results show that the weighted sum (called global benefit)

in the self-aware case is higher than the weighted sum in the non-self-aware case. [84]

has evaluated the self-aware approach using the normalised performance (in terms of

computation time) per Watt in the presence of fluctuating input data streams and

compares the self-aware approach with a set of static (non-self-aware) approaches. The

reported results demonstrate that the approach’s ability to adapt to the data stream

fluctuations while keeping the performance per Watt close to the best static approach.

[83] evaluates the approach using the local resource consumption and the time

performance criteria. The paper claims acceptable time performance and resources

consumption with increasing workload. However, the evaluation of these approaches

does not demonstrate how the self-aware approach compare to non-self-aware (or other

self-aware) approaches and does not address other quality attributes that may be

adversely affected.

Simple metrics are found in the works of [29] and [19] that have evaluated their

approaches using the number of violations. The results show that the number of

violation is reduced leading to a more stable state. The work presented in [66] has

considered an abstract quality criterion, namely, communication. The self-aware

scenario results in a reduction of communication between the system objects compared

to the non-self-aware scenario.

70

The evaluation scenario of [56] has considered a number of market-based metrics

(number of bids, asks, allocations, average price, and market revenue) to show that the

proposed cloud-market monitoring model is able to detect sudden changes in the

demand for resources.

In brief, all the approaches show that performance improvements are obtained by

leveraging self-awareness. The criteria used to demonstrate the improvements emerge

from the application scenario domain, i.e. there are no agreed criteria. However, caution

needs to be applied as other quality attributes may be adversely affected.

Overhead In this section, we investigate the overhead resulting from adopting self-

awareness in software systems. Only 7 of the studies have reported on the overhead of

adopting self-awareness. All of them considered overhead in terms of computation time.

[55] reported that the proposed approach is low-overhead without presenting

experimentation results to demonstrate this claim. In [38] [79] and [75], the authors

reported that the overhead of the proposed approach is very low and that the system

can take adaptation decisions in 20.09 nanoseconds. However, other overheads related

to adopting self-awareness, e.g. the overhead of monitoring, registering events and

taking an action, have not been taken into account. [73] reported on the overhead

related to the monitoring component of the approach. The reported runtime overhead is

within 1%-2%, which the authors consider it to be negligible compared to the normal

system’s execution time. [83] reported the overhead of propagating the monitoring

information across a network and stated that the overhead is ‘acceptable’ and limited.

These approaches consider only the overhead of the monitoring activity.

71

The study of [19] has provided a more profound analysis of the overhead. The

authors reported on the overhead of analysing the captured information and forecasting,

as well as the overhead of the adaptation process. They reported that both overheads

depend on the data, configuration settings, the techniques used for performance

forecasting and the application specifications.

In general, leveraging self-awareness in computation will be accompanied by

overhead. The overhead is due to the activities that collectively achieve the self-

awareness, .e.g. monitoring, runtime analysis, knowledge management. Consequently,

reasonable approaches to tackle this issue are generally required.

2.3.4 Discussion

In this section, we summarise the main findings, discuss the implications of the review

on the research community, as well as report on the limitations and threats to the

validity of the review.

2.3.4.1 Main Findings

We conducted this review with the vision of answering the five SLR questions. We

reiterate that answering these five questions provides the background and knowledge

on the literature of self-aware systems. This enables a better understanding of the thesis

research question and informs the development and evaluation of our approach. The

main findings of this systematic review are as follows:

 Q1. There is a growing attention to adopting self-awareness in modern

software systems. The review results show that different research groups are

active in the area of self-awareness. However, there is no common agreement

72

on the definition of self-awareness. Many researchers use the terms ‘self-

aware’ and ‘self-adaptive’ interchangeably. Recent attempts to define self-

aware systems include that a self-aware system should have multi-levels of

knowledge representation and/or should support proactive adaptation. We

attempted to provide a definition which mainly scopes to the case of dynamic

software systems e.g. VC.

 Q2. Motivations for employing self-awareness were found clearly identified in

the studies. Motivations varied between the general purpose of realising better

autonomy for software systems and domain-specific purposes. The sources of

inspiration were mainly nature and psychology, but the mapping between the

self-awareness in software engineering and the source of inspiration is not well

detailed in the majority of studies.

 Q3. Self-awareness was considered for self-adaptive software systems as a

general software paradigm, with few studies focusing on a particular software

paradigm or application type. Architecture design was found the most

contributing software engineering practice in addressing self-awareness, as

well system design and engineering adaptations. In general, although the

paradigms are dynamic and require self-awareness to support self-adaptivity,

they adopt means to limit the effect of dynamics (e.g. SLAs), which limits the

demonstration of the value of self-awareness. In the following chapters, the

thesis attempts to provide a case that better complies with the motivation of

adopting self-awareness in dynamic software systems, e.g. the VC.

 Q4. The approaches for engineering self-aware software systems can be

categorised as model-driven, architecture-centric, programming-driven,

73

knowledge-representation and development lifecycle-based approaches. In

general, we notice that the engineering approaches are abstract and require

concrete developments to realise knowledge management, which is central to

self-awareness. Exceptions from that are the programming-driven approaches,

however, they are domain specific and cannot be generalised. Chapter 5 and 6

present our attempt to provide an architecture-centric approach for realising

self-awareness, which is quantitative in nature.

 Q5. Some of the studies have provided experimental evaluation of the proposed

approaches. In general, the evaluations do not demonstrate the value added by

self-awareness to the adaptation capabilities compared to the self-adaptive

systems. The evaluations also need to report on the overhead accompanied

with adopting self-awareness. The evaluations provided in this thesis show the

added-value along with the overhead of adopting of self-awareness.

2.3.4.2 Limitations and Threats to Validity

The main limitations and validity threats of this review are related to the studies

selection bias, inaccuracy in data extraction and analysis of collected studies.

 Missing relevant studies. The search was based on meta-data (abstract, title,

and keywords) only and might have missed some studies that have considered

self-awareness in software engineering as part of their proposed work, and are

not mentioned this explicitly in the title, abstract and keywords. Though the

meta-data are specified by the authors of the papers, we reasonably rely on how

well the digital databases classify and index papers. Studies have been collected

74

from data sources that are basically academic indexing services. We have not

considered other sources, e.g. companies’ websites that might have addressed

self-awareness in their industry-focused research and might have interesting

findings.

 Studies selection bias. With respect to the selection of the initial studies, we

adopted a set-up to guide the selection process, thus avoiding selection bias. For

example, if the number of search results is more than 100 results, we selected the

first 100 (an exception is the case of SpringerLink data source which treats the

word ‘self-aware*’ as two words, and the results that contain either the word

‘self’ or the word ‘aware*’ were retrieved, which resulted in huge number of

irrelevant results). Such set-up directed the selection based on the search results

rather than only researchers’ knowledge and background.

 Inaccuracy in data extraction. Inaccuracy can be introduced in the data

extraction process due to different reasons, such as the background of the

researcher, the researcher’s subjectivity and the way the authors’ studies used to

present their approaches and findings. Aiming at minimising the inaccuracy in

data extraction, we adopted a strategy for the data extraction process, such that

data extracted from certain studies are double-checked. Also, we had thorough

discussions to eliminate any confusion, which leads us to believe that the effect of

this error is minimal.

2.3.4.3 Implications for Research

The aim of this systematic review on self-awareness in software engineering is to

investigate how current research has adopted computational self-awareness to enrich

75

the self-adaptation capabilities of autonomous software systems. This chapter provides

the first comprehensive review that summarises the relevant literature and reports on

possible gaps. Overall, the review provides a quite representative state of the relevant

literature. The findings inform the research for developing approaches for filling the

gaps (e.g. the attempt presented in the rest of this thesis). The findings can also support

researchers interested in future research for advancing self-aware systems.

2.4 Gaps in Brief

While self-awareness is getting popularity as an enabler for self-adaptation in software

systems, there are issues and challenges that need further considerations. In this section,

we present the main challenges related to the adoption of self-awareness in software

engineering.

 Dynamic knowledge management. Dynamic knowledge management in the

studied self-aware software systems architectures has been given little

consideration; although it is a vital requirement for self-awareness. Most of the

self-aware frameworks address knowledge management at a coarse-grained

level. They do not provide concrete approaches for various representations of the

captured data to extract profound knowledge. We argue that ‘finer’ knowledge

representation can better address the users’ and system’s requirements in the

environments that exhibit uncertainty and dynamism. It can also improve the

quality and accuracy of adaptation. In this context, the knowledge management

approaches should adhere to the separation of concerns principle by providing

the capabilities to dealing with different types of knowledge, e.g. knowledge

related to basic stimuli, historical performance, and interactions among the

76

different entities. Furthermore, the knowledge should be treated as moving

targets that can change and evolve over time. Self-aware systems should be able

to capture the evolution trends and use this information to better inform the

adaptation decisions.

 Evaluating the quality and overhead of self-awareness. As found in the

primary studies, the evaluation of the quality and overhead of self-awareness is

not considered as it should be. The majority of the studies demonstrated the

improvements in quality attributes after employing self-awareness. Meanwhile,

the extent to which this improvement can be accepted has not been tackled. In

other words, the evaluation needs to show the overheads that may accompany

the improvements. Solutions for managing the overhead-quality trade-off are still

required.

2.5 Related Reviews

The SLR presented in this chapter could be treated as the first attempt to provide a

comprehensive overview on self-awareness in software systems. The review addressed

several research questions to investigate the definitions, motivations, and engineering

and evaluation approaches of self-awareness in software engineering. However, in this

section, we briefly present other attempts which can relate to reviewing self-awareness

to some extent.

An early review has been conducted about self-awareness and its application in

computing systems [64]. This work surveyed definitions of self-awareness in biology

and cognitive science. The work also discussed previous efforts that incorporated self-

77

awareness in different computing systems; such as pervasive computing. We have

considered this study among the primary studies of this review. Focusing on context-

awareness, the survey conducted by Baldauf et al. [97] presented common principles

and elements of context-aware software architectures, as well as analysed aspects of

context-aware computing, which may be considered as part of self-awareness.

Reviews from the field of self-adaptive software systems include [10] [98] [33].

Other surveys focused on one of the self-* properties, such as self-protecting [99].

2.6 Summary

The limitations of the self-adaptive systems motivated the researchers to incorporate

self-awareness to enrich the self-adaptation capabilities. This chapter surveyed the

landscape of the self-aware software systems literature. We conducted a systemic

literature review to compile the studies related to the adoption of self-awareness in

software engineering and explore how self-awareness is engineered and incorporated in

software systems. From 532 studies, 46 studies have been selected as primary studies.

We have analysed the studies from multiple perspectives, such as motivation and

inspiration for employing self-awareness, software paradigms and engineering

approaches addressing self-awareness, as well as evaluation approaches.

Results have shown that self-awareness has been used to enable self-adaptation in

systems that exhibit uncertain and dynamic behaviour during their operation. Although

there are recent attempts to define and engineer self-awareness in software

engineering, there is no general agreement on the definition of self-awareness and there

is a lack of distinction between self-aware and self-adaptive systems. Evaluating self-

78

awareness engineering approaches and exclusive mapping with their sources of

inspiration still need to be addressed.

The main findings show that there is a growing attention to incorporate self-

awareness for better reasoning about the adaptation decision making in autonomic

systems. However, many pending issues and open problems still need to be addressed.

The area of self-awareness in software systems demands the development of

approaches for dynamic knowledge management to provide profound knowledge for

enhancing self-adaptation. The approaches have also to provide capabilities for

managing the trade-off between the expected quality and the incurring overhead.

79

80

MOTIVATING SELF-AWARENESS FOR

VOLUNTEER COMPUTING

3.1 Overview

In chapter 2, we identified that the motivation behind adopting self-awareness as a

capability in software systems is the complexity of modern software systems (e.g.

emergent behaviours and unpredictable changes of the operating environment) with the

purpose of achieving better autonomy for software systems. We also identified that one

of the limitations of the current self-aware approaches in software systems is that they

consider environments with limited or controlled dynamism for applying the proposed

self-aware approaches. That is, the dynamism and the related uncertainty of the

considered environment tend to be limited due to some controls (e.g. SLAs). The

application of self-awareness in such environments lessens the illustration of the

claimed benefits of self-awareness. For this reason, we consider the Volunteer

Computing (VC) environment, as a highly-dynamic environment, to illustrate the

engineering of our self-aware approach for dynamic knowledge management, which is

presented in chapters 5 and 6.

81

For the sake of building our motivating scenario, which will steer the presentation of

the rest of this thesis, this chapter introduces the VC environment along with the

representative VC systems. The chapter briefly provides a qualitative analysis of the

adaptation capabilities of the representative VC systems. We also touch on their

approaches for selecting the volunteer hosts. After that, we deduce gaps in those VC

systems.

3.2 Volunteer Computing: Challenges and Characteristics

Volunteer Computing (VC) is an emerging distributed computing paradigm in which

users make portions of their own resources available to others enabling them to do

distributed computations and/or storage [100]. The paradigm is believed to be an

enabler for cost-effective large-scale computation and sharing for storage, leveraging on

spare resources that can be available and idle on the users’ computing devices (e.g. PCs,

laptops, smartphones, etc.). The paradigm has been seen as an alternative for purchasing

resources in large scale projects, where utilising volunteered resources can bring the

benefits of large-scale inexpensive and shared computing and storage [12].

The Grid Computing paradigm has given rise to the development of the early grid-

based volunteer computing platforms, e.g. BOINC [101] and Xtremweb [102]. Such

platforms enabled the volunteers to donate their resources for scientific projects, e.g.

Seti@Home [103], Storage@Home [104], Folding@home [105], and others. Such

projects are characterised by a requirement of large-scale computation and/or storage.

After the emergence of the Cloud Computing paradigms, researchers tended to propose

cloud-based VC platforms, e.g. Cloud@Home [106], Nebula [107], and SocialCloud [108].

82

Such platforms enable the volunteered resources to be offered as services, which

requires less expertise and effort to create the VC projects [108] [109].

In VC the computation/storage units are edge devices controlled by individual users

i.e. volunteers. The availability of those machines and the continuation of providing the

‘promised’ resources depend highly on the ability and/or the interest of the volunteers

[100]. This introduces a challenge of distributing the tasks (i.e. selecting the volunteer

machines) according to not only the capacity of the volunteer machines but also to the

performance of those machines. In addition, the volunteers have heterogeneous

machines with different and varying capabilities, which contribute to the above

challenge. For example, the storage, computational capabilities, and the performance of

a smartphone are very different from a powerful desktop machine. Therefore, the VC

environment exhibits high dynamism, openness, and heterogeneity. Consequently, the

service provision in this environment is accompanied by uncertainty and dilution of

control. To put it more clearly, the provision of resources in VC faces the following

challenges:

 Resources-awareness: The efficient utilisation of the volunteer resources is one of

the greatest challenges of VC. The contributed resources need to be selected (and

in some cases composed) and allocated to users achieving both maximum

utilisation and minimum waste with minimum computation time [12].

 Availability-awareness: the volunteers contribute their resources during the time

intervals in which they do not need these resources, i.e. the volunteered

resources are not available permanently and there is uncertainty related to how

long a volunteer resource will remain available [5].

83

 Dilution of control: As volunteer resources are offered on a voluntary basis by

individuals and organisations willing to participate in the model, VC tends to

exhibit 'dilution' of control increasing the level of uncertainty and the dynamism

of the provision. This is because the volunteered resources can be offered and

withdrawn at any time [29]. The right without the symmetric obligation to

participate in VC makes Service Level Agreements (SLAs) less stringent as when

compared to commercial services.

 Dependability-awareness: based on dilution of control challenge, dependability

information of the volunteer hosts, in terms of the level of providing the

promised resources, should be collected and used in VC allocation approaches.

The use of this information in volunteer resources selection and allocation

enables the selection of more ‘dependable’ resources, leading to more reliable

service provision.

Under these circumstances, the dynamism in the VC environment calls for novel self-

adaptive approaches for dynamically managing the processes of selecting and allocating

volunteered resources. Furthermore, the selection approach should take into account

the volatility of the volunteered resources so that the selection and adaptation decisions

are improved. In cases when one volunteer host cannot satisfy a request, multiple

volunteered resources need to be aggregated. In such cases, volunteer hosts should be

selected based on the extent to which these volunteered resources are able to satisfy the

user’s request, avoiding over-provisioning the resources.

84

3.2.1 Performance Patterns of the Volunteer Hosts

In addition to the dynamism, uncertainty, and heterogeneity characteristics of the VC

environment, another characteristic exists, which is the existence of periodical

performance patterns. In [110] Douceur studied the distribution of the performance of

internet hosts in terms of availability. The reported results show that the internet hosts

availability follows either normal distribution or cyclical behaviour. These results

motivated Lazaro et al. to perform a long-term study on the performance of the

volunteer hosts [5]. The study analysed a large set of traces from 226,208 volunteering

hosts, taken from the SETI@Home real system [103]. The reported results reveal the

presence of periodic patterns in the performance of the volunteer hosts. The patterns

are usually repeated over a certain time period that varies from one volunteer to

another. Such period can be some hours, days, or weeks. Figure 3.1 shows the behaviour

of a subsample of the hosts. The figure shows that periodic performance patterns are

present for many hosts.

L
in

es
 r

ep
re

se
n

t
h

o
st

’ p
at

te
rn

 o
f

av
ai

la
b

il
it

y

 days

Figure 3.1: Trace of A Random Subsample of the Hosts Availability. Source [5].

85

In addition to that, other studies show that the independence assumption on hosts’

performance is not always valid, i.e. hosts performance can be correlated [111] [112]

[113]. In [111] Kondo et al. analysed the performance log files of 112,268 volunteering

hosts, collected from the SETI@Home [103]. The study reported that the performance of

the hosts can be positively or negatively correlated. Furthermore, the study detected

that correlated periodic patterns exist among the volunteering hosts. The authors of

[111] grouped the hosts into 5 clusters as shown in Figure 3.22. (The legend shows the

names of the clusters, which reflect a range from highly-available hosts to the low-

available hosts) The figure demonstrates the existence of the positively and negatively

correlated periodic patterns.

Figure 3.2: Hosts Clustered by Availability. Source [111].

Based on the above, we argue that the awareness of such periodic patterns can

inform the selection, allocation, and adaptation of the volunteered resources. It enables

2 As mentioned in [111] “Cluster cl_low_av does not appear in the figure because it is a vector with only
zeros. However, the hosts in this cluster are those with low availability, not necessarily zero availability”

86

the prediction of the volunteer hosts’ performance, which helps to reason about the

selection and adaptation decisions. We also argue that the awareness of the existence of

correlation enables reasoning on selecting the hosts that exhibit satisfying performance

in the case when the hosts need to interact with each other, e.g. when composed to

satisfy a certain request.

Accordingly, the complexity of the VC environment along with the periodic and

correlated performance patterns of the volunteers stimulate the need for dynamic

knowledge management approaches. Such approaches should provide the capabilities

for representing knowledge at a fine-grained level by structuring the knowledge into

different levels. Each level should address different knowledge concern, e.g. the

periodical patterns, the correlation, the stimuli, etc. Correspondingly, the approaches

should employ the fine-grained knowledge to enrich the self-adaptation capabilities in

the case of VC.

Meanwhile, no doubt that the traces used in the aforementioned studies are useful to

inform on the existence of periodical patterns and correlation in the volunteer hosts’

behaviour. However, it should be taken into account that different volunteers contribute

to different projects. That means the traces collected from one VC project (e.g.

SETI@Home) cannot be used to predict the actual performance patterns of the

volunteers contributing to a different project. Henceforth, knowledge needs to be

captured, represented, and managed at runtime in a way that enables capturing the

performance patterns and the correlated patterns. Moreover, it should be taken into

consideration that the knowledge is evolving and can change over time. That means, the

87

knowledge data points arrive continuously and the knowledge models need to be built

and updated incrementally over the operation time of the VC system.

3.3 Representative Volunteer Computing Systems

In this section, we provide an overview of the current representative VC systems and

assess their properties with respect to the aforementioned challenges. It is worth

mentioning here that the focus of this thesis is not to improve any of the VC systems. The

purpose of presenting those representative VC systems is two-fold, (1) to provide

objective evidence that the VC paradigm can be a representative case to demonstrate the

development related to self-awareness and (2) to investigate how these systems address

the challenges of the VC environment. This overview will inform our scenario that will

steer the development and presentation of the proposed self-awareness framework in

the following chapters.

We assess the characteristics of the VC systems qualitatively using the following

criteria. The reached conclusions are derived qualitatively by close assessment of

seminal papers reporting on the fundamentals of the VC systems themselves and follow-

up related application papers if any:

1. Knowledge representation and management: This criterion determines how

the VC system manages the collected knowledge about the volunteer hosts and

how this knowledge is used to inform the adaptation decisions. The possible

values of this criterion are implicit, explicit, or none.

2. Separation of knowledge concerns: This criterion determines whether the VC

system takes into account the potential structure of the knowledge or not. In

other words, this criterion is to determine whether the VC classifies the collected

88

knowledge about the volunteer hosts into levels or classes where each level is

concerned by a certain type of knowledge, e.g. knowledge about hosts’

interactions, knowledge about hosts’ historical performance, etc. The value of this

criterion is the number of levels.

3. The degree of autonomy: This criterion determines the extent to which the VC

system adapts autonomously without human intervention. The possible values of

this criterion are fully-autonomous, semi-autonomous, or none.

4. Time of adaptation: This criterion determines whether the VC system supports

reactive and/or proactive adaptation.

5. Availability-awareness: As mentioned above, the volunteers contribute their

resources during the time intervals in which they do not need these resources.

That means the resources can be available during certain time intervals, e.g.

hours of a day or days in a week. This criterion determines whether the VC

system considers the availability time intervals or the instantaneous availability of

the volunteer hosts. Possible values are instantaneous or interval-aware.

6. Volunteers’ selection: The selection of the volunteer hosts should consider both

efficient utilisation of the volunteer resources and the performance of the

volunteer hosts. This criterion figures out the criteria used in the representative

VC systems to select the volunteer hosts’ for a certain request.

3.3.1 BOINC

BOINC is the earliest VC middleware [101]. It enables for creating public-resource

computing projects. Through this middleware, users can share their resources and

specify their contributions to the projects. SETI@Home [103] is one of the earliest

volunteer computing projects that use BOINC. It uses volunteered resources to analyse

89

radio signals from space instead of special-purpose supercomputers. Folding@home

[105] project benefits from the huge computational power of volunteered processing

resources to simulate a biological process, the protein folding. Storage@Home [104] is a

project that has been developed to enable backing up, storing, and sharing huge

amounts of scientific results using volunteered storage. Einstein@Home [114] is

designed to search for and analyse gravitational waves, which requires massive

computational power. These projects follow a master-worker computing model in which

a master assigns the computing tasks to the workers and then verifies the returned

results [12]. Users who are willing to provide their resources need to download and

install a client on their machines. The client should be configured to connect the

volunteer’s machine to the project the volunteer wishes to contribute to. Then the client

connects to the project’s servers to request workloads and submit results.

BOINC makes use of application-level adaptation support. Applications can deal with

the dynamism of environment providing their own adaptation capabilities [115].

SETI@Home, as a project running on BOINC, supports ‘task-resubmission’ as an

adaptation technique. If a volunteer host fails while processing a task, the task is sent to

another host [103]. Storage@Home adopts a replication strategy to mitigate data loss in

the cases of hosts’ failures.

Pros

 Adaptation capabilities are application-centric which gives flexibility to the

application developers to implement their own adaptation techniques. However,

SETI@Home is the only application that supports some kind of adaptation.

90

Cons

 In SETI@Home, knowledge representation is implicit and restricted to the

detection of the unavailability of the volunteer host. The system does not model

and store knowledge on the historical volunteers’ performance. Consequently,

there is no separation of knowledge concerns. Also, there is no support for

proactive adaptation.

 In SETI@Home, the efficient utilisation of resources is not considered. The

volunteer hosts’ selection is based on the promise of accomplishing the

computation/storage task, without taking into consideration the over-

provisioning of the volunteered resources and the historical hosts’ performance.

3.3.2 Cloud@Home

Cloud@Home is a volunteer computing project funded by the Italian Ministry of

Education and Research. The project goal is to develop a middleware to manage the

contribution and usage of the volunteered computational and storage resources

allowing creating private volunteer clouds that interoperate with the commercial clouds

in a heterogeneous environment [116]. The Cloud@Home model involves three actors,

Cloud@Home-Provider, Cloud@Home-User, and Cloud@Home-Admin [117]. The Provider

contributes storage and/or computing resources to the system. The Admin sets up and

manages the system. The User submits requests in order to obtain the resources.

Figure 3.3 shows the Cloud@Home system architecture which consists of three main

modules, namely, the Resource Management Module [118] which is responsible for the

provision of the resources to the Cloud@Home user, the Resource Abstraction Module

91

which is responsible for abstracting the heterogeneous resources offered by the

Cloud@Home providers, and the SLA Management Module which is responsible for

negotiating the QoS required by the Cloud@Home users [119].

Figure 3.3: Cloud@Home Architecture. Source [118]

The Cloud@Home system introduces a process for the management of the QoS

required by the users. The process considers only the availability parameter for the QoS

and adaptation management. The process involves the traditional Negotiation,

Monitoring, Recovery, and Termination activities [119]. The SLA manager component in

the SLA management module carries out the negotiation activity when a user submits a

request. During the negotiation activity, the user QoS requirements, in terms of

availability, will be negotiated with the contributing host to determine whether they can

be satisfied or not. The monitoring activity is implemented using MAGDA [120]

approach in the MAGDA component. A MAGDA agent is supposed to run on each

volunteered node. This agent sends periodic status reports to the MAGDA component in

92

the Cloud@Home system. The recovery activity provides the adaptation capabilities

supported by the Cloud@Home. If a MAGDA agent does not send a status report within a

specified period of time, the MAGDA component assumes that the node is no longer

available and sends an alert to the Resource and QoS Manager (RQM) component in the

Resource Management Module. Then the RQM triggers an adaptation action to replace

that faulty node. Then a new MAGDA agent is sent to the newly selected node in order to

monitor its status.

Pros

 The system is fully-autonomous and the adaptive part is separated from the

functional part of the system, making it clear to understand the adaptation cycle.

 The system is availability-aware. The time interval in which the volunteer host is

available is implicitly considered in the negotiation phase.

Cons

 Knowledge representation is implicit and restricted to the detection of the

unavailability of the volunteer host. The system does not model and store

knowledge on the historical volunteers’ performance. Consequently, there is no

separation of knowledge concerns. Also, there is no support for proactive

adaptation.

 The efficient utilisation of resources is not considered. The volunteer hosts’

selection is based on the promise of accomplishing the computation/storage task,

without taking into consideration the over-provisioning of the volunteered

resources.

93

3.3.3 Nebula

Nebula has been proposed to utilise voluntary resource to support data-intensive

applications. The main goal is to take advantage of the geographic distribution of the

voluntary resources by assigning tasks to the close voluntary resources in order to

reduce the data mobility cost [107].

Nebula’s architecture consists of four main components, namely, Nebula Central,

DataStore, ComputePool, and Nebula Monitor [121]. The Nebula Central is the interface

through which volunteers provide their resources and users submits their computing or

storage requests. The DataStore consists of Data Nodes which provide the volunteered

storage and the DataStore Master which makes the data placement decisions based on

the geographic location of the data nodes. The ComputePool consists of the Compute

Nodes which provide the volunteered computation and the ComputePool Master which

schedules the computation tasks based on the request’s requirements and data storage

location. The Nebula Monitor is responsible for monitoring the volunteer hosts’ location

and availability. This information is used in the Data Nodes selection and the tasks

scheduling carried out by the DataStore Master and ComputePool Master. Figure 3.4

shows the Nebula system’s architecture.

Nebula adopts a Ping-Found mechanism in order to keep track of the availability

status of the volunteer nodes. Each DataNode periodically pings the DataStore Master

and each ComputeNode periodically pings the ComputePool Master. Nebula provides two

fault tolerance mechanisms in order to handle the failure of the Data Nodes and the

Compute Nodes. Once a failure is detected a corresponding fault tolerance mechanism is

applied to handle that failure. Data replication is used for the Data Nodes failure cases.

94

Figure 3.4: Nebula System's Architecture. Source [121]

The DataStore Master is responsible for keeping a number of replicas for each data

file. The number is provided by the user. In the case of a Data Node failure, the replicas

are used to restore the lost data. On the other hand, in the case of a Compute Node

failure, the ComputePool master reassigns the execution of the task on another Compute

Node [121].

Pros

 Location-aware resource selection reduces the overhead of data mobility.

 The system is fully-autonomous.

Cons

 Knowledge representation is implicit and restricted to the detection of the

unavailability of the volunteer host. The system does not model and store

knowledge on the historical volunteers’ performance. Also, there is no support

for proactive adaptation.

95

 The system does not consider the time interval in which the volunteer host is

available, it considers only the ‘instantaneous’ availability of the hosts.

 The efficient utilisation of resources is not considered. The volunteer hosts’

selection is based on their geographical location and ‘instantaneous’ availability

without taking into consideration the over-provisioning of the volunteered

resources.

3.3.4 Cloud4Home

The work of [122] proposed the Cloud4Home system which aims at aggregating the

home devices computing resources and the public cloud resources for better storage

service delivery. Each Cloud4Home node maintains a mandatory bin for its storage

needs and a voluntary bin which is the storage made available to the other nodes. The

voluntary bins of all the nodes in the system form the Home cloud. If an application

running on a node needs extra storage to store data, i.e. the mandatory bin is full; the

system stores the data on any of the available volunteer hosts of the home cloud or on

the public cloud according to the policy associated with the application.

The architecture of the Cloud4Home is realised in the VStore++ system which

consists of two domains, the Guest domain and the Control domain, as shown in Figure

3.5. The Guest domain provides the interface for the user’s application that may request

external storage. On the other hand, the Control domain provides the meta-data resource

management layer, which stores the nodes’ identifiers and their available resources, the

actual store and fetch operations for data storage and retrieval, and the interfaces for the

Home cloud and the public cloud.

96

Figure 3.5: Cloud4Home Architecture. Source [122]

The Cloud4Home does not mention any mechanisms to handle the dynamicity of the

environment. The authors left the adaptation issues for future work.

Pros

 Providing real application (VStore++) for leveraging the end devices voluntary

resources for data storage.

Cons

 No handling of the dynamisms of the environment. There is no support for

adaptation and knowledge management.

 Volunteer hosts’ selection is based on their ‘instantaneous’ availability. The over-

provisioning of the storage, the storage composition, and the historical hosts’

performance are not considered to reason about the selection of hosts.

3.3.5 SocialCloud

The authors in [123] outlined their vision of a SocialCloud and defined SocialCloud as a

“resource and service sharing framework utilising relationships established between

members of a social network”. The aim is to use the trust relationships that already exist

97

between members of a social network, e.g. the friendship relation in Facebook, for

resource sharing. The resource contribution in SocialCould can be either for gain or for

no gain, in the latter case it is volunteering [108].

The authors realised the SocialCloud vision as a Social Storage Cloud (SCC) through a

Facebook application. Friends can use the application for storing documents and photos

leading to reduce the burden of infrastructure requirements of the provider. Figure 3.6

shows the architecture of the SCC. Resources contributors register their services

(resources offers) through the Registration and Discovery component. When a user

submits a request for storage the Market Protocol discovers the offered services by

accessing the Registration and Discovery service. The Market Protocol component

implements two gain-based resource allocation protocols, namely, Posted price and

Reverse auctions. Based on the allocation protocol, a list of the available services will be

displayed to the user, and then the user selects one of them. After that, an SLA will be

generated by the Agreement Management component.

The SocialCloud does not mention any mechanisms to handle the dynamicity of the

environment.

Figure 3.6: Social Storage Cloud Architecture. Source [108]

98

Pros

 Utilising trust relationships in social networks encourages users to contribute

resources.

Cons

 No handling for the dynamisms of the environment. There is no support for

adaptation and knowledge management.

 Volunteer hosts’ selection is based on their ‘instantaneous’ availability and on the

promised storage space. The over-provisioning of the storage, the storage

composition.

Table 3.1 summarises the outcome of the comparative analysis.

Table 3.1: Summary of the Analysis of the Representative VC Systems

VC system

Criteria

BOINC Cloud@-

Home

Nebula Cloud4-

Home

SocialCloud

Knowledge

representation

and management

implicit implicit implicit implicit implicit

Separation of

knowledge

concerns

1-level

(unavailability

of hosts)

1-level

(unavailability

of hosts)

1-level

(unavailability

of hosts)

0-levels 0-levels

Degree of

autonomy

fully-

autonomous

fully-

autonomous

fully-

autonomous

non-

autonomous

non-

autonomous

Time of

adaptation

reactive reactive reactive N/A N/A

Availability-

awareness

instantaneous implicit

interval-aware

instantaneous Instantaneous instantaneous

Volunteers

selection criteria

instantaneous

-availability

promised

interval-

availability

instantaneous-

availability

instantaneous-

availability

instantaneous-

availability

99

3.4 Gaps Analysis

From the above, we deduce that

 The selection of the volunteer hosts to serve users’ requests does not take into

account the efficient utilisation of resources. The use of the selection approaches

in the current VC systems can result in major over-provisioning of the resources.

Although optimal resource utilisation in VC is not achievable due to scalability

issues, tangible consideration should be given to the resources allocation in order

to reduce resources waste. In this context, we motivate the need for a novel

selection approach that takes such issue into consideration.

 Until recently, little attention has been given to the issues of autonomy and

knowledge management in the aforementioned VC systems and projects, though

the vitality of them to ‘reliably’ provide resources for large-scale computation

and storage. For example, in SocialCloud and Cloud4Home, there are no means of

dealing with the dynamism of the environment. These systems do not provide

any adaptation capabilities. Other systems, e.g. BOINC, Nebula, and Cloud@Home

provide minimal adaptation capabilities which are limited to replacing faulty

hosts (i.e. volunteer machine) when their unavailability is detected. In these

systems, knowledge management and representation is restricted to the

detection of the faulty volunteer hosts. Those systems do not articulate how the

evolving knowledge on the volunteers’ performance is maintained and used for

informing the adaptation decision making. We argue that ‘finer’ knowledge

modelling is vital for improving the quality of adaptation. The captured

knowledge of self-adaptive systems needs to be treated as ‘moving targets’ that

100

can change and evolve over time. Such fine-grained modelling can capture the

performance patterns and better inform the adaptation. This can consequently

improve the quality and precision of adaptation in VC as a dynamic, open, and

uncertain environment. On the other hand, the overhead of such fine-grained

modelling should be taken into account as high overhead cases will limit the

performance of the system in terms of its ability to satisfy the users’

requirements. Therefore we motivate the need for a framework for dynamic

knowledge management that considers fine-grained knowledge management to

inform the adaptation along with the accompanied overhead in VC.

It is worth mentioning here that these gaps apply to applications that require

concurrent availability of multiple volunteer hosts, as when this is not required these

gaps are not valid.

3.5 Summary

In this chapter, we introduced the VC environment in which users make their resources

available for other users or projects for free. We also introduced the characteristics of

the VC environment that motivate the need for self-awareness with dynamic knowledge

management. We illustrated that the evolving knowledge on the volunteer hosts

performance, which is captured at runtime, needs to be managed and represented at a

fine-grained level. After that, we overviewed the representative VC systems and deduced

the gaps in their adaptive capabilities and volunteer hosts’ selection. As a conclusion of

this chapter, the characteristics of the VC paradigm, which relate to complexity and

knowledge concerns, in addition to the mentioned gaps in the current VC systems self-

101

adaptation capabilities, make VC render itself as a sensible environment for

understanding and improving dynamic knowledge management.

In the following chapters:

 We present our volunteer storage system as a motivating scenario that will steer

the presentation of our self-aware approaches. We propose a utility-based

approach for the selection of the volunteer resources to satisfy the users’ request.

 We propose a self-aware framework for dynamic knowledge management. The

framework supports knowledge representation at multiple levels of awareness

and enables the switching between the different self-awareness levels based on

the state of the system.

 We provide an evaluation of and a comparison between the different awareness

levels.

102

103

SERVICES SELECTION FOR VOLUNTEER

COMPOSITE SERVICES: A UTILITY

MODEL

4.1 Overview

As discussed in the previous chapter, the VC paradigm is a promising paradigm for

utilising volunteer resources for offering cost-efficient cloud-like services over the

Internet. The properties of this paradigm render it as a representative paradigm for

demonstrating the need for understanding and improving knowledge management in

dynamic software systems. Therefore, this chapter develops a representative scenario of

a volunteer storage system, which possesses the mentioned characteristics of the VC

environment and exhibits its dynamic behaviour. The purpose is to utilise this scenario

to demonstrate our attempt in addressing the mentioned gaps of the VC systems (and

open environments in general) which relate to informing the selection and adaptation

decisions through dynamic knowledge management.

104

Meanwhile, the fact that the volunteered resources are very heterogeneous makes

resources utilisation a challenging task. That’s because allocating the volunteered

resources efficiently results in reducing the waste of those resources and hence saving

more resources to serve more requests. Furthermore, composing the volunteer

resources to serve a certain request helps to increase the percentage of satisfied

requests, instead of declining the request if one volunteer host cannot satisfy the

request. However, the selection of volunteer hosts should be carried out efficiently in

terms of the computation time in order to reduce the waiting time of the users’ requests.

In this context, volunteer resources composition and allocation is an important issue to

efficiently utilise the volunteered resources and increase the number of satisfied

requests.

Accordingly, in this chapter, we propose a novel utility model for assessing the

amount of contribution of each volunteer host to satisfy a certain request. Based on the

utility model, we propose a novel greedy-search approach to select the volunteer

resources as composite services to satisfy the users' requests. We also compare our

approach with two basic approaches. The results show that our utility model based

approach provides a systematic way for selecting the volunteer resources more

effectively and efficiently while minimising resources waste when compared to the

other approaches.

4.2 Volunteer Storage As a Service: A Steering Example

Recent works in VC paradigm tend to view volunteer resources as services. For example,

in [109] volunteer computation and storage resources are viewed as cloud services

while in [108] volunteer storage resources are presented as web services. We adopt this

105

trend and specifically look at volunteer storage as a steering example and liken them to

web services (WS). These volunteer storage services provide file manipulation

operations that enable the users to access the physical storage. In this context,

volunteers willing to provide their storage need to publish their service description,

encoded in XML. The service description includes the service metadata, e.g. the amount

of space, the availability period, etc. On the other hand, users need to use the

volunteered storage, submit their requests to the volunteering system which allocates

the volunteer storage, as volunteer service (VS), to the users. In cases when none of the

VSs can satisfy a user’s request, e.g. because the required space is higher than the

available VSs spaces, VSs can be aggregated to form one composite service (CS) that

satisfies the user’s requirements - a practice we term as volunteer service composition

(VSC), which is similar to the Web Service Composition (WSC) in service-oriented

computing [124]. However, some significant differences exist which discriminate the VS

from the classical WS. First, some of the attributes of the VS and WS are used in different

ways. Specifically, the availability of a WS is defined as the probability that the service is

accessible, computed as the total amount of time in which the service is available during

a specified interval [4]. That means the WS is ideally expected to be available 24/7 and

the availability value reflects the quality of the WS in terms of its availability. On the

other hand, the availability of a VS includes not only the ‘instantaneous’ availability but

also the time interval in which the service is available. Accordingly, as we mentioned in

the previous chapter, the VC system needs to consider the time-interval availability of

the volunteer resources before submitting the jobs. In other words, the VS is not

expected to be available 24/7 and the selection of VS for composite service must

consider the availability not only as a ‘quality’ but also as an interval in which the VS is

106

available to satisfy the users’ requests. Second, each WS provides some specific

functionality and these services are interconnected according to some business process

and predefined workflow. For example, an integrated travel planning web service can be

composed of a weather forecast service, a transportation service, and a hotel reservation

service. But in VSs, space amounts should be combined together in specific time

intervals in order to secure a total of required storage during a specific time interval.

Third, WSs are usually provided by commercial providers that offer these services

according to a service level agreement which provides some guarantee with regard to

the quality of service (QoS), especially the availability of the service. On the other hand, a

volunteer can, for example, withdraw her VS whenever she wants which makes the VC

environment more dynamic and the provision uncertain. These differences call for

special selection approaches for VSC.

It is worth mentioning here that the development of the selection approach of VSs for

composition is required to build the motivating scenario that we use to steer the

presentation of the self-aware approaches in the following chapters.

4.2.1 Volunteer Storage Scenario

In this section, we introduce the scenario of volunteered storage which motivates the VS

selection approach. The case assumes a heterogeneous and dynamic environment which

consists of varied computing nodes like PCs, laptops, smartphones, etc. These nodes are

connected via a network. Individual people owning these nodes, known as publishers,

offer their idle storage resources as services through a Volunteer Storage System (VSS)

that adopts the publish-subscribe model. Users who need to use the storage are called

subscribers. Assume a subscriber needs to do some computation and store data

107

temporarily but she has insufficient storage. To overcome this issue, she can explore the

network and search for volunteer storage services to use. If she finds a service offering

the required storage, while satisfying her requirements (e.g. availability, security etc.),

she will request it for her use. Otherwise, volunteer storage services can be composed

together to form a total storage that meets the subscriber’s needs. Figure 4.1 shows an

example in which the subscriber S1 submits a request to search for storage. To make

this volume available to S1, the composer service, named FindSpace4Me, searches the

pool of published services and returns three possible composition strategies:

 First: Using the storage promised by 𝑉𝑆1.

 Second: Composing the storages promised by 𝑉𝑆2, 𝑉𝑆3, and 𝑉𝑆4.

 Third: Composing the storages promised by 𝑉𝑆2 and 𝑉𝑆5.

Figure 4.1: Motivating Scenario - Composition Request of S1

108

Now, which strategy should be selected to satisfy the request? These different

composition strategies could be the result of using different algorithms for generating

the composite services. The design goals for each selection algorithm, e.g. minimising

computation time or maximising resource utilisation, specify which of the strategies will

be selected to serve the request. For example, the availability of sufficient time for

generating all the possible composite services enables the use of an algorithm that finds

the ‘best’ composite service in terms of resource utilisation, e.g. by applying brute force

search. Alternatively, an algorithm that is able to find a sub-optimal composite service

can be applied.

In the following, we define three generic criteria for representing the volunteer

storage services, namely, Storage, Availability Time, and Security. We also provide

formal definitions for volunteer service, subscriber’s request, and composite service.

After that, we propose a new utility-based approach for VS selection and compare it with

two basic approaches, exhaustive search and a novel naïve search.

4.2.2 Formulation of Volunteer Service Selection

In this section, we introduce a set of definitions in order to formulate the problem of

selecting VSs for volunteer composite services.

Definition 4.1 (Service attributes). In the presence of the identical functionality of the

VSs, the services’ attributes are the criteria used to discriminate between services when

a request is submitted. We use three generic attributes for this purpose, namely, Storage,

Availability Time, and Security. However, other criteria can be defined without

fundamental changes to the selection approaches, as shown in the next chapters.

109

 Storage. Given a volunteer service 𝑉𝑆𝑖 , the storage 𝑆𝑡𝑔𝑖 is the volunteered storage

space in Megabytes where 𝑆𝑡𝑔𝑖 > 0.

 Availability Time. Given a volunteer service 𝑉𝑆𝑖, 𝑇𝑖 is the time interval [𝑎𝑖, 𝑏𝑖] in

which 𝑉𝑆𝑖 is promised to be available, where 𝑎𝑖 is the start time and 𝑏𝑖 is the end

time.

 Security. Given a volunteer service 𝑉𝑆𝑖, 𝑆𝑒𝑐𝑖 is the level of security promised at the

volunteer host, where 0 ≤ 𝑆𝑒𝑐𝑖 ≤ 𝑆𝑒𝑐𝑚𝑎𝑥 and 𝑆𝑒𝑐𝑖, 𝑆𝑒𝑐𝑚𝑎𝑥 ∈ ℕ.

With regard to the promised security level of a voluntarily contributed service, this is

interpreted as follows. The security level indicated by the volunteer represents, ideally,

the extent to which the volunteer’s machine complies with the standard security

guidelines and best practices [125]. Such compliance is essential as securing the VC

system against the different security attacks is premier to efficiently utilise the

voluntary resources. In the scope of this thesis we select simple guidelines in order to

show how the security level can be specified by the volunteers, which are as follows:

- Level 0: no security promised.

- Level 1: the machine operating system is up-to-date and the system’s latest

security configurations are installed.

- Level 2: Anti-virus software is installed and up-to-date on the machine.

- Level 3: A comprehensive internet security software installed and up-to-date on

the machine.

110

Definition 4.2 (Volunteer service). A volunteer service 𝑉𝑆𝑖, is a 3-tuple (𝑆𝑡𝑔𝑖 , 𝑇𝑖, 𝑆𝑒𝑐𝑖)

where 𝑆𝑡𝑔𝑖 is the volunteered storage space, 𝑇𝑖 is the time interval [𝑎𝑖, 𝑏𝑖] in which the

𝑉𝑆𝑖 is promised to be available, and 𝑆𝑒𝑐𝑖 is the service’s promised security level. A

service repository (SR) is a set of disjoint volunteer services. We denote a SR with 𝑛

services as 𝑆𝑅 = {𝑉𝑆1, 𝑉𝑆2, . . . , 𝑉𝑆𝑛}. In the rest of this thesis, we denote 𝑆𝑡𝑔𝑖 , 𝑇𝑖, and

𝑆𝑒𝑐𝑖 as the attributes of the service or the quality of the service. Figure 4.2 shows a

graphical representation of a VS.

Figure 4.2: Volunteer Service Representation

Definition 4.3 (Subscriber’s request). A subscriber’s request 𝑅 is a 3-tuple (𝑆𝑡𝑔𝑅 , 𝑇𝑅 ,

𝑆𝑒𝑐𝑅), where 𝑆𝑡𝑔𝑅 denotes the required storage, 𝑇𝑅 = [𝑎𝑅 , 𝑏𝑅] is the required time

interval in which 𝑆𝑡𝑔𝑅 is required, and 𝑆𝑒𝑐𝑅 is the required security level where 0 ≤

𝑆𝑒𝑐𝑅 ≤ 𝑆𝑒𝑐𝑚𝑎𝑥 and 𝑆𝑒𝑐𝑅 , 𝑆𝑒𝑐𝑚𝑎𝑥 ∈ ℕ. Figure 4.3 shows a graphical representation of a

request.

Figure 4.3: Storage Request Representation

Definition 4.4 (Requests queue). When a subscriber submits a request and the system

is busy, the request is queued in a priority queue. Once the system becomes available

111

and the queue is not empty, a request is selected according to the Smallest-size Job First

(SJF) policy. The request size is defined as:

𝑠𝑖𝑧𝑒 = 𝑠𝑡𝑔𝑅 × |𝑇𝑅|

where 𝑠𝑡𝑔𝑅 is the required storage in megabytes and |𝑇𝑅| is the length of the required

time interval in hours. The queueing model can be viewed as an M/M/1 model

(according to Kendall’s notation [126]) where:

 The requests arrival process follows a Poisson process with an arrival rate λ.

 The serving time (the time required to find a composite service which satisfies the

request) has an exponential distribution with a serving rate µ, where 1/µ is the

average serving time.

 There is one server that generates the composite services.

 The sequences of the requests inter-arrival times and the serving times are

independent.

Definition 4.5 (Composite service). Given a subscriber’s request 𝑅 and a service

repository 𝑆𝑅, a Composite Service 𝐶𝑆 is a set of VSs, {𝑉𝑆1, 𝑉𝑆2, . . . , 𝑉𝑆𝑘}, such that the

following constraints are satisfied (denoted as 𝐶𝑆 ⊢ 𝑅):

 𝑉𝑆𝑖 ∈ 𝑆𝑅, 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛

 ∑ 𝑆𝑡𝑔𝑖
𝑘
𝑖=1 ≥ 𝑆𝑡𝑔𝑅 , at any time instant in [𝑎𝑅 , 𝑏𝑅].

 𝑎𝑅 ≥ 𝑚𝑖𝑛[𝑎𝑖] and 𝑏𝑅 ≤ 𝑚𝑎𝑥[𝑏𝑖] ∀ 𝑉𝑆𝑖 ∈ 𝐶𝑆.

Figure 4.4 shows an example of a composite service that satisfies the request R which

requires 10 GB of storage with security level 2 during the time [10, 13] (we assume the

time interval in hours in this example for simplicity).

112

Figure 4.4: Example of a Composite Service

Definition 4.6 (Resources waste). Given a subscriber’s request 𝑅 and a corresponding

composite service CS, the resources waste (𝑅𝑊) is defined as the amount of over-

provisioned storage of the services of CS proportional to the total amount of storage,

which is allocated to satisfy 𝑅. Obviously, 𝑅𝑊 should be minimised in order to maximise

the resources utilisation and save resources to serve other requests. In order to clarify

how to calculate the waste, assume that a CS consists of k services. The boundaries of the

time intervals, in which these services k are available, form P periods. Now, for each

period 𝑝𝑖, compute 𝑜𝑖 by multiplying the amount of over-provisioned storage in that

period by the length of 𝑝𝑖. Then, the summation ∑ 𝑜𝑖
𝑝
𝑖=1 is the total over-provisioned

storage. Similarly, compute the required storage 𝑟𝑖 in each period 𝑝𝑖 by multiplying the

amount of required storage by the length of 𝑝𝑖. Then, the summation ∑ 𝑟𝑖
𝑝
𝑖=1 is the total

required storage. After that, calculate the RW by dividing the summation of the over-

provisioned storage ∑ 𝑜𝑖
𝑝
𝑖=1 over the summation of the required storage ∑ 𝑟𝑖

𝑝
𝑖=1 . Figure

4.5 shows an example of computing the waste in which three services have been

composed to satisfy the request 𝑅 (we assume the time interval in hours in this example

for simplicity). In this example, 𝑘 = 3, 20 GB are required in the interval [10, 13], and

113

the CS interval is [9, 14]. The boundaries of the services of CS form the periods [9, 10],

[10, 11], [11, 12], [12, 13], and [13, 14]. The over-provisioned storage in the period 𝑝1 is

computed as the following: 𝑝1 boundaries are 9 and 10, and the bold number (10) above

𝑝1 represents the over-provisioned storage. So, the over-provisioned storage 𝑜1 during

𝑝1 is calculated as (10 − 9) × 10. Similarly, the over-provisioned storage during

𝑝2, 𝑝3, 𝑝4, and 𝑝5 is computed as 0, 10, 0, 20 respectively. Now, the required storage in

the period 𝑝1 is computed as (10 − 9) × 0, because actually no storage is required in 𝑝1.

Similarly, the required storage during 𝑝2, 𝑝3, 𝑝4, and 𝑝5 is computed as 20, 20, 20, 0

respectively. Then the summation of the over-provisioned storage (40) divided by the

summation of required storage in each of the periods 𝑝1, 𝑝2, 𝑝3, 𝑝4, and 𝑝5 (60)

represents the total waste 𝑅𝑊 (0.66667).

Figure 4.5: Waste Computation Example

114

Definition 4.7 (Waiting time). Given a subscriber’s request 𝑅 and a service repository

SR, the waiting time 𝑊𝑇 is defined as the time needed by the system to find a CS that

satisfies 𝑅 in seconds. If the system failed to find a CS due to a lack in the resources, the

system inserts them into the tail of the request queue. After three failed trials, the

request will be removed from the queue.

Definition 4.8 (Percentage of satisfied requests). Given 𝑚 requests, the percentage of

satisfied requests 𝑃𝑆𝑅 is defined as the number of requests that the system satisfied

successfully divided by the total number of requests 𝑚.

Based on the above definitions, given 𝑛 volunteer services and 𝑚 subscribers’

requests, the system’s goal, ideally, is to produce composite services for the requests

such that the following function, g, is minimised, where the values of the weights 𝑊𝑖

express the system administrator’s preferences regarding the RW, WT, and PSR.

However, finding the optimal solution for this objective function faces scalability

problems when the n increases, as shown in the next section.

minimise 𝑔 = (𝑓1, 𝑓2, 𝑓3)

subject to: 𝑃𝑆𝑅 > 0

where:
𝑓1 = 𝑊1

∑ 𝑅𝑊𝑚

𝑚
, 𝑓2 = 𝑊2

∑ 𝑊𝑇𝑚

𝑚
, 𝑓3 = 𝑊3

1

𝑃𝑆𝑅
,∑𝑊𝑖 = 1

3

𝑖=1

 (4.1)

4.3 Services Selection for Volunteer Composite Services

In this section, we propose a novel utility model for quantifying the contributions of the

VSs to satisfy a certain request. Then, based on the utility model, we propose a

systematic greedy approach for the selection of VSs for volunteer composite services.

However, before reaching the utility model, we scope two basic selection approaches,

115

namely, Exhaustive search and Naïve search for the benefit of the utility model. The

experimental evaluation provides and evidence that utility-based approach outperforms

the other two approaches in terms of the WT, PSR, and RW.

4.3.1 Exhaustive Search

One possible solution to find a CS is to perform an exhaustive search to search through

the possible composite services. In this approach, for each request R, the system finds all

possible sets of CSs and extracts the CSs that satisfy the request. Then, the system selects

the optimal CSs; the one that satisfies the request with minimum resource waste. If no

permutation satisfies the global constraints, the system notifies the subscriber that the

request R cannot be satisfied. For example, assume we have a request 𝑅 and a set S of

published VSs: 𝑆 = {𝑉𝑆1, 𝑉𝑆2, 𝑉𝑆3}. Then exhaustive search will generate the following

permutations: {𝑉𝑆1}, {𝑉𝑆2}, {𝑉𝑆3}, {𝑉𝑆1, 𝑉𝑆2}, {𝑉𝑆2, 𝑉𝑆3}, {𝑉𝑆1, 𝑉𝑆3}, {𝑉𝑆1, 𝑉𝑆2, 𝑉𝑆3}. After

that, for each permutation, the CS constraints are checked (see Definition 4.5). Assume

here that {𝑉𝑆2, 𝑉𝑆3} ⊢ 𝑅, {𝑉𝑆1, 𝑉𝑆3} ⊢ 𝑅, and {𝑉𝑆1, 𝑉𝑆2, 𝑉𝑆3} ⊢ 𝑅. Then the waste is

computed for these permutations, as shown in the previous section, and the

permutation that shows minimum waste will be returned as 𝐶𝑆 ⊢ 𝑅.

It is obvious that exhaustive search will give the optimal CS in terms of minimising

the resources waste. However, it is expensive in terms of computation time. It can be

applicable only if the number of published VSs is very low. Otherwise, we need other

practical approaches even if they are sub-optimal in terms of over-provisioning.

116

4.3.2 Naïve Search

Random assignment has been used in VC systems [127] [128] to randomly send

computational tasks to the worker hosts. In the context of volunteer storage services

the, e.g. the volunteering case of the SocialCloud [123], market-based selection

approaches are adopted. Since the services will be advertised for no gain, the user can

select any of those services; a case which we liken it to the random assignment. In the

context of VSC, we use the random assignment approach to develop a naïve service

selection for volunteer composite services, which can be applied as follows. The system

iterates over the published services and selects any service that satisfies any part of the

required availability period as the first service of the CS. Then, the order of the published

services is changed randomly, and another service is selected. After the selection of each

service, the CS constraints are evaluated (see Definition 4.5). When the set of selected

services satisfies these constraints, the set is returned as the CS. If no composite service

can be found, the system notifies the subscriber that the request cannot be satisfied. For

example, assume we have a request 𝑅 and an ordered list 𝐿 of published VSs:

𝐿 = {𝑉𝑆1, 𝑉𝑆2, 𝑉𝑆3, 𝑉𝑆4, 𝑉𝑆5 }. Then the random assignment search will randomly pick

one VS, e.g. 𝑉𝑆3, and add it to the set 𝐶𝑆. Then the global constraints will be checked. If

they are not satisfied, another VS will be picked randomly, e.g. 𝑉𝑆2 and added to 𝐶𝑆, so

𝐶𝑆 = {𝑉𝑆3 , 𝑉𝑆2}. Then the global constraints will be checked. The process continues

until 𝐶𝑆 ⊢ 𝑅. If the all services in 𝐿 are selected and the global constraints are still not

satisfied, the subscriber will be notified that the request 𝑅 cannot be satisfied. The

detailed selection algorithm is shown in Algorithm 4.1.

The naïve search can be in exchange for the exhaustive search approach, especially in

the large-scale cases. However it is an ad-hoc approach, i.e. the performance of the

117

system can fluctuate from time to time. Therefore, more systematic approaches are

required.

Algorithm 4.1: Naïve Search volunteer service selection

 Input: A list of Volunteer Services 𝑳, A request for storage 𝑹.
 Output: A composite service 𝑪𝑺 = {𝑽𝑺𝟏, 𝑽𝑺𝟐… 𝑽𝑺𝒌} ⊢ 𝑹 𝑂𝑅 𝒏𝒖𝒍𝒍.
 Begin
1 𝑪𝑺: { }
2 𝒕𝒎𝒑𝑹𝒆𝒒𝒖𝒆𝒔𝒕 = 𝑹;
3 While (𝑳 is not Empty)
4 If the availability interval of 𝑽𝑺𝒊 intersects with the requested interval

and 𝒔𝒆𝒄𝒊 ≥ 𝒔𝒆𝒄
𝑹

5 Add 𝑽𝑺𝒊 to 𝑪𝑺
6 Remove 𝑽𝑺𝒊 from 𝑳
7 Find the unsatisfied intervals of 𝒕𝒎𝒑𝑹𝒆𝒒𝒖𝒆𝒔𝒕
8 If all 𝒕𝒎𝒑𝑹𝒆𝒒𝒖𝒆𝒔𝒕 intervals are satisfied
9 Return 𝑪𝑺
10 Else
11 Recalculate 𝒕𝒎𝒑𝑹𝒆𝒒𝒖𝒆𝒔𝒕
12 Randomise the List 𝑳 order
13 End If
14 End While
15 Return null
 End

4.3.3 A Utility Model for Volunteer Composite Services

We propose a utility-based approach which provides a systematic method for services

selection. The idea is to quantify the amount of contribution that each service exhibits to

satisfy the request. Then the greedy selection starts from the services that contribute

'best' to the request. In this section, we present our proposed utility model and the

corresponding selection algorithm.

118

4.3.3.1 Utility Model

The utility model expresses the amount of contribution that each VS exhibits to satisfy a

request as a utility value taking into account each of the VS attributes. The utility model

is designed to assign maximum utility to services which promise to provide the amounts

of resources that exactly match the subscriber requirements. That is, services that

provide higher or lower than the required resources are assigned lower utilities thus

reducing their probabilities to be selected to serve the corresponding request. The

purpose is to maximise the utilisation of resources by serving each request by roughly as

much as it needs.

Storage utility. Given a volunteer service 𝑉𝑆𝑖 and a request 𝑅, the storage utility

𝑈𝑠𝑡𝑔(𝑉𝑆𝑖) of 𝑉𝑆𝑖, defined in (4.2), measures the amount of storage contributed by 𝑉𝑆𝑖 to

𝑅. Figure 4.6 plots 𝑈𝑠𝑡𝑔 over services volunteer storage space. This utility function gives

maximum value of ‘1’ if 𝑆𝑡𝑔𝑖 = 𝑆𝑡𝑔
𝑅 and a value less than ‘1’ otherwise. The parameters

𝛽 and α are set by the system administrator to specify whether to give utility values to

services with 𝑆𝑡𝑔𝑖 > 𝑆𝑡𝑔𝑅 higher than the utility values to services with 𝑆𝑡𝑔𝑖 < 𝑆𝑡𝑔𝑅 or

not, if |𝑆𝑡𝑔𝑖 − 𝑆𝑡𝑔
𝑅| is equal in both cases. The reason is to enable higher selection

chance for the services with higher storage if there are no services with storage equal to

the required storage which helps to avoid composition as there will be one service that

satisfies the storage constraint.

𝑈𝑠𝑡𝑔(𝑉𝑆𝑖) = {
𝑒−𝛽(𝑆𝑡𝑔𝑖−𝑆𝑡𝑔

𝑅), 𝑆𝑡𝑔𝑖 ≥ 𝑆𝑡𝑔𝑅

𝑒𝛼(𝑆𝑡𝑔𝑖−𝑆𝑡𝑔
𝑅), 𝑆𝑡𝑔𝑖 < 𝑆𝑡𝑔𝑅

𝑤ℎ𝑒𝑟𝑒 0 < 𝛽 < 𝛼 < 1

 (4.2)

119

Figure 4.6: Services Storage Utility

Availability Time Utility. Given a volunteer service 𝑉𝑆𝑖 and a request 𝑅, the time

utility 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) of 𝑉𝑆𝑖, defined in (4.3), measures the amount of time contributed by

𝑉𝑆𝑖 to 𝑅. The services that will be available in a time interval exactly equals to [aR, bR],

will be assigned a maximum utility value of ‘1’. On the other hand, services that will be

available partially during [aR, bR] or those that will be available in a time interval greater

than [aR, bR], will be assigned a utility lower than ‘1’, i.e. reducing their chance of being

selected to satisfy 𝑅. Otherwise, a zero-utility will be assigned. Figure 4.7 shows an

example of the time utility for different services applying (4.3). For example, since a1 =

 aR and b1 = b
R, 𝑉𝑆1 is assigned a utility equals ‘1’. Another example is 𝑉𝑆3, since a3 <

 aR and b3 > b
R , it is assigned value less than ‘1’.

𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) =

{

0, 𝑏𝑖 ≤ 𝑎𝑅 𝑜𝑟 𝑏𝑅 ≤ 𝑎𝑖

𝑒𝛾(𝑏𝑖−𝑏
𝑅), 𝑎𝑖 < 𝑎

𝑅 , 𝑎𝑅 < 𝑏𝑖 < 𝑏
𝑅

𝑒𝛾(𝑎
𝑅−𝑎𝑖), 𝑏𝑖 > 𝑏

𝑅 , 𝑎𝑅 < 𝑎𝑖 < 𝑏
𝑅

𝑒𝛼(𝑏𝑖−𝑎𝑖)

𝑒𝛼(𝑏
𝑅−𝑎𝑅)

, 𝑎𝑖 ≥ 𝑎
𝑅 , 𝑏𝑖 ≤ 𝑏𝑅

𝑒−𝛽(𝑏𝑖−𝑎𝑖)

𝑒−𝛽(𝑏
𝑅−𝑎𝑅)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤ℎ𝑒𝑟𝑒 0 < 𝛽 < 𝛾 < 𝛼 < 1.

 (4.3)

120

Figure 4.7: Services Time Utility Example

Security Utility. For the scope of this thesis, we consider the security as the extent to

which the volunteer host adhere to the security best practises (e.g. having the up-to-date

system security configurations and up-to-date Antivirus and Internet security software).

A script similar to many existing tools that perform an analysis of the computer

machines security baseline, e.g. [137], can be used to assess the security of the volunteer

service. In this context, we define security utility as follows. Given a volunteered service

𝑉𝑆𝑖 and a request R, the security utility 𝑈𝑠𝑒𝑐(𝑉𝑆𝑖) defined in (4.4) compares between the

security level provided by 𝑉𝑆𝑖 and the requested level. Figure 4.8 plots 𝑈𝑠𝑒𝑐 over services

security levels. The function in (4.4) gives a zero-utility to those services that have a

security level lower than the requested level. Also, it gives maximum value of ‘1’ if 𝑆𝑒𝑐𝑖 =

𝑆𝑒𝑐𝑅 and a value less than ‘1’ otherwise. Furthermore, the greater the security level of

𝑉𝑆𝑖 than the required level, the lower the security utility of 𝑉𝑆𝑖 which allows for keeping

high security services for serving future high security requests.

𝑈𝑠𝑒𝑐(𝑉𝑆𝑖) = {
1 − ∆𝑢(𝑆𝑒𝑐𝑖 − 𝑆𝑒𝑐

𝑅), 𝑖𝑓 𝑆𝑒𝑐𝑖 ≥ 𝑆𝑒𝑐𝑅
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤ℎ𝑒𝑟𝑒 ∆𝑢 =
1 − 𝜖

𝑆𝑒𝑐𝑚𝑎𝑥
, 0 < 𝜖 < 1

 (4.4)

121

Figure 4.8: Services Security Utility

4.3.3.2 Utility-based Greedy Selection Approach

When a subscriber submits a request, the system retrieves the available services from

the service repository and creates an empty CS. Then the system computes the utility for

each service in order to use these utilities as selection criteria. After that, the system

finds the non-dominant set of services, i.e. the Pareto-optimal choices [129], and selects

the highest utilities service using (4.5) and adds it to CS.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{𝑈𝑆𝑡𝑔(𝑉𝑆𝑖), 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) , 𝑈𝑠𝑒𝑐(𝑉𝑆𝑖)}

𝑠. 𝑡. 𝑈𝑠𝑒𝑐(𝑉𝑆𝑖) > 0

(4.5)

Then, if the storage constraint specified in R is satisfied, the system returns CS to the

requester, otherwise, the process is repeated. If no composite service can be found to

satisfy the subscriber’s request, the system returns empty 𝐶𝑆. The detailed selection

algorithm is shown in Algorithm 4.2 which includes the following steps:

 Step 1 (lines 1-9). Create an empty composite service 𝐶𝑆, clone the request

object, and create a list for storing the services’ utilities. Then iterate over the

services and compute the storage, time, and security utilities.

122

 Step 2 (lines 10-22). Find the non-dominant set of services, select one of them

randomly and add it to 𝐶𝑆. This results in partial satisfaction of 𝑅, i.e. the selected

service can serve the subscriber with some storage space during some time;

according to its promised storage space and availability time. Accordingly, the

sub-intervals of the request which still unsatisfied need to be determined (line

15), if any. In case of the selected service provides the required storage space

over the request interval, 𝐶𝑆 will be returned (line 17). Otherwise, the request

needs to be recalculated to exclude the satisfied sub-intervals (line 19) and

consequently the utilities will be recomputed (line 20).

Algorithm 4.2: Utility-based Volunteer Service Selection

 Input: A list of Volunteered Services 𝑳, A request for storage 𝑹.
 Output: A composite service 𝑪𝑺 = {𝑽𝑺𝟏, 𝑽𝑺𝟐… 𝑽𝑺𝒌} ⊢ 𝑹 𝑶𝑅 𝒏𝒖𝒍𝒍.
 Begin
1 𝑪𝑺: { }
2 𝒕𝒎𝒑𝑹𝑒𝑞𝑢𝑒𝑠𝑡 = 𝑹;
3 Create an empty List 𝑼𝑳
4 For all 𝑽𝑺𝒊 in 𝑳, do
5 Compute the storage, time, and security utilities using (4.2), (4.3), and

(4.4) respectively
6 If 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) and 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) > 0
7 Add 𝑽𝑺𝒊 and its utilities to 𝑼𝑳
8 End If
9 End for
10 While (𝑼𝑳 is not Empty)
11 Find the Pareto-optimality set
12 Select one service, 𝑽𝑺𝒊, from the Pareto-optimality set using (4.5)
13 Add 𝑽𝑺𝒊 to 𝑪𝑺
14 Remove 𝑽𝑺𝒊 from 𝑼𝑳
15 Find the unsatisfied intervals of 𝒕𝒎𝒑𝑹𝑒𝑞𝑢𝑒𝑠𝑡
16 If all 𝒕𝒎𝒑𝑹𝑒𝑞𝑢𝑒𝑠𝑡 intervals are satisfied
17 Return 𝑪𝑺
18 Else
19 Recalculate 𝒕𝒎𝒑𝑹𝑒𝑞𝑢𝑒𝑠𝑡
20 Re-compute the storage, time, and security utilities.
21 End If
22 End While
23 Return null
 End

123

 Step 3 (line 23). Reaching this line means that no composite service has been

found to satisfy the request 𝑅. In such case the system will notify the subscriber

to relax the requirements or try later.

4.4 Experimental Evaluation

In this section, we conduct experiments in order to evaluate the performance of the

proposed utility-based selection approach and compare it with the executive search and

the naïve search approaches.

Generally, research in VC is experimental in nature [130]. Taking into consideration

that hosts in VC are individually owned edge devices, it is almost obvious that having a

reasonable number of volunteers host to conduct repeatable and scalable experiments is

practically not achievable. In this context, open-source computing platforms, e.g. BOINC

[131] OpenNebula [132] and Eucalyptus [133], do not help us. Therefore, as most VC

researchers do, we resort to simulation-based evaluations [130] so that repeatable and

scalable experimentation is manageable. However, the simulation results can be used to

guide the application of the selection approaches in real-world scenarios.

In the same vein, using simulators such as SimGrid [134] and GridSim [135] would

require major modifications to support the greedy approach for storage services

compositions as these simulators are mainly designed to simulate distrusted

computational algorithms in grid environments. The main goal of these simulations is to

evaluate the scheduling algorithms used in the grid environment.

124

Based on the above context, we wrote a simulator for VS in Java V1.7.0. The

experiments were conducted on a desktop PC with an Intel core i5-3570 3.5 GHZ

processor, 4G RAM, Windows 7.

The experiments implement the scenario described in section 4.2.1 as a

publish/subscribe model in which 𝑛 services are published and m requests are

submitted. A service is represented as a tuple of the attributes: Storage, Availability

Time, and Security Level. The experiments are conducted using synthetic data generated

based on data distributions reported in related studies, e.g. [104] [5]. The volunteered

storage is assumed to follow a uniform distribution with expected value µ = 10GB and

standard deviation σ=2 [104]. The time intervals’ bounds and the security level values

are generated randomly. Table 4.1 shows the ranges of the services’ and requests’

attributes values. A subscriber’s request is represented in the same way as services. The

values of the requests were generated randomly also but with higher storage values so

that a composition of services is needed to meet each the request. For each test case, the

experiment was conducted 100 times and the average was computed. In these

simulations, we assume that the volunteer services will provide the promised resources

once they are allocated to satisfy a certain request.

Table 4.1: Utility Model Attributes’ and Parameters’ Values

 Service Subscriber
Attribute min max min max
Storage 1 20 1 40

Availability Time 1 Jan. 00:00 31 Dec. 23:59 1 Jan. 00:00 31 Dec. 23:59
Security 0 3 0 3

𝜶 0.1

𝜷 0.1

𝜸 0.1

𝝐 0.2

125

In accordance with this thesis objective, we investigate the effectiveness of using the

utility model for VS selection. The effectiveness is measured in terms of resources waste,

waiting time, and percentage of satisfied requests, which are defined above in section

4.2.2. We also empirically investigate the effect of scale on the performance of the utility-

based selection approach by increasing the number of services and requests. It is worth

noting here that our focus is on the quantification of the promised contributions of the

services as a basis for selection. Consequently, the main objective of the evaluation is to

evaluate the performance of the three selection approaches in terms of the above

criteria, and thus the actual data storage and the related aspects (e.g. data transfer and

data integrity) are not considered.

4.4.1 Experimental Results

Comparing the Resources Waste (RW). The first set of experiments evaluates the

efficiency of allocating resources to the subscribers. The experiments were conducted in

two parts. The first part evaluates the RW for serving one request whereas the number

of services is varied. The second part evaluates the RW for serving a varying number of

requests in the presence of varying number of services. This part involves only the

utility-based method and the naïve search method. The exhaustive search has not been

involved because the computation time is ‘infinite’ in high-scale cases. Figure 4.9 plots

the RW for the three approaches. In this experiment, we vary the number of published

services 𝑛 and set the number of requests to 1. The results show that the RW in the

exhaustive search case is always the minimum. This is obvious because the exhaustive

search checks all the composition possibilities and returns the optimal composition.

However, because the exhaustive search is not scalable, the results are not obtainable

126

for the case when n > 15, due to ‘infinite’ computation time. Also, the figure clearly

shows that the RW in the utility-based case is always less than the naïve search case.

Figure 4.9: Average Waste in Small-Scale Experiment

Figure 4.10 compares the RW between the utility-based search and the naïve search

approaches where we vary the number of published services 𝑛 and the number of

requests. The waste of the naïve search case is higher than the utility-based case

especially when the number of requests is low, relative to the number of published

services. The reason is that, the utility-based search is able to find the services that ‘best’

contribute to the subscriber’s requirements and avoids selecting services that provide

resources higher than the needed to serve the request.

Comparing the Percentage of Satisfied Requests (PSR). The second set of

experiments evaluates the number of requests that each approach can satisfy

proportional to the total number of submitted requests. Figure 4.11 compares the PSR of

the three approaches. In this experiment, we vary the number of published services 𝑛

and set the number of requests to 1. The results show that the exhaustive search is able

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

R
es

o
u

rc
es

 W
as

te

Services

Utility-based search Naïve Search Exhastive search

127

to satisfy more requests, however, it does not scale. The utility-based search exhibits

higher PSR than the naïve search approaches when the number of published services is

not high. But, when the number of services is high, relative to the number of requests,

the two approaches perform equally. The reason is that the high number of services

increases the possibility of finding services that can contribute to satisfy the request, i.e.

they are available during the request time interval and their security level is greater

than or equal to the requested security level.

 Utility-based search Naïve search

R
es

o
u

rc
es

 W
as

te

 Requests

Figure 4.10: Average Waste in High-Scale Experiment

Figure 4.12 shows more results of comparing the naïve search and the utility-based

search in a high-scale case. In this experiment, we vary the number of published services

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100

n= 400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150

n= 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200

n= 800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200

n= 1000

128

𝑛 and the number of requests. The figure shows that in the cases of low number of

requests, the two approaches can equally satisfy the requests. But, as the number of

requests increases, the ability of the naïve search approach to satisfy the requests drops

significantly. On the other hand, the utility-based search satisfies high number of

requests. The reason is that the utility-based search selects services that best contribute

to the request with respect to the resources needed resulting in saving more services to

serve other requests.

Figure 4.11: Average PSR in Small-Scale Experiment

Comparing the Waiting Time (WT). The third set of experiments evaluates the WT of

the approaches. Figure 4.13 plots WT in seconds. In this experiment, we vary the

number of published services n and set the number of requests to 1. The figure shows

that in the exhaustive search approach the WT increases exponentially in very small

scale. On the other hand, the WT is low in the cases of the utility-based search and the

naïve search. Therefore, the exhaustive search is not a practical approach, especially

when the number of published services is high.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

P
er

ce
n

ta
ge

 o
f

Sa
ti

sf
ie

d

R
eq

u
es

ts

Services

Utility-based search Naïve Search Exhastive search

129

 Utility-based search Naïve search
P

er
ce

n
ta

ge
 o

f
S

at
is

fi
ed

 R
eq

u
es

ts

 Requests

Figure 4.12: Average PSR in High-Scale Experiment

Figure 4.13: Average Waiting Time in Small-Scale Experiment

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100

n= 400

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150

n= 600

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200

n= 800

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200

n= 1000

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100

W
ai

ti
n

gT
im

e
in

 (
se

co
n

d
s)

Services

Utility-based search Naïve Search Exhastive search

130

Figure 4.14 plots WT in seconds in case of varying number of requests. In this

experiment, we vary the number of published services 𝑛 and the number of requests.

The comparison includes the utility-based search and the naïve search approaches. The

figure clearly shows that the WT of the utility-based search is always lower. The reason

is that services that contribute more to the request are chosen first (refer to Algorithm

4.2), which reduces the iterations that are required to find the CS.

 Utility-based search Naïve search

W
ai

ti
n

g
T

im
e

(s
ec

o
n

d
s)

 Requests

Figure 4.14: Average Waiting Time in High-scale Experiment

4.5 Conclusion

An efficient VS selection and allocation approach is required to utilise the volunteered

resources and increase the number of satisfied requests. Current approaches in VC

either do not address the composition problem or select the services in a ‘random’ way;

0

1

2

3

4

5

6

7

8

0 50 100

n= 400

0

1

2

3

4

5

6

7

8

0 50 100 150

n= 600

0

1

2

3

4

5

6

7

8

0 100 200

n= 800

0

1

2

3

4

5

6

7

8

0 100 200

n= 1000

131

resulting in a low percentage of satisfied requests. Therefore, in this chapter, we have

proposed a utility-model to enable quantifying the contribution that each VS makes to a

certain request. Based on the utility-model, we developed a greedy approach for

selecting the VSs to satisfy subscribers’ requests. One of the core advantages to this

approach is its applicability in large-scale cases while minimising the over-provisioning

of resources. We have experimentally evaluated the approach and compared it to related

approaches, namely, the exhaustive search and the naïve search approaches. The results

show that the exhaustive search is the most effective at minimising the waste in

resource provisioning and maximising the number of satisfied requests. However, the

exhaustive search is not applicable in environments where the number of publishers

and/or subscribers is not very low. The results show also that the utility-based approach

performs well in small-scale environments and best in large-scale ones, relative to the

naïve search and the exhaustive search approaches.

So far, we assumed that the VSs will provide what they promise. In other words, the

proposed approach does not deal with the dynamism of the environment. Taking into

consideration that volunteers can offer and withdraw their services at any time adds a

significant challenge to the problem. In this context, the proposed utility-based selection

approach will form the basis for extending this work. The extension will aim at

providing self-adaptation capabilities (through self-awareness with dynamic knowledge

management) to deal with the dynamism of the environment. Such self-adaptation

capabilities should enable the system to satisfy the subscriber’s requests in the presence

of the dynamic changes in VSs performance.

132

133

SELF-AWARE FRAMEWORK FOR VC

WITH DYNAMIC KNOWLEDGE

MANAGEMENT

5.1 Overview

As mentioned in chapter 3, volunteer services tend to be published and withdrawn

without restrictions, thus, uncertainties, dynamisms, and dilution of control, related to

the decisions of selection and composition, are complex problems. Taking these

challenges into consideration, a handful of VC systems have been contributed along with

self-adaptation capability e.g. [101] [107] [116]. However, these systems make simple

assumptions about knowledge representation and management for the process of

decision making. As a result, these VC systems tend to be limited in their adaptation

capabilities, which are restricted to re-allocating the resources when a host fails. Such

weakness is due to a lack of their architectures’ capabilities in capturing and

representing the evolving knowledge at runtime; a gap where self-awareness can be

rendered to overcome such weakness.

134

Meanwhile, self-awareness has been given more attention in recent research efforts

as an enabler for self-adaptation; resulting in a handful of conceptual approaches for

engineering self-awareness in computing systems e.g. [16] [18] [14] [136]. Some of

these recent research works, e.g. [18] [14], have suggested that finer knowledge

representation can better address the users’ and systems’ requirements in

environments that exhibit uncertainty and dynamism and can improve the quality and

accuracy of adaptation. Although we agree with this suggestion, we argue that, as

mentioned in chapter 2, dynamic knowledge management has been given little

consideration; though it is a vital requirement for self-awareness. The knowledge should

be treated as moving targets that can change and evolve over time. Therefore, self-aware

systems need to be able to capture the evolution trends and use this information to

better inform the adaptation decision.

Given the above background, the contributions of this chapter are as follows:

(1) A general architecture of VC systems is presented with mapping a self-aware

framework for VC to enrich the self-adaptation capabilities of VC systems.

(2) Dynamic knowledge management approaches are proposed to improve the self-

aware framework and enact self-awareness. This improvement is driven by the

VC scenario; however, it is fundamental to the self-awareness as it equips the

self-aware framework with dynamic knowledge management capabilities that

they do not have. At the same time, this improvement benefits the VC systems to

fertilise their self-adaptivity. The dynamic knowledge management approaches

use dynamic data structures, namely the dynamic histograms, to represent the

knowledge. The dynamic histograms are able to capture the evolving

135

performance patterns of the VSs. Algorithms for the dealing with the evolution of

the dynamic histograms are developed.

5.2 Motivation for Self-awareness

The utility-based approach, proposed in the previous chapter, provides a systematic

approach for the selection of VS based on the utilities that a VS promises to provide.

However, as discussed in chapter 3, volunteers deviate from their promises and

therefore the VSs performance tends to exhibit uncertainty and violation of the

promised quality. Furthermore, it was shown in chapter 3 that the VSs tend to exhibit

periodic performance patterns, which are often repeated over a certain time period.

Consequently, the awareness of such periodic patterns enables the prediction of the

performance of the services leading to better adaptation. Furthermore, as these services

do not work in isolation (as mentioned in chapter 3), the awareness of the correlation

between the services’ performance is necessary for satisfiable service provision.

Accordingly, such cases motivate the need for more ‘intelligent’ selection and

adaptation approaches to deal with such dynamism to mitigate the corresponding

consequences. To clarity, we refer to the volunteer storage scenario of Figure 4.1 and re-

ask the following question, which strategy should be selected to satisfy the request? One

possibility is to randomly pick any of them and when one of the services involved in the

selected strategy violates the requirements, the system initiates an adaptation action to

repair the strategy. However, a question arises here about the feasibility of that

adaptation action, i.e. will the undertaken adaptation result in better performance?

Another possibility is that, if the system is able to anticipate the performance of the

services, then it can select a strategy so that violations are less likely to occur, thus

136

avoiding the violations. Moreover, the deeper the knowledge the system has on the

performance of the services (e.g. capturing the correlation between the services’

performance), the more intelligent the decision will be. Here where self-awareness can

be adopted to reason about the self-adaptation actions; enabling intelligent selection

and adaptation decisions. To clarify the above with an example, refer to Figure 4.1 and

assume that 𝑆1 submitted a request at time 𝑡1, and assume that the performance of 𝑉𝑆5

is anticipated to be poor at 𝑡1, then the system will avoid the selection of the third

strategy. But, if we assume that 𝑆1 submitted a request at time 𝑡2, and assume that the

performance of 𝑉𝑆1 is anticipated to be well at 𝑡2, then the system will select the third

strategy. But, if we assume that 𝑆1 submitted a request at time 𝑡2, and assume that the

performance of 𝑉𝑆5 is anticipated to be well at 𝑡2, then the system may select the third

strategy. However, if 𝑉𝑆5 exhibited poor performance when composed with 𝑉𝑆2, then

the system will select the second strategy. This example shows that decomposing

knowledge about the service performance to fine grain increases the system's

awareness and ‘better’ informs the selection and adaptation decisions. In conclusion, the

VS selection scenario motivates the need for self-awareness and its engineering

principles. It also requires dynamic knowledge management for capturing and

modelling the performance trends to realise self-awareness.

5.3 General Architecture for Self-aware Volunteer Computing

Drawing on conclusions from chapter 3, we identified common features which relate to

a general architecture of VC systems. Figure 5.1 abstracts some of the essential

components which tend to be present in a typical volunteer storage system (VSS).

137

Basically, the architecture involves three parts, the volunteering part, the usage part,

and the management part.

Figure 5.1: Architecture for Self-aware Volunteer Storage System

Based on this general architecture, we have realised the VSS as a web-service based

system. On the one hand, the system aggregates the published volunteered storage from

the volunteers end devices. On the other hand, it offers the aggregated storage in a

service-oriented perspective as composite services (CSs); based on the subscribers’

requirements. Volunteers willing to provide their storage need to sign up to register

their identities. After that, they need to download and install volunteering software in

order to interact with the VSS and the subscribers. After installing the volunteer

software, the volunteer can sign in to the VSS and advertise her VS’s information which

will be encoded using XML-based metadata and submitted to the VSS. Subscribers also

need to sign up to the VSS to register their identities and then submit their storage

requests. Having received a request, the system uses the utility-based greedy approach,

proposed in the previous chapter, to find a VS or a CS for that request. To improve the

effectiveness of the architecture to deal with volunteering at scale, it is imperative that

138

intelligence is needed to seamlessly manage these resources. For this purpose, we ‘plug-

in’ a self-aware framework to provide such intelligence, building on the utility-based VS

selection approach. The general architecture of the VSS (shown in Figure 5.1) consists of

the following parts, volunteer software, subscribers’ frontend, and the central manager:

Volunteer Software The volunteer software should be installed on the volunteer

physical machine to enable (1) the interaction between the volunteer machine and the

VSS central manager, and (2) the access to the actual storage by the users. The volunteer

interaction with the central manager involves the following:

(1) Submitting the VS’s attributes, specifically, the volunteered storage space 𝑠𝑡𝑔,

the availability period 𝑇 = [𝑎, 𝑏], the security level sec, and the binding

information required to access the physical storage location. This software will

be periodically assessing the security level of the volunteer’s machine and

reporting any violation of the promised security level. This is realised by a script

that checks the state of volunteer machine in terms of following the standard

security guidelines and best practices, e.g. having the up-to-date system security

configurations and up-to-date Antivirus and Internet security software. Such

script is similar to many existing tools that perform an analysis of the computer

machines security baseline, e.g. [137].

(2) Periodically sending an “I am alive” heartbeat during the availability period to

confirm the availability to the central manager.

The interaction between the volunteer’s machine and the subscribers is realised

through the VS. The volunteer software installs a web server that hosts the VS. The VS is

implemented as a RESTful web service which exposes the file manipulation operations.

139

The storage content is delivered/retrieved directly to/from the volunteer machine

without routeing through the server hosting the central manager.

Subscriber’s frontend A subscriber interfaces with the VSS through the frontend to

submit requests and report the subscriber’s feedback to the VSS. Having logged into the

system, the subscriber specifies her storage requirements and submits her requests. The

submitted requests will be sent to the system queue. The VSS processes each request in

the queue to find a VS or a CS that satisfies that request. Having found a VS or a CS, the

system encodes it as XML-based metadata, which provides the information required to

access the VSs. Then, the system sends the metadata to the subscriber’s frontend to

enable access to the actual storage through a web interface. Also, the VSS provides an

interface for the subscribers to rate the VS reputation after using the VSs. The reputation

reflects the subscriber’s experience of using the VSs. This subscriber’s feedback will be

used by the self-awareness approaches for informing the selection of the VSs. In

summary, the frontend enables sending feedback on each VS to the VSS that involves:

(1) Reporting any violation in the promised storage space, this is done

‘automatically’ by the frontend.

(2) Reporting the VS reputation level 𝑅𝑒𝑝(𝑉𝑆𝑖), which is done manually by the

subscriber. The reputation level has the value of 1 if data storage/retrieval was

perfect, 0.5 if any minor data loss/corruption occurs, or 0 if a major data

loss/corruption occurs. Based on the subscribers’ feedback, the representative

reputation of a certain service 𝑉𝑆𝑖 is computed as the average of the subscribers’

feedback on 𝑉𝑆𝑖.

140

Central manager The central manager is responsible for storing the VSs and requests

information, allocating services/composite services to requests, listening to events, and

adapting the services allocations either reactively (after a violation occurs) or

proactively (if a violation is expected to occur). The central manager is composed of the

following parts: the frontend, the service repository, and the self-aware framework.

(1) The frontend. The frontend provides interfaces for the volunteers’ and

subscribers’ interactions through a web portal. It collects and manages the VSs’

descriptions and the subscribers’ requests. All the VSs’ descriptions are stored in

the service repository and all the requests are stored in the system queue.

(2) The Service Repository. The service repository is simply a database that stores

the VS’s descriptions and the VS’s status; either allocated or not.

(3) The self-aware framework. In the presence of the challenges of dynamism and

uncertainty, knowledge is essential to steer the adaptation decisions. The self-

aware framework provides the knowledge and adaptation management for the

VSS. It enables multi-level knowledge acquisition and representation, through

different levels of awareness, at runtime and implements corresponding

adaptation approaches.

The following sections zoom in on the structure of the self-aware framework then

present the dynamic knowledge management approaches.

5.4 Architecture of the Self-aware Framework

As shown in chapter 2, there is a growing trend of adopting self-awareness as an enabler

for self-adaptation in software systems. This resulted in different frameworks and

approaches for engineering self-awareness, e.g. the representative projects under the EU

141

Proactive Initiative Self-Awareness in Autonomic Systems [138] [20] [139] [140] and

road-mapping agenda of the Dagstuhl seminar [17]. Obviously, for such a hot research

topic, there is no definitive solution for engineering self-awareness. Therefore, in this

thesis, we are taking a ‘flavour’ of self-aware framework, the EPiCS framework [20], and

exploit it to build our contribution of dynamic knowledge management. In this section,

we overview the conceptual self-aware framework contributed by the EPiCS project

then adapt and map the framework to the case of VC.

5.4.1 Overview of the EPiCS Framework

The EPiCS project has produced a conceptual framework related to how self- awareness

can be used to engineer self-adaptive computing systems. We believe that this

framework is suitable to build our contribution on for the following reasons:

 The framework adheres to the separation of concerns principle by defining

multi-levels of self-awareness. In our context, this enables the separation of

knowledge concerns and the development of multi-level adaptation

capabilities using the different types of knowledge.

 Conceptually, the framework provides the primitives for adjusting and

reasoning about the way in which self-awareness is realised. This allows for

enriching the adaptation capabilities by switching between different

approaches of knowledge management.

Figure 5.2 illustrates the architectural diagram of the framework which consists of

four main components, namely, Sensors, Self-awareness, Self-expression, and Meta-self-

awareness:

142

Figure 5.2: The Conceptual Self-Awareness Framework (Source [14])

(1) Internal/external sensors: The sensors are responsible for collecting data on the

private experiences internal to the system and public experiences related to the

system’s physical environment.

(2) Self-awareness: The self-awareness component is responsible for modelling the

received data into knowledge and passing the models to the self-expression and

meta-self-awareness components as inputs. The component introduces four levels of

awareness:

- Stimulus-awareness. This level provides the basic knowledge on the changes that

occur internally and externally. It enables the system to react to internal and

external events, thus, it is necessary for providing the basic level of self-

adaptation.

143

- Time-awareness. This level is intended to provide knowledge about internal

and/or external historical performance; assuming the presence of the stimulus-

awareness.

- Interaction-awareness. This level also assumes the presence of the stimulus-

awareness and is responsible on modelling the knowledge captured from the

interactions that occur in the system.

- Goal-awareness. The aim of this level of awareness is to maintain the system’s

goals and objectives.

(3) Meta-self-awareness

The system is meta-self-aware if it has knowledge about its current level of awareness

along with the benefits and costs of that level. It should enable switching between the

levels of awareness at runtime.

(4) Self-expression

This component makes use of the learnt models passed by the self-awareness

component and performs the actual adaptation decisions. Based on the activated level of

awareness by the meta-self-awareness, the corresponding models are used to inform

and execute the adaptation actions.

Specific patterns of this framework were applied in some demonstrators for the sake

of motivating the need for self-awareness in computing systems and demonstrating the

applicability of the framework. For example, in [20] a pattern that involves the stimulus-

and interaction-awareness has been used in a smart-camera self-adaptive application.

The framework enabled a smart camera to ‘sell’ an object it is tracking to another

144

camera when that object is about to leave the first camera field of view, which is an

example of interaction-awareness. Another example, presented in [61], uses a pattern of

time-awareness where ratings about cloud services are stored and used for the cloud

services selection. However, these demonstrators make simple assumptions regarding

the knowledge representation and the scale of the environment, as they intended only to

show the applicability of the framework.

5.4.2 The Self-aware Framework for the Volunteer Computing

In Figure 5.3 we adapt the self-awareness framework and map it to the case of VC as the

following:

(1) Internal/external sensors.

The internal sensors are responsible for monitoring the queue status. Events related to

the arrival of requests to the queue along with the size of the queue are reported to the

self-expression and the meta-self-awareness components. The external sensors are

responsible for collecting data on the services engaged in a composition and the services

offered in the service repository. The data include any changes in the promised quality

of service. Then the collected data are passed to the stimulus-, time-, and interaction-

aware levels in the self-awareness component.

(2) Self-awareness.

The self-awareness component is responsible for representing the acquired knowledge

on the services performance and the users’ goals. The component introduces four levels

of awareness, which correspond to four levels of knowledge management. Each level

produces the corresponding learnt models. Then the learnt models are passed to the

145

self-expression and meta-self-awareness components as inputs. The four levels of

awareness are:

Figure 5.3: The Self-Awareness Framework for The Volunteer Computing Case

- Stimulus-awareness. This level provides the basic knowledge on the changes that

occur in the performance of the services (e.g. a service violated the

requirements). This knowledge supports the ability to adapt the CS. For example,

if the change results in violating the constraints, then the corresponding service

will be replaced.

- Time-awareness. This level assumes the presence of the stimulus-awareness and

adds more awareness by considering the historical performance, in terms of

dependability (which is defined in the next section) of the services. The time-

awareness is able to represent the evolving performance patterns of the VSs

using the dynamic data structures, the dynamic histograms. This level enables the

146

system to take more intelligent adaptation decisions by selecting services which

exhibit dependable historical performance.

- Interaction-awareness. This level also assumes the presence of the stimulus-

awareness and adds more awareness by considering the historical interactions

between the services in pairs in terms of dependability. In other words, this level

is able to capture knowledge from the interactions between services so that

services that had good performance when composed together in the past will

have higher chance to be selected again together.

- Goal-awareness. The aim of this level of awareness is to maintain the users’ goals.

This level has the knowledge of the constraints of the CSs (see section 4.2.2).

Given the services performance attributes and user requirements, goal-

awareness deduces whether the VSs and the CSs satisfy the users’ requests or

not.

(3) Meta-self-awareness

This component represents an extra level of awareness that acts as a cognitive system

that controls the activation/deactivation of the above levels of awareness. The learnt

models and information on the system state (in terms of the level of achieving the users’

goals) are passed to this component to allow for deciding whether the activation of a

certain awareness level is beneficial or not. The internal structure and the mechanism of

the meta-self-awareness level are introduced in details in the next chapter.

(4) Self-expression

This component performs the actual adaptation action based on the learnt models

received from the self-awareness component. Based on the activated level of awareness

147

by the meta-self-awareness, the corresponding algorithm is used to find and adapt the

composite services.

In the following sections, we propose the dynamic knowledge management

approaches, which extend the framework and realise the above levels of awareness.

5.5 Dynamic Histograms for Dynamic Knowledge Management

A histogram is an estimate of the data distribution of a certain variable. Given a certain

dataset, a histogram divides its data into subsets called buckets based on a partitioning

rule [141]. The adoption of different partitioning rules results in different types of

histograms. The most popular types of histograms are the Equi-width and the Equi-

depth histograms. In the Equi-width histogram, the data range is divided into equal-

width buckets, then the data points that have values between the minimum and the

maximum of a certain bucket are grouped in that bucket. In the Equi-depth histogram,

the bucket boundaries are specified so that the buckets have the same number of data

points. Other types of histograms include: (i) the Compressed histogram in which data

points that have highest frequencies are grouped in a single bucket, then the rest of the

data points are grouped according to the Equi-width rule, (ii) the V-optimal histogram in

which the quantity ∑𝑛𝑖𝑉𝑖 is minimised, where ni is the number of data points and 𝑉𝑖 is

the variance of the data points values in bucket i, and (iii) the V-Optimal-End-Biased

histogram which is an enhancement to the V-optimal histogram and in which highest

frequency data points and lowest frequency data points are grouped in individual

buckets while the rest of the data points are grouped in a single bucket. The Equi-width

histogram has been widely used in commercial systems as it is easy to implement when

the minimum and maximum of each bucket are apriory known [142]. However, in this

148

type some of the buckets may include no or few points, i.e. they do not provide enough

information. In such cases, the Equi-depth histograms may be a better choice for proving

information on the data distribution, however, specifying the buckets boundaries can be

expensive. The other types of histograms have been rarely used as they are very

expensive to construct [142].

Meanwhile, in cases when data points arrive continuously and the dataset is built

incrementally over time, the histogram needs to be recreated from scratch which results

in degradation of system performance [23]. To deal with such cases, dynamic histograms

have been proposed to capture and estimate the data distribution in evolving datasets.

Dynamic histograms are constructs that dynamically approximate data distributions at

runtime [23]. They have been used in database management systems’ applications in

order to maintain and represent the data which continuously arrive and vary with time

[142]. Dynamic histograms are continuously updated to tackle the changes in the

evolving datasets. The main idea in the dynamic histograms is to reconstruct the

buckets, which involves splitting and/or merging buckets, at run time based on the

partitioning rule of the histogram in order to keep the properties of the histogram.

The dynamic knowledge management approaches build on the findings of the long-

term studies [5] [111] [112] [113], which reported the presence of periodic

performance and correlated patterns of the volunteer host. As mentioned in chapter 3,

since different volunteers contribute to different projects, the data collected from one VC

project cannot be used to predict the actual performance patterns of the volunteers

contributing to a different project. Henceforth, knowledge needs to be captured,

represented, and managed at runtime in a way that enables capturing the performance

149

patterns and the correlated patterns. For this purpose, we use dynamic histograms. Our

self-aware approaches (presented below), divide the services’ usage time into time

intervals dynamically at runtime. The time intervals correspond to the dynamic

histograms buckets. Then the captured knowledge on the performance of the services is

stored in the buckets as data points. The insertion and deletion of the data points may

result in splitting and/or merging buckets based on the sufficiency of the number of data

points in those buckets. The sufficient number of data points is specified using a method

based on Chebyshev’s inequality. In the next sections, we briefly introduce Chebyshev’s

inequality and present the dynamic histogram evolution operations we have developed.

5.5.1 Chebyshev’s Inequality

Suppose that we have a set of 𝑁 data points for a random variable (e.g. observations of a

service’s performance) but the distribution of the random variable is unknown. The

expected value can be estimated using the data points. Then the Chebyshev’s inequality

can be used in order to know how close the estimated expected value is to the actual one.

In other words, Chebyshev’s inequality bounds the probability that a random variable

deviates from its expected value by a sufficiently small positive number 𝜀, called

confidence threshold [143]. Mathematically, Chebyshev’s inequality is expressed as:

𝑃(|𝐸(𝑋) − �̂�(𝑋) ≥ 𝜀|) ≤
𝜎2

𝑁. 𝜀2
 (5.1)

where 𝐸(𝑋) is the actual expected value, �̂�(𝑋) is the estimated expected value, 𝜎 is the

standard deviation, 𝑁 is the number of data points, and 𝜀 is the confidence threshold.

In our approach, we use Chebyshev’s inequality in a different way. Our purpose is to

know when the number of data points, 𝑁, in a bucket of the dynamic histogram will be

sufficient to give a close estimate of the expected value, which helps to decide when to

150

split the bucket and evolve the histogram. So, given the confidence threshold 𝜀 and the

probability of confidence 𝑃(|𝐸(𝑋) − �̂�(𝑋) ≥ 𝜀|) and solving (5.1) then the number of

sufficient data points is calculated as in (5.2). The corresponding method is presented in

the next section.

𝑁 =
𝜎2

𝑃(|𝐸(𝑋) − �̂�(𝑋) ≥ 𝜀|). 𝜀2
 (5.2)

5.5.2 Evolution Operations

As mentioned, the system starts from ‘zero-history’ and then the knowledge is captured

and managed incrementally at runtime using the dynamic histograms. We adopt a

dynamic histogram for each service in order to continuously insert the observed data

points taking into account the time interval in which the data point has been observed.

Then the continuous update of the dynamic histogram, by splitting and/or merging the

buckets, results in refining the histogram structure and capturing the periodic

performance pattern of the services. Accordingly, a data point is defined as follows:

Definition 5.1 (Data point) A data point is a tuple of (𝑇 = [𝑎, 𝑏], 𝑣𝑎𝑙𝑢𝑒) where 𝑇 is the

time interval in which the observation has been recorded, 𝑎 is the start date (the date

and time at which the services is involved in a CS) of 𝑇 and 𝑏 is the end date (the date

and time at which the service violated the promised utility or completed serving the

request), and 𝑣𝑎𝑙𝑢𝑒 is the value of the performance metric (i.e. dependability).

The update process of the dynamic histogram involves inserting a new data point

into the appropriate bucket(s), splitting a bucket when the number of data points is

sufficient to estimate the performance, and merging each empty bucket with a

151

neighbour one. In the following, we describe each of the mentioned operations and show

the corresponding algorithm.

(1) Insert new data point.

Based on Definition 5.1, a data point might fall into one or more buckets depending on

the intersection between the data point time interval and the bucket(s) boundaries.

Algorithm 5.1 is used to find the appropriate bucket(s) in which the data point will be

inserted.

Algorithm 5.1: Find Appropriate Buckets
1 Input: Dynamic Histogram dhist, Data Point dp
2 Output: Array appropriateBuckets
3 Begin
4 for all bucket in dhist do
5 // check if the time intervals of dp and bucket intersect
6 if dp.start_date < bucket.end_date && dp.end_date >bucket.start_date then
7 add bucket to appropriateBuckets
8 end if
9 end for
10 return appropriateBuckets
11 End

(2) Split a bucket.

A bucket in the dynamic histogram corresponds to a time interval in which the

performance of a service has been observed. The periodic performance of the services

means that a service exhibits different behaviour in different time intervals. Therefore,

the buckets boundaries need to be dynamically updated as the data points are inserted in

order to track the changes in the performance and coincide with the time intervals in

which the service has been used and observed. When the number of data points in a

bucket is sufficient to estimate the performance of the service in the corresponding time

interval, the bucket will be split into smaller buckets. The splitting provides finer

152

representation of the time intervals in order to capture the pattern periods. The sufficient

number of data points in a bucket is determined by solving (5.2). We can bound the

variance 𝜎2. Assuming the worst case; the variance is maximum when one half of the

values is at lowest possible and the other half is at the highest possible value. In this work

we express the performance in terms of dependability, (defined in the next section),

which has a value in [0.0, 1.0]. Based on that, the lowest value of the performance is 0.0

and the highest is 1.0. As a result, the maximum variance is 0.25 and the splitting

threshold 𝑠𝑝𝑙𝑖𝑡_𝑡ℎ is given by:

𝑠𝑝𝑙𝑖𝑡_𝑡ℎ =
0.25

𝑃(|𝐸(𝑋) − �̂�(𝑋) ≥ 𝜀|). 𝜀2
 (5.3)

Consequently, when the number of data points in a bucket exceeds 𝑠𝑝𝑙𝑖𝑡_𝑡ℎ, the

bucket will be split into two equal-length buckets using Algorithm 5.2. We set a minimum

length of the bucket (time interval). If the bucket length is less than the minimum length,

the bucket cannot be split. In this case a forget strategy is applied to remove the oldest

point(s) and allow the new data point(s) to be inserted.

Algorithm 5.2: Split Bucket
1 Input: Bucket bucket
2 Output: Bucket bucket1, Bucket bucket2
3 Begin
4 Calculate spliting_date = (bucket.start_date + bucket.end_date) / 2

5 Create Bucket bucket1 such that bucket1.start_date = bucket.start_date and
bucket1.end_date = spliting_date

6 Create Bucket bucket2 such that bucket2.start_date = spliting_date and
bucket2.end_date = bucket.end_date

7 for all data point dp in temp_array do
8 if dp.time_interval intersects with bucket1.time_interval
9 Insert dp into bucket1
10 end if
11 if dp.time_interval intersects with bucket2.time_interval
12 Insert dp into bucket2

13 end if
14 end for
15 Delete bucket
16 return bucket1 and bucket2
17 End

153

(3) Merge empty buckets

If the splitting operation resulted in an empty bucket, then that bucket will be merged

with its preceding neighbour. If the empty bucket does not have a preceding neighbour, it

will be merged into the following one.

Pseudo-code for the update method of the dynamic histogram is presented in

Algorithm 5.3.

The self-aware approaches we propose in the next section use the dynamic histograms

to model the captured knowledge on the performance of the services.

Algorithm 5.3: Dynamic Histograms Update
1 Input: Dynamic Histogram dhist, Data Point dp
2 Output: Updated version of dhist
3 Begin
4 appropiateBuckets = FindApprpoitaeBuckets (dp, dhist)
5 for all Bucket bucketi ∈ appropiateBuckets do
6 insert dp in bucketi

7 if bucketi.size ≥ split_th then
8 Bucket[] temp_array ← SplitBucket(bucketi)
9 bucket1 ← temp_array[0]; bucket2 ← temp_array[1]
10 Replace bucketi by bucket1 and bucket2
11 Set the successor and predecessor buckets for bucket1 and bucket2
12 end if
13 end for
14 for all Bucket bucketi in dhist do
15 if bucketi is empty then
16 Merge bucketi with its successor or predecessor
17 end if
18 end for
19 return dhist
20 End

5.6 Self-aware Selection and Adaptation Levels

5.6.1 Stimulus-aware Selection and Adaptation

The selection of the VSs in this approach is based on the promised utilities of the

volunteers. When a subscriber submits a request, the system computes the utilities

154

using the utility model and applies the utility-based search (see in Algorithm 4.2) to find

a composite service that satisfies the request.

With regards to self-adaptivity, the stimulus-aware adaptation is considered as the

basic level of adaptation, as it is the adaptation approach supported in the current

volunteer computing systems. The adaptation actions are limited to replacing the

violating service by another one in order to maintain the corresponding composite

service. To clarify, when a change in the promised storage, availability, or security, of a

service VSi occurs, the self-expression initiates an adaptation action in order to replace

the violating service VSi by re-executing the utility-based search. If the adaptation

process is successful, then the violating service is replaced, otherwise, the subscriber is

notified that the violation cannot be treated.

5.6.2 Time-aware Selection and Adaptation

The aim of the time-aware approach is to use the historical performance of the services

to select the most appropriate services, i.e. services that provide what they promise. In

our approach, we express the performance of the services in terms of dependability. We

consider a service 𝑉𝑆𝑖 to be dependable if 𝑉𝑆𝑖 provides the promised storage and

security level in the promised time availability. In this section, we introduce the

definition of dependability then the time-aware VS selection approach.

(1) VS dependabilities

The dependability evaluation provides a useful method for examining the behaviour of

the service provider, i.e. the volunteer. We use dependability in a broad sense to measure

the extent to which a selected service fulfils the promised resources and quality of

service. As the deviation from the promised quality can be in any attribute, there will be a

155

dependability measure for each service attribute. We introduce the definition of

dependability as follows:

Definition 5.2 Given that a volunteer service 𝑉𝑆𝑖 has been selected in a composite

service 𝐶𝑆 to serve the request 𝑅. Assume that 𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖) is the storage utility promised

by the volunteer of 𝑉𝑆𝑖. Assume also that the actual storage utility provided by 𝑉𝑆𝑖,

captured by the self-aware framework sensors during serving 𝑅 is 𝑈𝑠𝑡𝑔
𝐴 (𝑉𝑆𝑖). Then the

storage dependability of 𝑉𝑆𝑖, 𝐷𝑠𝑡𝑔(𝑉𝑆𝑖), is defined as in (5.4). The availability time

dependability, 𝐷𝑡𝑖𝑚𝑒(𝑉𝑆𝑖), is defined similarly as in (5.5). The security dependability is

calculated as a weighted sum that involves the reported level of security (provided by

the subscriber frontend) along with the reputation of the service (provided as a

feedback by the subscriber) as shown in (5.6).

𝐷𝑠𝑡𝑔(𝑉𝑆𝑖) = {

𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖) − 𝑈𝑠𝑡𝑔

𝐴 (𝑉𝑆𝑖)

𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖)

, 𝑈𝑠𝑡𝑔
𝐴 (𝑉𝑆𝑖) < 𝑈𝑠𝑡𝑔

𝑃 (𝑉𝑆𝑖)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.4)

𝐷𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) = {

𝑈𝑡𝑖𝑚𝑒
𝑃 (𝑉𝑆𝑖) − 𝑈𝑡𝑖𝑚𝑒

𝐴 (𝑉𝑆𝑖)

𝑈𝑡𝑖𝑚𝑒
𝑃 (𝑉𝑆𝑖)

, 𝑈𝑡𝑖𝑚𝑒
𝐴 (𝑉𝑆𝑖) < 𝑈𝑡𝑖𝑚𝑒

𝑃 (𝑉𝑆𝑖)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.5)

𝐷𝑠𝑒𝑐(𝑉𝑆𝑖) = {
𝑊1

𝑈𝑠𝑒𝑐
𝑃 (𝑉𝑆𝑖) − 𝑈𝑠𝑒𝑐

𝐴 (𝑉𝑆𝑖)

𝑈𝑠𝑒𝑐𝑃 (𝑉𝑆𝑖)
+𝑊2 𝑅𝑒𝑝(𝑉𝑆𝑖), 𝑈𝑠𝑒𝑐

𝐴 (𝑉𝑆𝑖) < 𝑈𝑠𝑒𝑐
𝑃 (𝑉𝑆𝑖)

𝑊1 +𝑊2. 𝑅𝑒𝑝(𝑉𝑆𝑖), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤ℎ𝑒𝑟𝑒 𝑊1 + 𝑊2 = 1

 (5.6)

(2) Knowledge management using dynamic histograms

Our aim is to capture the periodic performance patterns of the VSs, in terms of

dependabilities, so that the system can use such historical knowledge to determine the

time intervals in which a service is most likely to fulfil the request requirements and the

156

time intervals in which that service is most likely to violate the request requirements. To

achieve that, a dynamic histogram is created for each service attribute. Initially, each

dynamic histogram contains one bucket, then the dynamic histogram evolves by

dividing/merging buckets as the dependabilities’ data points arrive. For each service, a

new data point will arrive in two cases, (i) a service violates the promised utilities or (ii)

a request, in which the service is involved to satisfy, has been satisfied. In both cases, the

dependabilities will be computed using (5.4), (5.5) and (5.6) and inserted into the

appropriate bucket(s) using Algorithm 5.3. After a certain period of time, the dynamic

histogram converges to a state in which the buckets represent the service’s pattern

periods. The length of the convergence period depends on how often the service is used.

(3) Time-aware service selection

When a subscriber submits a request, the following key steps are executed in order to

satisfy the request:

Step 1: For each 𝑉𝑆𝑖 ∈ 𝑆𝑅, compute the 𝑈𝑠𝑡𝑔, 𝑈𝑡𝑖𝑚𝑒 , and 𝑈𝑠𝑒𝑐 using the utility functions

(4.2), (4.3), and (4.4) respectively.

Step 2: For each 𝑉𝑆𝑖 ∈ 𝑆𝑅 find the appropriate buckets from the corresponding dynamic

histogram. Each bucket overlaps with request interval is considered an appropriate

bucket (see Algorithm 5.1).

Step 3: For each bucket, estimate the representative 𝐷𝑠𝑡𝑔, 𝐷𝑡𝑖𝑚𝑒 , and 𝐷𝑠𝑒𝑐 for each 𝑉𝑆𝑖 ∈

𝑆𝑅 by counting the number of data points which have a value greater than or equal to the

dependability threshold 𝐷𝑡ℎ , (which is set by the system administrator), and dividing that

number by the total number of data points in the bucket.

157

Step 4: Find the average storage dependability, 𝐴𝑉𝐷𝑠𝑡𝑔, for each 𝑉𝑆𝑖 by summing the

representative storage dependability of each bucket and dividing over the number of

buckets. Similarly find 𝐴𝑉𝐷𝑡𝑖𝑚𝑒 and 𝐴𝑉𝐷𝑠𝑒𝑐 .

Step 5: Find the non-dominant set of services using (5.7), select one of them randomly,

and add it to 𝐶𝑆.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{𝑈𝑠𝑡𝑔(𝑉𝑆𝑖), 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖), 𝑈𝑠𝑒𝑐(𝑉𝑆𝑖)

 𝐴𝑉𝐷𝑠𝑡𝑔, 𝐴𝑉𝐷𝑡𝑖𝑚𝑒 , 𝐴𝑉𝐷𝑠𝑒𝑐}
(5.7)

After executing the above steps, the subscriber request will be partially satisfied, then

the request requirements will be recalculated in order to update the remaining

requirements, and the above steps will be repeated to select the next service. After

selecting each service, the constraints of the CS (see section 4.2.2) will be checked. If they

are satisfied, the composite service CS will be returned; otherwise, the above steps will

be repeated. If all the services are visited and the global constraints are still not satisfied,

an empty CS will be returned and the subscriber will be notified that the request cannot

be satisfied.

(4) Time-aware adaptation

The self-adaptivity in the time-aware approach is two-fold, in terms of the question:

“When should we adapt?”

 Reactive adaptation: When a change in the promised quality of service is

reported to the time-awareness component, the actual utilities will be computed

using (4.2), (4.3), and (4.4) and subsequently the dependabilities using (5.4),

(5.5) and (5.6). Then the dependabilities will be stored in the corresponding

dynamic histogram. After that, an adaptation action will be carried out by the

158

self-expression component. This adaptation action involves executing the above

time-aware service selection steps in order to replace the service that violated

the requirements.

 Proactive adaptation: The system performs proactive adaptation in order to

adapt a composite service before a violation occurs. The proactive adaptation is

triggered in two cases, (1) the dependability of a service involved in a CS is

expected to drop, according to the performance pattern captured in the service

dynamic histogram, or (2) a service has become available in the SR which is

expected to perform better than an existing one, according to its performance

patterns. In both cases, the system will execute the above time-aware service

selection steps in order to adapt the CS.

5.6.3 Interaction-aware Selection and Adaptation

The aim of the interaction-aware approach is to consider the past interactions between

the services in order to capture the correlation that exists between services. In other

words, the interaction-aware approach aims to predict which services are most

appropriate to be composed together to satisfy a request. To achieve that, we maintain a

matrix of dynamic histograms for the services for each attribute and then we use the

same machinery we described in the time-aware approach for updating the dynamic

histograms, estimating the dependability, and adapting the composite services. The

dynamic histograms matrix 𝐷𝐻𝑀𝑠𝑡𝑔 for the storage attribute has the form:

𝐷𝐻𝑀𝑠𝑡𝑔 =
 𝑉𝑆1
𝑉𝑆2
⋮
𝑉𝑆𝑛

𝑉𝑆1 𝑉𝑆2 … 𝑉𝑆𝑛

(

− 𝑑ℎ12 … 𝑑ℎ1𝑛
𝑑ℎ21 − … 𝑑ℎ2𝑛
⋮ ⋮ ⋱ ⋮

𝑑ℎ𝑛1 𝑑ℎ𝑛2 … −

)

159

where 𝑉𝑆1 , 𝑉𝑆2 , … , 𝑉𝑆𝑛 are the available services, 𝑑ℎ𝑖𝑗 is the dynamic histogram that

maintains the dependabilities of 𝑉𝑆𝑖 when composed with 𝑉𝑆𝑗 . Similarly, two matrices

are maintained for the time availability (𝐷𝐻𝑀𝑡𝑖𝑚𝑒) and security (𝐷𝐻𝑀𝑠𝑒𝑐) attributes.

Then, when a request is submitted, the dynamic histograms will be used to estimate the

interaction dependabilities between services. The key steps for the interaction-aware

service selection are as follows:

Step 1: For each 𝑉𝑆𝑖 ∈ 𝑆𝑅, compute the 𝑈𝑠𝑡𝑔, 𝑈𝑡𝑖𝑚𝑒 , and 𝑈𝑠𝑒𝑐 using the utility functions

(4.2), (4.3), and (4.4) respectively.

Step 2: Find the non-dominant set of services using (4.5), select one of them

randomly, 𝑉𝑆𝑖, and add it to 𝐶𝑆.

Step 3: If 𝑉𝑆𝑖 satisfies the request, then the composite service 𝐶𝑆 will be returned,

otherwise, execute the following steps.

Step 4: For each 𝑉𝑆𝑗 ∈ 𝑆𝑅, 𝑗 ≠ 𝑖, retrieve the dynamic histograms from the

matrices 𝐷𝐻𝑀𝑠𝑡𝑔, 𝐷𝐻𝑀𝑡𝑖𝑚𝑒 , and 𝐷𝐻𝑀𝑠𝑒𝑐 .

Step 5: Find the appropriate buckets from the corresponding dynamic histograms. Each

bucket overlaps with request interval is considered an appropriate bucket (see

Algorithm 5.1).

Step 6: For each bucket, estimate the 𝐷𝑠𝑡𝑔_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝐷𝑡𝑖𝑚𝑒_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛, and 𝐷𝑠𝑒𝑐_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

for each 𝑉𝑆𝑖 ∈ 𝑆𝑅 by counting the number of data points which have a value greater than

or equal to the dependability threshold 𝐷𝑡ℎ and dividing that number by the total number

of data points in the bucket.

Step 7: Find the average storage dependability, 𝐴𝑉𝐷𝑠𝑡𝑔_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛, for each 𝑉𝑆𝑗 by

summing the representative storage dependability of each time slot and dividing over

160

the number of time slots. Similarly find 𝐴𝑉𝐷𝑡𝑖𝑚𝑒_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 and 𝐴𝑉𝐷𝑠𝑒𝑐_𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛.

Step 8: Find the non-dominant set of services using (5.8), select one of them randomly,

and add it to 𝐶𝑆.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{𝑈𝑆𝑡𝑔(𝑉𝑆𝑖), 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) , 𝑈𝑠𝑒𝑐(𝑉𝑆𝑖)

 𝐼𝐷𝑠𝑡𝑔, 𝐼𝐷𝑡𝑖𝑚𝑒 , 𝐼𝐷𝑠𝑒𝑐}
 (5.8)

Similar to the time-aware case, after executing the above steps, the subscriber request

will be partially satisfied, then the request requirements will be recalculated in order to

update the remaining requirements, and the above steps will be repeated.

5.7 Experimental Evaluation

In this section, we conduct experiments in order to evaluate the performance of the

stimulus-, time- and interaction-aware approaches using simulations. The

experimentations setup and context is as described in the previous chapter. Table 5.1

lists the values of the required parameters. With respect to the performance of the

services, it is assumed to have a periodical daily or weekly patterns, according to the

findings of the long-term studies reported in [5] and [111] as presented in chapter 3.

Table 5.1: The Values of the Parameters

Parameter Value
Confidence threshold (𝜺) 0.18

Confidence probability 𝑷(|𝑬(𝑿) − �̂�(𝑿) ≥ 𝜺|) 0.9

Minimum interval length (minLength) 1 day
Dependability threshold (Dth) 0.8

𝑾𝟏 0.5

𝑾𝟐 0.5

The objective of this evaluation is to investigate the effectiveness of the self-aware

dynamic knowledge management, represented in the time- and interaction-awareness in

161

comparison with the basic self-adaptive approaches, represented by the stimulus-

awareness. The approaches are compared in terms of the RW, WT, and PSR, which are

defined in the previous chapter. With regard to the RW, we adapt the definition to include

the resources of the services that are replaced due to violating the promised utilities.

Comparison in Resources Waste (RW) The first set of experiments compares

the average resources waste over simulation time. Figure 5.4(a), (b), (c), and (d) shows

the average RW for varying arrival rates λ. The figure shows that the RW in the stimulus-

awareness case is high. A possible explanation for these results is that the

ineffectiveness of the adaptation capabilities at the stimulus-awareness level. That is,

replacing the VSs that violate the promised utilities with other VSs based on their

promised utilities does not provide any guarantee that the new VS will perform as

promised. That means the new VS can violate the promise again. The figure also shows

that the RW in the time- and interaction-awareness cases is high in the initial interval of

the simulation time, especially in the case of low requests arrival rate. These results can

be due to the lack of the knowledge at the time- and interaction-awareness levels as the

system starts from ‘zero-knowledge’ and accumulate the knowledge at runtime. After a

while of accumulating the knowledge, the RW in the time-aware case decreases and

after another while the RW in the interaction-aware decreases further. Moreover, the

figure shows that the initial period of ineffectiveness in the time- and interaction-

awareness cases decreases with the increase of the requests arrival rate. A possible

explanation for this is that the more requests arrive, the more services are used and the

hence the more knowledge is captured. In conclusion, the time- and the interaction-

aware approaches have the advantage of reducing the RW, which can be due to the

162

selection of the dependable services when the required knowledge about the services

dependability becomes adequate.

 Stimulus-awareness Time-awareness Interaction-awareness

R
es

o
u

rc
es

 W
as

te

(a) 𝜆 = 10 (b) 𝜆 = 30

(c) 𝜆 = 50 (d) 𝜆 = 70

 Simulation Time

Figure 5.4: Comparison in Resources Waste

Comparing the Percentage of satisfied requests (PSR) The second set of

experiments compares the average PSR over simulation time. Figure 5.5 (a), (b), (c), and

(d) shows the average PSR for varying arrival rates λ. The figure shows that the PSR in

the stimulus-awareness case is low. This can be due to the ineffectiveness of the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

163

adaptation capabilities at the stimulus-awareness level by selecting the VSs based on

their promised utilities. The figure also shows that the PSR in the time- and interaction-

awareness cases is low in the initial interval of the simulation time, which can be due to

the lack of the knowledge in this period. After a period of accumulating the knowledge,

the PSR in the time-aware case increases and after another period the PSR in the

interaction-aware increases further.

 Stimulus-awareness Time-awareness Interaction-awareness

P
er

ce
n

ta
ge

 o
f

Sa
ti

sf
ie

d
 R

eq
u

es
ts

(a) 𝜆 = 10 (b) 𝜆 = 30

(c) 𝜆 = 50 (d) 𝜆 = 70

 Simulation Time

Figure 5.5: Comparison in Percentage of Satisfied Requests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

164

Additionally, the figure shows that the initial period of ineffectiveness in the time- and

interaction-awareness cases decreases with the increase of the requests arrival rate.

Again, the reason can be that the more requests arrive, the more services are used and

the hence the more knowledge is captured. However, the PSR decreases in the cases of

high arrival rates, especially after a long period of simulation time. It is possible that this

result is due to the dropping of the requests from the system queue, especially with the

increase of the knowledge size after the long period of simulation time. In general, having

the advantage of selecting the dependable services using the time- and the interaction-

aware approaches results in increasing the PSR.

Comparing the Waiting time (WT) The third set of experiments evaluates the WT

of the three approaches. Turning to the simulation results, Figure 5.6 (a), (b), (c) and (d)

shows the WT for varying arrival rates λ. The figure shows that the use of the stimulus-

aware approach provides the least waiting time. The reason is that using the stimulus-

awareness approach does not require the computation of accumulating and using the

knowledge for the services selection. In other words, the adaptation using the stimulus-

awareness involves executing the utility-based search to select the VSs. On the other

hand, the figure shows that the WT in the time- and interaction-awareness cases

increases over simulation time. This can be due to the computation required to calculate

the dependabilities of the services, which are maintained in the dynamic histograms.

The increase of the knowledge size over time also contributes to the increase of the WT.

Also, the WT increases further with the increase of the requests arrival rates as more

processing will be required.

165

It is notable also that the WT in the time- and the interaction-awareness approach

increases linearly over time, whereas the WT in the stimulus-aware approach is not

affected. However, in the case of interaction-awareness, the waiting time can be expected

to increase fast when the dynamic histograms matrix grows massively. A possible way to

mitigate this situation is to limit the number of VSs that can be involved in a CS if the

interaction-awareness is to be used. Furthermore, the meta-self-awareness level

(presented in the next chapter) provides an approach for switching between the

awareness levels, which enables avoiding the use of a certain awareness level if the WT is

not acceptable compared to the usefulness of this level.

 Stimulus-awareness Time-awareness Interaction-awareness

W
ai

ti
n

g
T

im
e

(s
ec

o
n

d
s)

(a) 𝜆 = 10 (b) 𝜆 = 30

(c) 𝜆 = 50 (d) 𝜆 = 70

 Simulation Time

Figure 5.6: Comparison in Waiting Time

0

20

40

60

80

100

120

140

0 200 400 600

0

20

40

60

80

100

120

140

0 200 400 600

0

20

40

60

80

100

120

140

0 200 400 600

0

20

40

60

80

100

120

140

0 200 400 600

166

5.8 Conclusion

This chapter presented our attempt for enacting self-awareness in the dynamic and open

environment of the VC. We provided an approach for dynamic knowledge management

that is able to dynamically build and maintain the awareness about the performance

patterns of the services. The approach is two-fold:

 A ‘flavour’ of self-awareness has been used to incorporate self-awareness in VC in

order to enrich the self-adaptation capabilities in this environment. We used the

EPiCS [20] self-aware framework as it adheres to the principle of separation of

concerns by providing the fundamentals for multi-level knowledge

representation, which make it appropriate for the case of VC. We adapted and

mapped the framework to the case of VC.

 We proposed fundamental improvements to the framework by developing

concrete algorithms for multi-level knowledge management, specifically, the

stimulus-, the time-, and the interaction-awareness levels. The approaches use the

dynamic histograms to capture the performance trends of the VSs. We developed

algorithms for managing the evolution of the dynamic histograms and

incorporating them in the dynamic knowledge management approaches that

realise the self-awareness levels.

Meanwhile, even though the extension of the self-aware framework for the way of

knowledge management has benefited the case of VC it is likely that the benefit will

extend beyond the VC area. Applications which exhibit characteristics similar to the VC

and would require more sophisticated handling for the knowledge could take advantage

of the work of this thesis.

167

The chapter evaluates and compares the performance of the self-awareness levels (i.e.

the dynamic knowledge management approaches). The results show that using the

dynamic histograms for dynamic knowledge management helps to refine the

performance models at runtime. As the above figures show, the advantages of selecting

dependable services and satisfying more requests are noticed after the knowledge in the

dynamic histograms is refined. However, the improvements are accompanied with

overhead which is mainly the increase in the waiting time. This increase results from the

increase of the computation required for updating the dynamic histogram. In the next

chapter, we introduce the meta-self-awareness, to provide the self-adaptation capability

at a meta-level by switching between the awareness levels based on the benefits and

overhead of each of them.

168

169

SYMBIOTIC-BASED META-SELF-

AWARENESS FOR SELF-AWARE

SYSTEMS

6.1 Overview

In the previous chapter, we have proposed approaches for dynamic knowledge

management which contribute to engineering self-awareness by extending the

conceptual architectural framework of EPiCS. The approaches realise various levels of

self-awareness to enable different self-adaptive capabilities. Each level is enacted

through a different type of knowledge and knowledge management mechanisms,

providing different self-adaptive strengths. Besides that, the decomposition of

knowledge into ‘fine grain’ and the utilisation of the different types of knowledge in

different selection and adaptation approaches can result in different selection and

adaptation strategies. For example, referring to Figure 4.1, the reason behind the

existence of different strategies can be the use of different self-aware approaches to

select the services and, obviously, the more intelligent the approach, the more

appropriate services are selected. Nevertheless, the advantages are often accompanied

170

by overheads. This is exemplified in the relative performance of the e.g. interaction-

awareness and stimulus-awareness where the adoption of interaction-awareness results

in improving the percentage of satisfied requests and resources utilisation but higher

waiting time, compared to the stimulus-awareness.

Motivated by the above, we argue that an effective management for the trade-offs of

dependability requirements can be achieved through seamless switching between

awareness levels as it is the case of cognition. Although such argument has been

mentioned in the related self-awareness framework of EPiCS, an approach for the

dynamic switching between the awareness levels, based on the benefits and overheads

of each level, has not been tackled yet. In this chapter, we address this problem by

proposing a novel approach, referred to as meta-self-awareness to address this problem.

This level is intended to serve as a ‘cognitive system’ that can dynamically switch

between the different levels of awareness based on the current state of the system and

the quality of the knowledge acquired at each of the awareness levels.

In this context, we propose an internal structure of the meta-self-awareness level

which consists of two main parts, namely, the symbiotic simulator and the Decision

maker. The symbiotic simulator evaluates the alternative decisions that could have been

taken and suggests an awareness level. The Decision maker evaluates the current

workload of the system along with the suggestion of the awareness level and decides on

adopting the suggested level or not. Consequently, the work mechanics of the meta-self-

awareness level is two-fold:

 The meta-self-awareness approach makes novel use of a symbiotic simulation –

in the heart of the self-adaptive process - to provide the basis for what-if analysis

171

in cases where the knowledge for adaptation is stringent. The symbiotic

simulator performs what-if experiments to simulate the alternative VSs selection

and adaptation decisions which could have been taken by the alternative levels of

awareness. The simulation evaluates the performance of the different awareness

levels in terms of percentage of satisfied requests, resources waste, and waiting

time. In order to judge the awareness level using these conflicting criteria, a

Multi-Criteria Decision Making (MCDM) technique is used to suggest a level of

awareness.

 The Decision maker component of the meta-self-awareness takes into

consideration the stability of the system’s queue, in terms of avoiding the rapid

growth of the queue size and the consequent high waiting times and requests

dropping. For example, the meta-self-awareness will avoid switching to the

interaction-awareness, which exhibits relatively large waiting times, if the system

is receiving more requests.

Given the above background, the contributions of this chapter are as follows:

 Architecture for the meta-self-awareness level which makes novel use of a

symbiotic simulation – in the heart of the self-adaptive process – to simulate and

evaluate alternative selection and adaptation decision.

 A quantitative approach for self-adaptation at the meta-level which enables

managing the trade-off between benefits and overheads of adopting a certain

level of awareness taking into account the stability of the system’s queue.

172

 An evaluation of the performance of the meta-self-awareness approach to

investigate its effectiveness in switching between the other levels of self-

awareness.

6.2 Symbiotic Simulations: A background

The notion of symbiotic simulation systems was introduced to the computing paradigm

at the Dagstuhl Seminar on Grand Challenges for Modelling and Simulation in 2002 [144].

This notion was inspired by the biology where some kinds of interaction between some

biological species are referred to as symbiosis. The Dagstuhl Seminar defined A Symbiotic

Simulation System as “one that interacts with the physical system in a mutually beneficial

way”. The definition implies that both the physical system and the symbiotic simulation

system benefit each other. The simulation system receives real data collected by the

physical system. This data is necessary to simulate scenarios related to the decision-

making process carried out by the physical part. The simulation is carried out by

performing multiple what-if experiments to evaluate the alternatives. The physical part

uses the results of the simulation to inform the decision-making process and optimise its

performance. Figure 6.1 shows the relationship between the physical system and the

symbiotic system according to the definition of the Dagstuhl Seminar [144].

Figure 6.1: The Mutually Beneficial Symbiotic Simulation Paradigm. Adapted from [145]

173

In [146] this definition has been extended to involve other types of relationships

between the two systems, which were also inspired by the symbiosis concept in biology.

The extension introduced other types of symbiotic simulation systems which may or may

not be mutually beneficial. In these types the symbiotic simulation receives real data

from the physical systems may send feedback to the physical system which may effect

this feedback or use it as guidance. The purpose of using the symbiotic simulation

paradigm specifies the type of the symbiotic simulation will be used. In this context, two

sorts of symbiotic simulations exist, namely, closed loop and open loop systems. In the

closed loop system, a feedback will be created, analysed, and utilised to make a decision

to control the physical system. Such feedback can be in the form of a decision that will be

applied directly to the physical system or it can be only a suggestion that may or may not

be applied. On the contrary, no feedback will be communicated to the physical system in

the case of an open-loop system, where the output can be used by external operator or

tools for specific purposes, e.g. visualisation. Figure 6.2 shows the relationship between

the physical system and the symbiotic system in the closed loop and the open loop cases.

Based on that, five types of symbiotic simulations have been reported in [147] [146]:

 Symbiotic simulation decision support system (SSDSS): This type is a closed-

loop system. The results of the symbiotic simulation will be communicated to an

external Decision maker component as a suggestion rather than a decision. The

suggestion will be used in the decision-making process by the Decision maker

component, which will implement the decision in the physical system.

174

Figure 6.2: Symbiotic Simulation Paradigm (a) Closed-Loop (b) Open-Loop

 Symbiotic simulation control system (SSCS): This type is a closed-loop system.

The symbiotic simulation results are considered as a decision which will be

directly applied to the physical system by means of actuators. The Dagstuhl

Seminar definition of symbiotic simulation matches the definition of this type.

 Symbiotic simulation forecasting system (SSFS): This type is an open-loop

system. The simulation can predict the behaviour of the physical system in

different scenarios without communicating any suggestions or decisions to a

Decision maker component or to the physical systems. The simulation results can

be used for further analysis by external tools.

175

 Symbiotic simulation model validation system (SSMVS): This type is an open-

loop system. The purpose of the simulation of this type is to produce a model (or a

set of reference models using different what-if scenarios) that represents the

current state of the system, called reference model. Then the reference model can

be used for validation purposes.

 Symbiotic simulation anomaly detection system (SSADS): This type is an open-

loop system. It uses a reference model, e.g. produced by an SSMVS, of the physical

system to compare its behaviour with the behaviour of the physical system. If the

two behaviours are inconsistent then the system deduces that an anomaly may

exist.

The different types of the symbiotic simulation paradigm have been used in the

various applications. In [148] a framework for incorporating symbiotic simulations in

the enterprise production systems. The framework combines the different types of

symbiotic simulation where each type serves specific part of the production system. In

[149] a symbiotic simulation-based technique is used in a framework for Traffic

Management. Historical information about the traffic dynamics is fed to the simulator to

perform what-if simulations to test alternative strategies for traffic management. The

alternatives are compared and the best strategy will then be recommended for actual

implementation. In [150] a symbiotic simulation-based framework is designed to

support the resources provisioning in the cloud. A set of pre-formulated policies for

virtual machines provision and real-time measurements of running cloud applications

are fed to the simulation system. The system uses these inputs to optimise the cloud

system by selecting the appropriate provisioning policies and applying them to the cloud

176

system. Furthermore, in the Dynamic Data-Driven Application Systems (DDDAS)

paradigm, a closed-loop simulation system is used to steer the data collection about the

real application [151]. The measurements gathered from the real application are used

by the simulation for performance prediction. Then, using the simulation results, the

simulator guides the data measurement process for the sake of achieving efficient data

collection. In this context, the DDDAS paradigm can be viewed as a symbiotic simulation

control system. Other symbiotic simulation related works can be found in the literature.

The meta-self-awareness approach proposed in this chapter focuses on both the

state of the system queue and the benefits of each awareness level as factors that drive

the switching between the awareness levels. In order to determine the benefits of each

of the awareness levels, what-if experiments can be performed to simulate the

performance of alternative awareness levels and obtain feedback. Since the state of the

system queue is another factor in the switching decision-making process, the feedback

should not be applied directly as a decision. Therefore, we adopt an SSDSS to provide a

suggestion for adopting a certain level of awareness, as detailed in the following section.

6.3 Symbiotic-based Meta-self-awareness Approach

The results of the previous chapter revealed that the different levels of awareness

provide the system with different capabilities of self-adaptivity, based on the used type of

knowledge. Each level has advantages and disadvantages in terms of achieving the goals

of the system, i.e. improving the percentage of satisfied requests, the resources waste,

and the waiting time. For example, making the selection and adaptation decisions using

the interaction-awareness level confers high percentage of satisfied requests but with

high waiting times relative to the making the decisions using the stimulus-awareness

177

level. The high waiting times mean that the requests will remain longer time in the

system’s queue. This may result in rapid growth in the queue size and consequently

dropping the incoming requests down to decreasing the percentage of satisfied requests.

Furthermore, the obtainment of the interaction- and time-awareness advantages is

subject to the availability and the quality of the corresponding knowledge. As the system

normally starts with ‘zero-knowledge’ about the performance of the services, it will be

illogical to use the time- or the interaction-awareness levels in the first period of the

system operation. The system will spend some time collecting and representing the

knowledge that would be sufficient to capture the performance patterns of the services

so that it can use the time- and interaction-awareness levels. The questions that arise

here are (1) how to judge on the quality of the collected knowledge? and (2) which level

of awareness should be used?

Our approach to answering these questions is to equip the system with self-

adaptation capabilities at the meta-level. These capabilities are realised through a meta-

self-awareness level which acts as the ‘brain’ of the self-awareness framework. It is

useful to manage the trade-offs that exist between the system goals. The role of the

meta-self-awareness is to enable the system to switch between the levels of awareness

(stimulus-, time-, and interaction-awareness) based on the advantages and

disadvantages of each level. This ability permits the system to improve its performance

(e.g. by leveraging the captured knowledge for selecting dependable services).

Furthermore, it permits the system to degrade smoothly instead of failing fatally (e.g.

when the overhead of leveraging the knowledge is unbearable). For this purpose, the

meta-self-awareness investigates the quality of the knowledge using a symbiotic

simulator. The simulator performs what-if experiments to compare the benefits and

178

overheads of the three levels and suggest a level to a Decision maker component. The

Decision maker also receives information about the queue status and analyses the

queue’s stability. Consequently, the Decision maker decides on an awareness level. In the

following, we present the internal structure of the meta-self-awareness level, see Figure

6.3, and explain the adaptation decision-making process at this level.

Figure 6.3: Architecture of The Meta-Self-Awareness Level

(1) Adaptation Checkpoints

The decision of switching from one awareness level to another is based on the periodic

evaluation of system’s performance. The evaluation is performed every time period 𝑇𝑝.

The upper bounds of the time periods are called the checkpoints. The length of 𝑇𝑝 varies

from [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] and is updated at runtime according to the changes in the system state.

179

In order to update 𝑇𝑝, we adopt a strategy similar to the one used in [152]. After each

evaluation period, if the evaluation resulted in no transition to a new awareness level,

then 𝑇𝑝 is increased to 𝑚𝑖𝑛(2𝑇𝑝 , 𝑇𝑚𝑎𝑥). Conversely, if the evaluation resulted in a

transition to a new level, then 𝑇𝑝 is decreased to 𝑚𝑎𝑥(𝑇𝑝/2 , 𝑇𝑚𝑖𝑛).

(2) Symbiotic Simulation Decision Support

As shown in Figure 6.3, the meta-self-awareness level leverages a symbiotic feedback

loop which performs what-if experiments to investigate alternative awareness levels. The

decision of adopting one of the awareness levels is made by the Decision maker

component which considers the suggested awareness option (by the Analysis process)

along with the queue status. The symbiotic feedback loop consists of two components,

(1) the What-if simulations and (2) the Analysis process.

At every checkpoint, the system passes the set of requests which have been processed

by the real system and the models learnt by the stimulus-, time-, and interaction-

awareness levels. Then the what-if simulator simulates the processing of the requests

using the real learnt models in order to investigate the alternative decisions which could

have been made using the other awareness levels. The simulation results will be passed

to the Analysis process in order to evaluate the expected performance of the different

awareness levels. The simulation results are summarised in terms of the percentage of

satisfied requests (PSR), resources waste (RW), and waiting time (WT), which are

defined in chapter 4.

 Upon receiving the simulation results at every checkpoint, the Analysis process

compares the resulting performance measures of the awareness levels to find out which

level is the best; relative to the other levels. The Analysis process applies a simple additive

180

weighting [153] to express the benefit of each of the awareness levels. Formally, at each

checkpoint, the Analysis process performs the following calculation steps:

 Step 1: The metrics values form a matrix, 𝐷, which has the following form:

𝐷 = 𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠
𝑇𝑖𝑚𝑒

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑃𝑆𝑅 𝑅𝑊 𝑊𝑇

(

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

) (6.1)

where each 𝑟𝑖𝑗 is a measurement of the performance of the corresponding

awareness level under the given criteria.

 Step 2: Since the waiting time and the resources waste are negative criteria (i.e. the

higher the value the lower the benefit) whereas the satisfied requests percentage is

a positive criterion (i.e. the higher the value the higher the benefit) and since each

metric has its own range and units, the metrics should be scaled to make them

comparable. The scaled matrix, 𝑁, has the form:

𝑁 = 𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠
𝑇𝑖𝑚𝑒

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑃𝑆𝑅 𝑅𝑊 𝑊𝑇

(

𝑛11 𝑛12 𝑛13
𝑛21 𝑛22 𝑛23
𝑛31 𝑛32 𝑛33

) (6.2)

where 𝑛𝑖𝑗 =
𝑟𝑖𝑗− 𝑟𝑗

𝑚𝑖𝑛

𝑟𝑗
𝑚𝑎𝑥−𝑟𝑗

𝑚𝑖𝑛
 for the satisfied requests percentage, 𝑛𝑖𝑗 =

𝑟𝑗
𝑚𝑎𝑥−𝑟𝑖𝑗

𝑟𝑗
𝑚𝑎𝑥−𝑟𝑗

𝑚𝑖𝑛
 for

the waiting time and the resources waste, 𝑟𝑗
𝑚𝑎𝑥 is the maximal value of a metric in

matrix 𝐷, and 𝑟𝑗
𝑚𝑖𝑛 is the minimal value of a metric in matrix 𝐷.

 Step 3: The importance of each of the identified metric, specified by the system

admin, is expressed through the multiplication of matrix 𝑁 by the weight vector 𝑊

resulting in a weighted matrix 𝑉:

181

𝑉 = (

𝑣11 𝑣12 𝑣13
𝑣21 𝑣22 𝑣23
𝑣31 𝑣32 𝑣33

) = (

𝑛11 𝑛12 𝑛13
𝑛21 𝑛22 𝑛23
𝑛31 𝑛32 𝑛33

)(

𝑤1
𝑤2
𝑤3
) (6.3)

where 𝑤𝑖 ≥ 0 and ∑𝑤𝑖 = 1.

 Step 4: The overall benefit of each level is computed by adding the corresponding

row elements.

The level with the maximal benefit value will be suggested to the Decision maker

component. In the rest of this chapter, we denote 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 = 𝑆, 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 = 𝑇, or

𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 = 𝐼 to express the suggestion of the stimulus-, time-, or interaction-

awareness levels, respectively.

It is worth mentioning here that the criteria used in the symbiotic simulation to

compare the levels of awareness emerge from the application domain. That means, in

different contexts different criteria can be used. Similarly, the levels of awareness which

are simulated in the symbiotic simulator can vary according to the application domain.

(3) Adaptation at the Meta-Level

The Decision maker component performs the actual adaptation at the meta-self-

awareness level. The Decision maker may or may not consider the suggestion from the

Analysis process. The adaptation decision depends also on the following criteria:

 Queue Stability. According to Loynes’ theorem [154], if the requests arrival and

serving processes are independent, then the queue is stable if the requests arrival

rate 𝜆 is less than the serving rate 𝜇. This condition is necessary to avoid indefinite

growth of the queue. Thus, the meta-self-awareness should tend to choose the

awareness level such that the queue stability is achieved. Obviously, the different

182

levels of awareness exhibit different serving rates due to the different amount of

computation performed at each of the levels. We use the queue utilisation factor

𝜌 = 𝜆/𝜇 and require 𝜌 ≤ 1 for the queue to be stable.

 Percentage of Dropped Requests (PDR). When the requests arrival rate is greater

than the serving rate, the queue will grow. Then when the queue becomes fully

occupied the system starts to drop the incoming requests. We define 𝑃𝐷𝑅 as the

number of those dropped requests divided over the total number of requests and

require 𝑃𝐷𝑅 < 𝑃𝐷𝑅𝑡ℎ , where 𝑃𝐷𝑅𝑡ℎ is the threshold under which the percentage

of the dropped requests is acceptable. As can be expected, the meta-self-awareness

should tend to activate the awareness level such that 𝑃𝐷𝑅 < 𝑃𝐷𝑅𝑡ℎ. It is worth

mentioning that we consider this criterion to deal with the case of occupying the

whole queue capacity.

In the following, we present the transitions from the current level to the next one, as

shown in Figure 6.4:

Current state is stimulus-awareness:

 If (𝜌 > 1), then the queue is unstable (i.e. size is increasing). Therefore, no

transition is performed in order to process the request as fast as possible using the

stimulus-awareness level. In this case, if (𝑃𝐷𝑅 ≥ 𝑃𝐷𝑅𝑡ℎ) then the system should

notify the admin and advise her to increase the queue capacity.

 If ((𝜌 ≤ 1) 𝐴𝑁𝐷 (𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝑆)), then although the queue is stable, no

transition is performed because no benefit is expected from the other levels of

awareness (e.g. because the captured knowledge is not adequate to be used).

183

 If ((𝜌 ≤ 1) 𝐴𝑁𝐷 ((𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝑇)𝑂𝑅 (𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝐼))), then the system

performs a transition to the suggested awareness level.

Figure 6.4: The State Diagram of The Awareness Levels Switching

Current state is time-awareness:

 If (𝜌 ≤ 1 𝐴𝑁𝐷 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝑇), then the queue is stable and the time-awareness

is suggested. Therefore, no transition is performed.

 If ((𝜌 ≤ 1) 𝐴𝑁𝐷 ((𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝐼)𝑂𝑅 (𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝑆))), then the queue is

stable and the system performs a transition to the suggested awareness level.

 If (𝜌 > 1), then the queue is growing up, then the system transitions back to the

stimulus-awareness level in order serve the requests faster.

Current state is interaction-awareness

184

 If ((𝜌 > 1) 𝐴𝑁𝐷 (𝑃𝐷𝑅 ≥ 𝑃𝐷𝑅𝑡ℎ)), then the system transitions to back to the

stimulus-awareness level (regardless of the suggested level) in order serve the

requests faster.

 If ((𝜌 > 1) 𝐴𝑁𝐷 (𝑃𝐷𝑅 < 𝑃𝐷𝑅𝑡ℎ)), then the system transitions to the time-

awareness level in order serve the requests faster.

 If ((𝜌 ≤ 1) 𝐴𝑁𝐷 ((𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝑇)𝑂𝑅 (𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝑆))), then the queue is

stable and the system performs a transition to the suggested awareness level.

 If (𝜌 ≤ 1 𝐴𝑁𝐷 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 == 𝐼), then the queue is stable and no transition is

performed.

6.4 Experimental Evaluation

6.4.1 Performance of Meta-self-awareness

We compare the meta-self-aware version of the self-aware architectural framework with

the non-meta-self-aware version, i.e. the stimulus-, time-, and interaction-aware

approaches. The experiments compare the four approaches in terms of the criteria

mentioned above, namely, the PSR, the RW, and the WT. The value of the threshold PDR

is set to 0.1.

Comparison in PSR The first set of experiments compares the percentage of

well-satisfied requests over simulation time. Figure 6.5 (a), (b), (c), and (d) shows the

average PSR for varying arrival rates λ. The figures show that the average PSR of the

interaction- and the time-awareness cases are higher than the stimulus-awareness cases

in the initial period of simulation time. However, the PSR of the interaction- and the time-

185

awareness drops when the requests arrival rate gets high. More importantly, the figures

show that the average PSR of the meta-self-aware case matches the best PSR of the other

three cases. For example, in Figure 6.5 (a), the PSR of the meta-self-awareness case is the

same as the time-awareness until the PSR of the interaction-awareness gets higher than

the time-awareness (after simulation time = 300). At that point, the PSR of the meta-self-

awareness will be the same as the interaction-awareness case. In Figure 6.5 (b) and (c)

after the PSR of the interaction-awareness drops due to high arrival rate, the PSR of the

meta-self-awareness will be the same as the time-awareness, which is the best one in that

Stimulus-
awareness

Time-
awareness

Interaction-
awareness

Meta-self-
awareness

P
er

ce
n

ta
ge

 o
f

W
el

l S
at

is
fi

ed
 R

eq
u

es
ts

(a) 𝜆 = 10 (b) 𝜆 = 30

(c) 𝜆 = 50 (d) 𝜆 = 70

 Simulation Time

Figure 6.5: Comparison in Percentage of Satisfied Requests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

186

case. Another example in Figure 6.5 (d), the PSR of the meta-self-awareness case will be

close to the stimulus-awareness case (after simulation time =400) which has the best PSR

at that point. Therefore, having the advantage of switching between the awareness levels

by the meta-self-awareness approach results in satisfying a higher number of requests.

Comparison in RW The second set of experiments compares the average

resources waste over simulation time. Figure 6.6(a), (b), (c), and (d) shows the average

RW for varying arrival rates λ. The figures show that the average RW of the stimulus-

awareness case is higher than the interaction- and the time-awareness cases in the initial

period of simulation time. However, the average RW of the interaction- and the time-

awareness rises when the requests arrival rate gets high. More importantly, the figures

show that the average RW of the meta-self-aware case matches the average RW of the

adopted awareness approach. For example, in Figure 6.6 (a), the RW of the meta-self-

awareness case is the same as the time-awareness until simulation time = 300. This is

because the adopted awareness level in this period is the time-awareness level. The

adoption of the time-awareness level in this period, not the stimulus-awareness which

has the least RW, is due to the higher weight assigned to the PSR metric in (6.3). Figure

6.6 (a) shows also that the RW of the meta-self-awareness is the same as the interaction-

awareness case after simulation time = 300, which is the least RW among the other

approaches. In Figure 6.6 (b) and (c) the RW of the meta-self-awareness is the same as

the interaction-awareness, which is the best one in that case until simulation time is 300

and 200 respectively. Another example in Figure 6.6 (d), the RW of the meta-self-

awareness case will be close to the stimulus-awareness case (after simulation time =

400) even though it is not the least RW at that point. The reason is that the PSR has a

higher weight in the experimentations setup of the what-if simulations. This higher

187

weight makes the suggestion decisions biased towards suggesting the level that is

expected to have higher PSR. However, having the advantage of switching between the

awareness levels, by the meta-self-awareness approach, has the advantage of reducing

the RW if the difference in the expected PSR of the levels is not significant (in case the

PSR has a higher weight than RW).

Stimulus-
awareness

Time-
awareness

Interaction-
awareness

Meta-self-
awareness

R
es

o
u

rc
es

 W
as

te

(a) 𝜆 = 10 (b) 𝜆 = 30

(c) 𝜆 = 50 (d) 𝜆 = 70

 Simulation Time

Figure 6.6: Comparison in Resources Waste

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600

188

Comparison in WT The third set of experiments compares the average waiting

time WT waste over simulation time. Figure 6.7 (a), (b), (c), and (d) shows the average

WT for varying arrival rates λ. The figures show that the average WT of the stimulus-

awareness case is always smaller than the interaction- and the time-awareness cases.

The average RW of the interaction- and the time-awareness rises more rapidly, but

linearly, when the requests arrival rate gets high. More importantly, the figures show that

the average WT of the meta-self-aware case changes to the average WT of the adopted

awareness approach. For example, in Figure 6.7 (a), the WT of the meta-self-awareness

case is the same as the time-awareness until simulation time = 300. This is because the

adopted awareness level in this period is the time-awareness level. Figure 6.7 (a) shows

also that the WT of the meta-self-awareness is the same as the interaction-awareness

case after simulation time = 300, the period in which is the interaction-awareness level is

adopted. In Figure 6.7 (c), the WT of the meta-self-awareness case will drop close to the

stimulus-awareness case (after simulation time = 500) which is adopted in that case.

Another example in Figure 6.7 (d), the WT of the meta-self-awareness case will be close

to the stimulus-awareness case (after simulation time = 400) which is adopted in that

case. Therefore, the switching between the awareness levels by the meta-self-awareness

approach results in changes in the waiting time according to the adopted level and

reducing the waiting time when the requests arrival rate is high.

The experimentation results show that the meta-self-awareness approach enables the

switching between the different levels of awareness based on the expected performance

of each of the levels and on the queue state. The results show that the meta-self-

awareness tends to select the interaction-awareness level when the arrival rate is low

and after a period of the simulation time. Such period is required to acquire and refine

189

the knowledge on the performance of the services. However, since the adoption of this

level results in high overhead when the arrival rate is high, the meta-self-awareness

switches to another level of awareness in order to reduce the waiting time.

Stimulus-
awareness

Time-
awareness

Interaction-
awareness

Meta-self-
awareness

W
ai

ti
n

g
T

im
e

(s
ec

o
n

d
s)

(a) 𝜆 = 10 (b) 𝜆 = 30

(c) 𝜆 = 50 (d) 𝜆 = 70

 Simulation Time

Figure 6.7: Comparison in Waiting Time

The results also show that the switching from one level to another is sensitive to the

values of the weights which are assigned to the metrics in the symbiotic simulation for

suggesting an awareness level. As we mentioned in regards to Figure 6.6(a), the adopted

level in the period where simulation time <= 300 was the time-awareness although the

0

20

40

60

80

100

120

140

0 200 400 600

0

20

40

60

80

100

120

140

0 200 400 600

0

20

40

60

80

100

120

140

0 200 400 600

0

20

40

60

80

100

120

140

0 200 400 600

190

stimulus-awareness exhibited the minimum waste. That is because we assigned a higher

weight to the PSR metric in these experiments.

6.4.2 Overhead of Meta-self-awareness

Naturally, although the symbiotic simulation provides support of self-adaptation at the

meta-level, it adds computational overhead to the use of the self-aware framework. The

computational overhead results mainly from re-computing the selection and adaptation

decisions using the different levels of awareness during the what-if analysis. Figure 6.8

compares the computational time of meta-self-aware and the non-meta-self-aware

approaches. The computation time is measured as the time consumed for processing all

the requests divided by the number of requests. The figure shows that the computational

time of the meta-self-awareness approach exhibits high computation time compared to

the other approaches. The figure shows also that the computation time increases with the

increase of the requests arrival rate, as more computation is needed to serve increasing

number of requests to search for and adapt the composite services. Furthermore, the

figure shows that the computation time increases over time. This increase is due to the

increase in the size of the knowledge as more knowledge about the performance of the

services is accumulated. However, further research is required to investigate the

acceptance of this overhead compared to the benefits of the meta-self-awareness level. In

relation to that, exploring the optimal placement of symbiotic simulator, i.e. on the same

machine running the self-aware framework or on dedicated computing machine to

parallelise the computation and reduce the computation overhead, is another area of

research for further work.

191

Stimulus-
awareness

Time-
awareness

Interaction-
awareness

Meta-self-
awareness
C

o
m

p
u

ta
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

(a) 𝜆 = 10 (b) 𝜆 = 30

(c) 𝜆 = 50 (d) 𝜆 = 70

 Simulation Time
Figure 6.8: Comparison in Computation Time

6.5 Conclusion

In this chapter, we have answered the thesis' research question related to the

management of the trade-off between the different levels of awareness by proposing an

architecture and providing a quantitative approach for self-adaptation at the meta-level.

This meta-level of awareness enables systematic switching between the levels of

awareness based on their advantages and disadvantages.

0

100

200

300

400

500

600

700

800

0 200 400 600

0

100

200

300

400

500

600

700

800

0 200 400 600

0

100

200

300

400

500

600

700

800

0 200 400 600

0

100

200

300

400

500

600

700

800

0 200 400 600

192

The mechanism of the meta-self-awareness approach is two-fold; on the one hand, the

approach evaluates the performance of the different awareness levels and the alternative

decisions that could have been taken by the other levels of awareness. For this purpose, a

symbiotic simulation decision support system is used to perform what-if experiments of

the alternative decisions. The what-if experiments enable evaluating the quality of the

collected knowledge by simulating the alternative selection and adaptation decision

which could have been taken using that knowledge. Then the performance measures of

the awareness levels are used to find out the optimum awareness level. This level will be

passed to the Decision maker component as a suggestion.

On the other hand, the meta-self-awareness approach takes into consideration the

system state in terms of the queue stability in order to avoid the rapid growth of the

queue. The stability is defined according to Loynes’ theorem [154] which apprises that

the queue is stable if the requests arrival rate is less than the requests serving rate.

Subsequently, using the queue state and the suggestion of the awareness level, the meta-

self-awareness approach selects the optimum awareness level and effects this decision

on the system.

The chapter evaluates the performance of the meta-self-awareness approach in

relative to non-meta-self-awareness approaches. The objective of the evaluation is to

investigate the behaviour of the system in the presence of the meta-self-awareness. For

this purpose, the evaluation compares the meta-self-awareness with the stimulus-, time-,

and interaction-aware approaches. The results show that the performance of the system

when using the meta-self-awareness approach is convergent with the best case

performance of the system when using the other approaches. In other words, when using

193

the stimulus-, time-, or interaction-awareness, the performance of the system exhibits

degradation in some circumstances. Whereas, in the meta-self-awareness case, the

system avoids such degradation, thanks to the capability of adapting the awareness level

provided by the meta-self-awareness. However, the usefulness of the meta-self-

awareness comes with overhead in terms of computational time, an area that requires

further future research.

194

195

REFLECTIONS, CONCLUSION REMARKS,

AND FUTURE WORK

7.1 Reflections

In this section, we reflect on the thesis using different qualitative criteria for dynamic

software systems, including complexity, scalability, overhead, and practical deployment.

7.1.1 Complexity

As mentioned in chapter 1, the complexity of managing dynamic software systems is

attributed to dynamism, uncertainty, and heterogeneity of the environment [10] [98]

[33]. To manage complexity and react to continuous changes, self-adaptivity has been

acknowledged as a solution. The autonomic behaviour needs to be supported with

knowledge about the different components that contribute to the complexity of the

system. Once the knowledge about these components is captured and modelled, it

provides the decision-making process with the possibility to take more intelligent

decisions in response to the changes. However, the knowledge can evolve and change

over time. Thus, continuous knowledge management is necessary to ensure better

196

support for the adaptation decision making. This thesis provides a framework for

handling such situations and demonstrates its capabilities using the volunteer storage

services scenario.

 Dealing with dynamism.

- The self-awareness framework provides the primitives for monitoring the

behaviour of dynamic software systems, where the volunteering environment

was taken as an example. The internal and external changes will be reported to

the self-expression component, which reacts by an adaptation action. The

reaction is supported by the knowledge modelled by the different levels of

awareness, as shown in section 5.6. Furthermore, the dynamism is also related

to the changes in the knowledge itself. For example, the performance patterns

of the volunteers may change. The continuous update of the knowledge, e.g.

the continuous maintenance of the dynamic histograms (see section 5.5),

ensures having up-to-date knowledge for better informing the adaptation

decisions. In addition to that, the framework is able to deal with the dynamism

related to the changes in the workload through the meta-self-awareness level,

which enables the switching between the levels (see section 6.3). For example,

a spike in the workload resulting from a sharp increase in the requests arrival

rate will motivate the usage of the stimulus-awareness to provide faster

processing of the requests.

- This thesis assumes that the values of the thresholds and the weights used in

the approach are specified by the system administrator or a domain expert.

Potential extensions can look at how the thresholds can be adjusted at runtime

197

i.e. how to make the thresholds dynamic. For this purpose, the context, the

changes in the context, and the attributes which are related to the changes in

the context, should be taken into account.

 Dealing with uncertainty. Service provision in dynamic environments exhibits

fluctuations which may result in unsatisfying the users’ requirements. The

proposed knowledge management approaches attempted to quantify and

measure the deviations from the promised quality of services provision exhibited

by the providers, i.e. the volunteers in our case, in terms dependability (see

section 5.6.2). Then the dependability is then incorporated in the selection and

adaptation processes in order to increase the probability of selecting more

dependable services, thus, reducing the uncertainty associated with the service

provision. Furthermore, as the uncertainty can be associated with the collected

knowledge, the meta-self-awareness provides a means for analysing the

knowledge through the symbiotic-based approach, as shown in section 6.3. The

what-if analysis provides a way to judge on the quality of the knowledge to

investigate the expected outcome of using the collected knowledge.

Consequently, the meta-self-awareness level deals with the uncertainty in the

decision-making process by switching between the awareness levels.

 Dealing with heterogeneity. The heterogeneity of the infrastructure contributes

to the complexity of the system since different computing resources have varied

capabilities. In our case, we decided to deal with heterogeneity through utility

and dependability. The proposed utility model deals with the heterogeneity by

expressing the capabilities of the contributed resources as utilities (see section

4.3.3). Then the utilities are used to reason about the selection decisions. After

198

that, the knowledge management approaches deal with the heterogeneity by

quantifying and measuring the dependability of the services (see section 5.6.2).

The approaches do not require prior knowledge about the contributed

computing machines since the dependability information will reflect the ability of

those resources to satisfy the requirements.

Collectively, the above points summarise our approach in dealing with the complexity

if the dynamic software systems, as quantitatively shown in the previous chapters. The

dynamic knowledge management provides concrete grounds for continuous optimisation

of the quality of the system.

7.1.2 Scalability

The scalability of a system expresses its performance in the presence of relatively large

amounts of data or workload. In this section, we elaborate on the effects of the amount of

historical knowledge and the amount of workload on the scalability of the proposed self-

aware approach.

 The effect of the amount of historical knowledge.

- The size of the dynamic histograms, in terms of the number of data points, may

endlessly increase during the operation of the system. Massive increase will

influence the scalability of the system as this will require more computations

for estimating the services dependabilities and for maintaining the dynamic

histograms. This can be treated by adopting a pruning strategy to get rid of the

less important data points. An example is the forget strategy that we used to

drop the old data points when a bucket cannot be split, as shown in section

5.5.2. An alternative forget strategy can be to drop the outlier data points, e.g.

199

the data points that have values far from the average values of the other data

points. A combination of the two strategies is a third possible strategy.

- In the case of interaction-awareness, the pair-wise knowledge about the

services interactions can grow fast. This may influence the decision making of

the meta-self-awareness level by avoiding the switching of the interaction-

awareness level. A possible way to deal with this situation is to group the

services into clusters based on the interaction information. That is, services

that exhibit frequent interactions will belong to the same cluster. Then the

interaction-awareness level can limit the knowledge modelling to the scope of

the clusters, i.e. by considering the interactions of a service with the services in

its cluster only.

 The effect of the workload

- The number of services in the service repository influences the scalability of

the system as more computation will be carried out when the number of

services grows. As the evaluation results show, the effect of the increase in the

number of services on the scalability is generally limited. This is because the

computation of the utility models and the dependabilities is efficient. However,

this may affect the computation of the interaction-awareness case, as

explained above.

- Increasing the number of services’ attributes (storage, availability, security,

etc.) will have a larger effect on the scalability. This is due to the need of

finding the non-dominant set of services iteratively in the search for composite

services. Although we use an efficient algorithm [155] for finding the non-

dominant set, the performance can be improved further (in the high scale

200

case) by using genetic algorithms (e.g. based on Based on NSGA-II) to find a

sub-optimal approximation of the non-dominant set of services.

- The increase in the workload due to an increase in the requests arrival rate

also affects the scalability especially in the time- and interaction-awareness

cases. In extreme case, this may result in dropping some of the requests if the

system's queue is fully occupied. The meta-self-awareness responds to such

situations by switching to the stimulus-awareness level in order to process the

requests faster and notifying the system administrator to increase the queue

capacity.

7.1.3 Overhead

The main overhead of our proposed approach can result from the use of the symbiotic

simulation, as discussed in section 6.4.2. This is because investigating alternative

decisions by performing the what-if analysis requires recomputing the selection and

adaptation decisions using the different levels of awareness. This overhead can increase

significantly when both the requests arrival rate and the historical data size increase. In

such case, a dedicated machine can be used for the symbiotic simulation. This leads to an

interesting research to dynamically optimising the placement of the symbiotic

simulation based on the state of the system in terms of the scale and the computing

requirements of the symbiotic simulator.

7.1.4 Practical Deployment

In this thesis, our work is on the fundamentals of engineering self-aware software

systems with knowledge management. Therefore, the experimentation has been done

using simulations due to scalability issues. In other words, having a reasonable number

201

of volunteers for iterative experimentation is impractical. Further development and

research will be required for applying our proposal in real life application. Nevertheless,

the architecture of the volunteer storage system (presented in chapter 5) can be an

example of how the proposed approach can be deployed in a real scenario. For this

purpose, a real application has been developed in which the storage services has been

implemented as RESTFul web services using the Jersey framework [156]. The system’s

queue has been realised using the Java Message Service [157]. The service repository

has been realised as a PostgreSQL database [158]. The GlassFish server [159] has been

used as a web server to host the web services at the volunteers’ machines. Figure 7.1

shows an example of the user interface where the request is served by a composite

service that involves two services.

Figure 7.1: Example Showing The Interface of A Subscriber Using A Composite Service of

Two Volunteer Services

202

7.2 How the Research Questions are Addressed

In this section, we review how the research questions, introduced in chapter 1, have

been addressed throughout the thesis.

RQ1) How to characterise self-awareness and what motivated the research and

applications of self-awareness in software engineering for dynamic and scalable

software systems?

In chapter 2, we have conducted a systematic literature review for the purpose of

getting a deep understanding of the computational self-awareness. The review aimed

also at exploring the motivations behind incorporating the self-awareness concept in

software systems. The findings of the SLR show that there is no unified definition for

self-awareness, as this research topic is still evolving. However, the progress in this topic

is visible and demonstrated in the contributions of the EU Proactive Initiative Self-

Awareness in Autonomic Systems [16] and road-mapping agenda of the Dagstuhl

seminar [17]. Based on these works, we proposed the following definition of

computational self-awareness, which is adapted from the definitions of [16] and [17]:

A software system is self-aware if it:

 possesses knowledge about its internal state and its environment,

 supports fine-grained knowledge management,

 able to capture the performance patterns of its components (internal and external),

 supports both autonomic reactive and proactive adaptation at different levels, and

 is able to predict the likely effect of the adaptation actions/decisions.

Our proposed approach is in line with this definition as follows:

203

 The adopted self-awareness framework is able to capture knowledge about

the internal state of the system by monitoring the stability of the systems’

queue and by observing the performance of the different levels of

awareness.

 The framework is able to capture knowledge about the environment by

monitoring the performance of the services involved in composite services.

 The proposed dynamic knowledge management approach separates the

knowledge concerns and provides concrete algorithms for managing and

using the knowledge to inform the decision making.

 The framework is able to reactively respond to the changes by replacing the

services that violate the requirements and switching between the

awareness levels. The framework also supports proactive adaptation by

using the captured performance patterns and replacing the services if the

performance is expected to drop in the next timeslot(s). Also, monitoring

the queue stability proactively prevents destabilising the queue when

making the switching decision.

 The mechanism of the meta-self-awareness considers the likely effect of the

adaptation actions by (a) analysing the adequacy and quality of the

captured knowledge, through the what-if experimentations, and (b)

avoiding the awareness level that may affect the stability of the queue, even

though the knowledge at this level is adequate.

204

With respect to the motivations behind the adoption of computational self-awareness in

dynamic systems, the SLR findings show that the general purpose is to achieve better

autonomy for software systems. This is fulfilled in our approach by enriching the self-

adaptation capabilities by the different knowledge management approaches.

RQ2) What are the requirements for enacting self-awareness in dynamic software

systems and how can these requirements be addressed?

In chapter 3 we have demonstrated that self-awareness is required to enrich the self-

adaptation capabilities in dynamic environments, e.g. the volunteer computing

environment. However, enacting self-awareness requires the following:

 An approach for dynamic knowledge management that is able to provide in-

depth information to support adaptation. This approach should be able to

separate the knowledge concerns through being able to capture different types of

knowledge from the collected data. Therefore, in chapter 5 we proposed

fundamental improvements to one of the self-awareness approaches, i.e. the

EPiCS approach. The improvements included proposing concrete algorithms for

multi-level knowledge management, specifically, the stimulus-, the time-, and the

interaction-awareness levels.

 The knowledge management approaches should take into consideration the

specific characteristic of the environment in which the system operates. Since we

are using VC as a steering scenario and that the volunteer services exhibit

periodic and correlated performance patterns (chapter 3), we used dynamic

histograms as dynamic data structures that are able to capture the performance

patterns and the correlation of the volunteer services.

205

 The knowledge management approaches should treat the knowledge as moving

targets. That means knowledge continuously evolve as that data arrives

continuously and the performance patterns of the services may change at

runtime. This requires flexible knowledge representation that allows frequent

updates of the knowledge. Therefore in chapter 5, we proposed algorithms for

dynamic maintenance of the dynamic histograms in order to keep them able to

capture the latest performance patterns.

RQ3) How can the system seamlessly switch between various levels of awareness

while considering the adequacy and quality of the knowledge in enabling self-

awareness? What mechanisms can help in coordination?

Dynamic software systems can benefit from the dynamic knowledge that relates to the

levels of awareness. The orchestration of this knowledge hopes to unlock new potentials

for managing dependability, maintaining its levels and reasoning about its runtime

tradeoffs, considering the current benefits at each state and the operational overheads.

Specifically, in chapter 6 we have addressed the problem of managing the trade-offs

between the levels of awareness by the meta-self-awareness level. This level assists in

the problem of “systematic” switching between the different levels of awareness. It

enables the self-aware system to adapt itself in response to the environmental changes

which is a necessity for long-life systems where adaptation design decisions are difficult

to be planned a priori and/or beyond the systems’ designers’ capabilities. The critical

challenge of self-adaptation at the meta-level is to assess the quality of the dynamic

knowledge, including its recency and decay, which is acquired and represented at each

206

of the self-awareness levels. Another challenge is that the knowledge can be inadequate

making it difficult to anticipate the likely outcome of the adaptation decisions.

Furthermore, performing online adaptations based on “best bet” or “trial and error” can

be expensive exercise; it can lead to suboptimal adaptation and/or destabilise the

system through unnecessary adaptations etc. To address this additional problem, we

proposed a novel symbiotic-simulation-based approach to engineer the meta-self-

awareness level. The symbiotic simulator is periodically fed by real-time knowledge to

perform ‘what-if’ experiments in order to investigate the likely quality of alternative

adaptation decisions, using each of the awareness levels. The symbiotic simulator level

will then recommend the desirable decision and it is then passed to the Decision maker

component which takes into consideration the recommendation along with the system

state (in terms of the request arrival rate and the queue state). Afterwards, the Decision

maker component decides whether to adapt to a different level of awareness or not.

RQ4) How does VC, as a representative paradigm, render itself as a sensible

environment for understanding and demonstrating potential improvements

related to knowledge management in self-aware systems?

The findings of the SLR show that the motivation behind the adoption of self-awareness

in the increasing complexity of the current systems, which is due the dynamism,

uncertainty and heterogeneity of the computing environments. Therefore, a case that

obviously exhibits such characteristics is required to demonstrate the engineering of

self-awareness. In addition to that, the environment specifics should be taken into

account when designing the concrete knowledge management approaches for enacting

self-awareness. For these reasons, we have selected the VC environment, for steering the

207

presentation of our approach. This environment exhibits high complexity (as shown in

chapter 3), due to the lack of strict SLAs and dilution of control. Such situation allows the

service providers (volunteers) to withdraw their services when they opt to or when they

are unable to continue providing their resources. The consequences include unsatisfying

the users’ requirements and hence limited application of the VC as a computing

paradigm [5].

In addition to the above, recent analysis studies reported specific characteristic

related to the volunteers’ performance. These studies [5] [111] [112] reported the

presence of periodic and correlated performance patterns of the volunteers. Based on

that, the awareness of such patterns can inform the selection, allocation, and adaptation

of the volunteer resources. It enables the prediction of the volunteer hosts’ performance,

which helps to reason about the selection and adaptation decisions. The presences of

these reports, along with the mentioned complexity of VC make this environment an

interesting case for the development of self-awareness. On these grounds, in chapter 4

we developed a utility model for quantifying the contributed resources of the volunteer

services. Then we developed an approach for selecting the services for composite

services, as a basis for introducing self-awareness with knowledge management to

support the adaptation.

7.3 Future Work

Several future works that can be built on the work we have done in this thesis. In this

section, we sketch some ideas that may be of interest for research.

 Further approaches for capturing knowledge patterns. In this thesis, we

developed dynamic knowledge management approaches which take into

208

consideration the characteristics of VC. In more complex environments, other

approaches may be required to provide better support for self-adaptation. For

example, in scenarios where VC is integrated with a commercial cloud [116],

multiple approaches can be developed to realise a certain level of awareness, e.g.

regression-based and/or learning-based approaches in addition to the

approaches presented in this thesis. Then the meta-self-awareness level can be

extended to support the selection of the different algorithms realising the same

level of awareness, in addition to its basic functionality of switching between the

awareness levels.

 Overhead management. The overhead of utilising the symbiotic simulation

leads to the need for further investigation in order to specify whether this

overhead is acceptable relative to the usefulness of the symbiotic. The

investigation may also involve developing an approach for deciding on the

placement of the symbiotic simulator, whether on dedicated machines or on the

same machine of the central manager, based on the required and consumed

resources for each of them.

 Experiments. The evaluation in this thesis reports on controlled experiments

based on simulations to compare the performance of the proposed approaches

with basis related approaches. However, other kinds of experiments using real

scenarios would be advised for putting the outcomes of this research in industrial

settings. Although such experimentations will be complicated and costly, they

will be required to provide a complete validation of the approach. Additionally, in

the experimental evaluations, we fixed the thresholds and weights values. A

possible extension is to investigate approaches for adjusting the thresholds and

209

weights dynamically taking into consideration the environmental changes and

the system’s goals.

 Evaluating the presence of self-awareness in a system. Existing approaches

have evaluated self-awareness in relation to primitives that enable self-

awareness and enrich the adaptivity. As an example, the EPiCS project [18] has

structured the proposed framework around levels for self-awareness benefiting

from stimuli, goal, knowledge, interaction, yet evaluating self-awareness

presence is challenging to achieve. This calls for novel metrics, qualitative and

quantitative frameworks for evaluating the presence/absence of self-awareness.

This can consequently beg questions like: To what extent a system is self-aware?

How can we claim that a system is more self-aware than its competitor?

 Investigating performance patterns in the different computing

environments. The engineering of self-awareness with knowledge management

can be supported by the availability of knowledge that gives indications about the

system performance and the environment changes. Such indication can be

obtained from many sources e.g. data traces of real systems. For this purpose,

another possible area of future research would be to carrying out further work in

monitoring and collecting real data from the real system operating in the

different computing environments. Then collect data can be analysed or mined to

inform the development of self-aware and knowledge management research.

 Developing energy-aware approaches for volunteer computing. Despite the

advantages of providing free resources in the volunteer computing paradigm,

optimising the energy consumption is still a challenge that limits the wide

adoption of this paradigm. Future works that aim at developing self-aware

210

approaches for reducing the energy consumption in VC are required to make this

paradigm more practical.

7.4 Closing Remarks

This thesis makes novel contributions to the field of engineering self-awareness in

software systems. The thesis introduces a self-aware framework with dynamic

knowledge management approaches, which benefit from reports of analysed traces of

real data, with the absence of closely relevant work. The findings of this thesis can

provide a better understanding of the computational self-awareness and the

requirements of dynamic knowledge management when engineering self-awareness.

The conducted experiments show evidence on the effectiveness of the framework in

dealing with the complexity of the environments. We hope that the findings of this work

along with the mentioned future research directions can stimulate research in

advancing the state-of-art and practice of this category of systems.

211

212

APPENDIX A

GLOSSARY

Table A.1: The Acronyms in the thesis

Acronyms Description
VC Volunteer Computing

VS Volunteer Service

CS Composite Service

VSS Volunteer Storage Service

VSC Volunteer Storage Composition

WS Web Service

WSC Web Service Composition

RW Resources Waste

PSR Percentage of Satisfied Requests

WT Waiting Time

PDR Percentage of Dropped Requests

SLA Service Level Agreement

SLR Systematic Literature Review

213

REFERENCES

[1] R. Buyya, High Performance Cluster Computing: Programming and Applications:
Prentice Hall PTR, 1999.

[2] S. Distefano and A. Puliafito, "Cloud@Home: Toward a Volunteer Cloud," IT
Professional, vol. 14, pp. 27-31, 2012.

[3] J. Rao and X. Su, "A survey of automated web service composition methods,"
presented at the Proceedings of the First international conference on Semantic
Web Services and Web Process Composition, San Diego, CA, 2005.

[4] Z. Liangzhao, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang,
"QoS-aware middleware for Web services composition," IEEE Transactions on
Software Engineering, vol. 30, pp. 311-327, 2004.

[5] D. Lázaro, D. Kondo, and J. M. Marquès, "Long-term availability prediction for
groups of volunteer resources," Journal of Parallel and Distributed Computing, vol.
72, pp. 281-296, 2012.

[6] G. H. Alférez and V. Pelechano, "Facing Uncertainty in Web Service Compositions,"
in 2013 IEEE 20th International Conference on Web Services, 2013, pp. 219-226.

[7] J. O. Kephart and D. M. Chess, "The vision of autonomic computing," Computer,
vol. 36, pp. 41-50, 2003.

[8] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, et al.,
"Software Engineering for Self-Adaptive Systems: A Second Research Roadmap,"
in Software Engineering for Self-Adaptive Systems II: International Seminar,
Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers,
R. de Lemos, H. Giese, H. A. Müller, and M. Shaw, Eds., ed Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1-32.

[9] F. D. Macías-Escrivá, R. Haber, R. del Toro, and V. Hernandez, "Self-adaptive
systems: A survey of current approaches, research challenges and applications,"
Expert Systems with Applications, vol. 40, pp. 7267-7279, 2013.

214

[10] M. Salehie and L. Tahvildari, "Self-adaptive software: Landscape and research
challenges," ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol.
4, pp. 1-42, 2009.

[11] R. Laddaga and P. Robertson, "Self adaptive software: A position paper," in SELF-
STAR: International Workshop on Self-* Properties in Complex Information
Systems, 2004, p. 19.

[12] M. Nouman Durrani and J. A. Shamsi, "Volunteer computing: requirements,
challenges, and solutions," Journal of Network and Computer Applications, vol. 39,
pp. 369-380, 2014.

[13] S. Parsons, R. Bahsoon, P. R. Lewis, and X. Yao, "Towards a Better Understanding
of Self-Awareness and Self-Expression within Software Systems," University of
Birmingham, School of Computer Science, Birmingham, UKApril 2011.

[14] F. O. Faniyi, "Self-aware software architecture style and patterns for cloud-based
applications," University of Birmingham, 2015.

[15] S. Dustdar, C. Dorn, F. Li, L. Baresi, G. Cabri, C. Pautasso, et al., "A roadmap
towards sustainable self-aware service systems," in Proceedings of the 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems, 2010,
pp. 10-19.

[16] E. C. (FP7). (2010). FP7: FET Proactive Initiative: Self-Awareness in Autonomic
Systems (AWARENESS). Available: http://cordis.europa.eu/fp7/ict/fet-
proactive/aware_en.html

[17] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska, "Model-driven algorithms
and architectures for self-aware computing systems (Dagstuhl Seminar 15041),"
Dagstuhl Reports, vol. 5, 2015.

[18] T. Chen, F. Faniyi, R. Bahsoon, P. R. Lewis, X. Yao, L. L. Minku, et al., "The
Handbook of Engineering Self-Aware and Self-Expressive Systems," 2014.

[19] S. Kounev, N. Huber, F. Brosig, and X. Zhu, "Model-Based Approach to Designing
Self-Aware IT Systems and Infrastructures," IEEE Computer Magazine, 2016.

[20] T. Becker, A. Agne, P. R. Lewis, R. Bahsoon, F. Faniyi, L. Esterle, et al., "EPiCS:
Engineering proprioception in computing systems," in Computational Science and
Engineering (CSE), 2012 IEEE 15th International Conference on, 2012, pp. 353-
360.

[21] A. Elhabbash, M. Salama, R. Bahsoon, and P. Tino, "Self-Awareness in Software
Engineering: A Systematic Literature Review," ACM Transactions on Autonomous
and Adaptive Systems (TAAS), under review., 2017.

http://cordis.europa.eu/fp7/ict/fet-proactive/aware_en.html
http://cordis.europa.eu/fp7/ict/fet-proactive/aware_en.html

215

[22] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, "A Design Science
Research Methodology for Information Systems Research," J. Manage. Inf. Syst.,
vol. 24, pp. 45-77, 2007.

[23] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan, "Dynamic Histograms:
Capturing Evolving Data Sets," in Data Engineering, 2000. Proceedings. 16th
International Conference on, 2000, pp. 86-86.

[24] A. Elhabbash, R. Bahsoon, P. Tino, and P. Lewis, "Symbiotic-based Meta-self-
awareness for Self-adaptive Systems: A Case for Volunteer Services," Submitted to
the IEEE Transaction on Software Engineering, 2017.

[25] A. Elhabbash, R. Bahsoon, and P. Tino, "Self-awareness for dynamic knowledge
management in self-adaptive volunteer services," in The 24th IEEE International
Conference on Web Services (ICWS 2017), to appear, 2017.

[26] A. Elhabbash, R. Bahsoon, and P. Tino, "Interaction-awareness for Volunteer
Service Composition," presented at the The 10th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO 2016), Augsburg, Germany,
2016.

[27] A. Elhabbash, R. Bahsoon, P. Tino, and P. R. Lewis, "Self-Adaptive Volunteered
Services Composition through Stimulus-and Time-Awareness," in Web Services
(ICWS), 2015 IEEE International Conference on, 2015, pp. 57-64.

[28] A. Elhabbash, R. Bahsoon, P. Tino, and P. R. Lewis, "A Utility Model for
Volunteered Service Composition," presented at the Proceedings of the 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing, 2014.

[29] A. Elhabbash, R. Bahsoon, and P. Tino, "Towards Self-Aware Service
Composition," in High Performance Computing and Communications, 2014 IEEE
6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on
Embedded Software and Syst (HPCC,CSS,ICESS), 2014 IEEE Intl Conf on, 2014, pp.
1275-1279.

[30] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
"Systematic literature reviews in software engineering – A systematic literature
review," Information and Software Technology, vol. 51, pp. 7-15, 2009.

[31] M. Salehie and L. Tahvildari, "Towards a Goal-driven Approach to Action
Selection in Self-adaptive Software," Softw. Pract. Exper., vol. 42, pp. 211-233,
February 2012.

[32] J. C'amara, G. A. Moreno, and D. Garlan, "Reasoning About Human Participation in
Self-adaptive Systems," in Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, ed. Florence, Italy:
IEEE Press, 2015, pp. 146-156.

216

[33] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, "A survey on
engineering approaches for self-adaptive systems," Pervasive and Mobile
Computing, vol. 17, pp. 184-206, 2015.

[34] T. Patikirikorala, A. Colman, J. Han, and L. Wang, "A systematic survey on the
design of self-adaptive software systems using control engineering approaches,"
in 2012 7th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), ed, 2012, pp. 33-42.

[35] S. Dobson, S. Denazis, A. Fern'andez, D. Ga'iti, E. Gelenbe, F. Massacci, et al., "A
Survey of Autonomic Communications," ACM Trans. Auton. Adapt. Syst., vol. 1, pp.
223-259, December 2006.

[36] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, "Rainbow:
Architecture-based self-adaptation with reusable infrastructure," Computer, vol.
37, pp. 46-54, 2004.

[37] J. Kramer and J. Magee, "Self-Managed Systems: An Architectural Challenge," in
2007 Future of Software Engineering, ed. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 259-268.

[38] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, "Seec: A
framework for self-aware computing," Massachusetts Institute of Technology,
Computer Science and Artificial Intelligence Laboratory, Cambridge, MA,
USA2010.

[39] A. Elkhodary, N. Esfahani, and S. Malek, "FUSION: A Framework for Engineering
Self-tuning Self-adaptive Software Systems," in Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ed.
Santa Fe, New Mexico, USA: ACM, 2010, pp. 7-16.

[40] S. Dustdar, C. Dorn, F. Li, L. Baresi, G. Cabri, C. Pautasso, et al., "A Roadmap
Towards Sustainable Self-aware Service Systems," in Proceedings of the 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), ed. Cape Town, South Africa: ACM, 2010, pp. 10-19.

[41] F. O. Faniyi, "Self-aware software architecture style and patterns for cloud-based
applications," ed: University of Birmingham, 2015.

[42] B. Kitchenham and S. Charters, "Guidelines for performing Systematic Literature
Reviews in Software Engineering," Keele University, Report2007.

[43] P. Bozzelli, Q. Gu, and P. Lago, "A systematic literature review on green software
metrics," VU University Amsterdam, Department of Computer. Science, The
Netherlands, Report2013.

[44] D. Weyns, M. U. Iftikhar, S. Malek, and J. Andersson, "Claims and supporting
evidence for self-adaptive systems: a literature study," in 7th International

217

Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), ed: IEEE Press, 2012, pp. 89-98.

[45] O. P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, "Lessons
from applying the systematic literature review process within the software
engineering domain," Journal of Systems and Software, vol. 80, pp. 571-583, 2007.

[46] T. Dyba, T. Dingsoyr, and G. Hanssen, "Applying Systematic Reviews to Diverse
Study Types: An Experience Report," in 1st International Symposium on Empirical
Software Engineering and Measurement (ESEM), ed, 2007, pp. 225-234.

[47] T. Greenhalgh and R. Peacock, "Effectiveness and efficiency of search methods in
systematic reviews of complex evidence: audit of primary sources," BMJ, vol. 331,
pp. 1064-1065, 2005.

[48] T. Dyba and T. Dingsoyr, "Empirical studies of agile software development: A
systematic review," Information and Software Technology, vol. 50, pp. 833-859,
2008.

[49] D. S. Cruzes and T. Dyba, "Recommended Steps for Thematic Synthesis in
Software Engineering," in International Symposium on Empirical Software
Engineering and Measurement, ed, 2011, pp. 275-284.

[50] JabRef Development Team, "JabRef," ed, 2016.

[51] A. Bronstein, J. Das, M. Duro, R. Friedrich, G. Kleyner, M. Mueller, et al., "Self-
aware services: using Bayesian networks for detecting anomalies in Internet-
based services," in Proceedings of IEEE/IFIP International Symposium on
Integrated Network Management, ed, 2001, pp. 623-638.

[52] P. Andras and B. G. Charlton, "Self-aware software - Will it become a reality?," in
Self-Star Properties In Complex Information Systems: Conceptual and Practical
Foundations, 2005, pp. 229-259.

[53] M. Mitchell, "Self-awareness and control in decentralized systems.," in AAAI
Spring Symposium: Metacognition in Computation, ed, 2005, pp. 80-85.

[54] R. Abbott and C. Sun, "Abstraction Abstracted," in Proceedings of the 2nd
International Workshop on The Role of Abstraction in Software Engineering (ROA),
ed. New York, NY, USA: ACM, 2008, pp. 23-30.

[55] M. D. Santambrogio, H. Hoffmann, J. Eastep, and A. Agarwal, "Enabling
technologies for self-aware adaptive systems," in NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), ed, 2010, pp. 149-156.

[56] I. Breskovic, C. Haas, S. Caton, and I. Brandic, "Towards Self-Awareness in Cloud
Markets: A Monitoring Methodology," in IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing (DASC), ed, 2011, pp. 81-88.

218

[57] F. Faniyi and R. Bahsoon, "Engineering Proprioception in SLA Management for
Cloud Architectures," in 9th Working IEEE/IFIP Conference on Software
Architecture (WICSA), ed, 2011, pp. 336-340.

[58] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani, "On Self-
Adaptation, Self-Expression, and Self-Awareness in Autonomic Service
Component Ensembles," in 5th IEEE Conference on Self-Adaptive and Self-
Organizing Systems Workshops (SASOW), ed, 2011, pp. 108-113.

[59] E. Vassev and M. Hinchey, "Awareness in Software-Intensive Systems," IEEE
Computer, vol. 45, pp. 84-87, 2012.

[60] D. B. Abeywickrama, F. Zambonelli, and N. Hoch, "Towards Simulating
Architectural Patterns for Self-Aware and Self-Adaptive Systems," in IEEE 6th
International Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW), ed, 2012, pp. 133-138.

[61] F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao, "Architecting Self-Aware Software
Systems," in IEEE/IFIP Conference on Software Architecture (WICSA), ed, 2014, pp.
91-94.

[62] E. Vassev and M. Hinchey, "Knowledge Representation for Adaptive and Self-
aware Systems," in Software Engineering for Collective Autonomic Systems: The
ASCENS Approach, 2015, pp. 221-247.

[63] M. Hölzl and T. Gabor, "Reasoning and Learning for Awareness and Adaptation,"
in Software Engineering for Collective Autonomic Systems: The ASCENS Approach,
2015, pp. 249-290.

[64] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon, et al., "A
Survey of Self-Awareness and Its Application in Computing Systems," in 5th IEEE
Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW), ed,
2011, pp. 102-107.

[65] S. Kounev, F. Brosig, and N. Huber, "The Descartes Modeling Language," Technical
report, Department of Computer Science, University of Wuerzburg2014.

[66] T. Becker, A. Agne, P. R. Lewis, R. Bahsoon, F. Faniyi, L. Esterle, et al., "EPiCS:
Engineering Proprioception in Computing Systems," in IEEE 15th International
Conference on Computational Science and Engineering (CSE), ed, 2012, pp. 353-
360.

[67] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, "A Formal Approach to
Autonomic Systems Programming: The SCEL Language," ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 9, pp. 7:1-7:29, 2014.

[68] T. Chen and R. Bahsoon, "Toward a Smarter Cloud: Self-Aware Autoscaling of
Cloud Configurations and Resources," IEEE Computer, vol. 48, pp. 93-96, 2015.

219

[69] R. Sterritt, "Autonomic computing," Innovations in Systems and Software
Engineering, vol. 1, pp. 79-88, 2005.

[70] D. B. Abeywickrama, N. Hoch, and F. Zambonelli, "SimSOTA: Engineering and
Simulating Feedback Loops for Self-adaptive Systems," in Proceedings of the
International C* Conference on Computer Science and Software Engineering
(C3S2E), ed. Porto, Portugal: ACM, 2013, pp. 67-76.

[71] N. Serbedzija, T. Bures, and J. Keznikl, "Engineering Autonomous Systems," in
Proceedings of the 17th Panhellenic Conference on Informatics (PCI), ed.
Thessaloniki, Greece: ACM, 2013, pp. 128-135.

[72] D. Dannenhauer, M. T. Cox, S. Gupta, M. Paisner, and D. Perlis, "Toward Meta-level
Control of Autonomous Agents," Procedia Computer Science, vol. 41, pp. 226 - 232,
2014.

[73] R. Gioiosa, G. Kestor, D. J. Kerbyson, and A. Hoisie, "Cross-Layer Self-
Adaptive/Self-Aware System Software for Exascale Systems," in IEEE 26th
International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), ed, 2014, pp. 326-333.

[74] E. Riccobene and P. Scandurra, "Formal Modeling Self-adaptive Service-oriented
Applications," in Proceedings of the 30th Annual ACM Symposium on Applied
Computing (SAC), ed. Salamanca, Spain: ACM, 2015, pp. 1704-1710.

[75] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, "A
generalized software framework for accurate and efficient management of
performance goals," in Proceedings of the International Conference on Embedded
Software (EMSOFT), ed, 2013, pp. 1-10.

[76] E. E. Veas, K. Kiyokawa, and H. Takemura, "Self-aware Framework for Adaptive
Augmented Reality," in Proceedings of the International Conference on Augmented
Tele-existence, ed. Christchurch, New Zealand: ACM, 2005, pp. 70-77.

[77] N. Bicocchi, D. Fontana, and F. Zambonelli, "A self-aware, reconfigurable
architecture for context awareness," in IEEE Symposium on Computers and
Communications (ISCC), ed, 2014, pp. 1-7.

[78] M. Salama and R. Bahsoon, "Quality-Driven Architectural Patterns for Self-Aware
Cloud-Based Software," in IEEE 8th International Conference on Cloud Computing
(IEEE CLOUD), ed, 2015, pp. 844-851.

[79] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, "SEEC: a
general and extensible framework for self-aware computing," Massachusetts
Institute of Technology, Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, USA2011.

[80] E. Vassev and M. Hinchey, "Knowledge Representation and Reasoning for
Intelligent Software Systems," IEEE Computer, vol. 44, pp. 96-99, 2011.

220

[81] C. H. Huang, J. S. Shen, and P. A. Hsiung, "A Self-Adaptive Hardware/Software
System Architecture for Ubiquitous Computing Applications," in Ubiquitous
Intelligence And Computing vol. 6406, ed, 2010, pp. 382-396.

[82] F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G. D. Marzo, et al., "Self-
aware Pervasive Service Ecosystems," Procedia Computer Science, vol. 7, pp. 197 -
199, 2011.

[83] G. Castelli, M. Mamei, A. Rosi, and F. Zambonelli, "Engineering Pervasive Service
Ecosystems: The SAPERE Approach," ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 10, pp. 1:1-1:27, 2015.

[84] Y. Su, F. Shi, S. Talpur, Y. Wang, S. Hu, and J. Wei, "Achieving self-aware
parallelism in stream programs," Cluster Computing-The Journal Of Networks
Software Tools And Applications, vol. 18, pp. 949-962, 2015.

[85] A. Griffiths, "ldquo;self rdquo;-conscious objects in Object-Z," in Proceedings of
Technology of Object-Oriented Languages and Systems (TOOLS), ed, 1997, pp. 210-
224.

[86] A. G. Beltran, P. Milligan, and P. Sage, "Heterogeneity-aware distributed access
structure," in Fifth IEEE International Conference on Peer-to-Peer Computing
(P2P), ed, 2005, pp. 152-153.

[87] O. Nierstrasz, M. Denker, T. Gîrba, A. Lienhard, and D. Röthlisberger, "Change-
Enabled Software Systems," in Software-Intensive Systems and New Computing
Paradigms: Challenges and Visions, Berlin, Heidelberg, 2008, pp. 64-79.

[88] S. Kounev, F. Brosig, N. Huber, and R. Reussner, "Towards Self-Aware
Performance and Resource Management in Modern Service-Oriented Systems," in
Proceedings of IEEE International Conference on Services Computing (SCC), ed,
2010, pp. 621-624.

[89] S. Kounev, F. Brosig, and N. Huber, "Self-aware QoS Management in Virtualized
Infrastructures," in Proceedings of the 8th ACM International Conference on
Autonomic Computing (ICAC), ed. Karlsruhe, Germany: ACM, 2011, pp. 175-176.

[90] A. Egyed, "Architecture Differencing for Self Management," in Proceedings of the
1st ACM SIGSOFT Workshop on Self-managed Systems (WOSS), ed. Newport Beach,
California: ACM, 2004, pp. 44-48.

[91] R. B. France and B. Rumpe, "Model-driven Development of Complex Software: A
Research Roadmap," in Future of Software Engineering, 2007. FOSE '07, ed, 2007,
pp. 37-54.

[92] G. Blair, N. Bencomo, and R. B. France, "Models@ run.time," Computer, vol. 42, pp.
22-27, 2009.

221

[93] E. Riccobene, P. Scandurra, and F. Albani, "A Modeling and Executable Language
for Designing and Prototyping Service-Oriented Applications," in 37th
EUROMICRO Conference on Software Engineering and Advanced Applications, ed,
2011, pp. 4-11.

[94] D. Garlan and M. Shaw, "An introduction to software architecture," Advances in
software engineering and knowledge engineering, vol. 1, 1993.

[95] M. C. Huebscher and J. A. McCann, "A Survey of Autonomic Computing — Degrees,
Models, and Applications," ACM Computing Surveys, vol. 40, pp. 7:1-7:28, 2008.

[96] E. Vassev, M. Hinchey, and B. Gaudin, "Knowledge Representation for Self-
adaptive Behavior," in Proceedings of the Fifth International C* Conference on
Computer Science and Software Engineering, ed. Montreal, Quebec, Canada: ACM,
2012, pp. 113-117.

[97] M. Baldauf, S. Dustdar, and F. Rosenberg, "A survey on context-aware systems,"
International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, pp. 263-277,
2007.

[98] J. Camara, R. de Lemos, C. Ghezzi, and A. Lopes, Assurances for self-adaptive
systems : principles, models, and techniques. Berlin New York: Springer, 2013.

[99] E. Yuan, N. Esfahani, and S. Malek, "A Systematic Survey of Self-Protecting
Software Systems," ACM Transactions on Autonomous and Adaptive Systems, vol.
8, pp. 1-41, 2014.

[100] O. Nov, D. Anderson, and O. Arazy, "Volunteer computing: a model of the factors
determining contribution to community-based scientific research," in Proceedings
of the 19th international conference on World wide web, 2010, pp. 741-750.

[101] D. P. Anderson, "Boinc: A system for public-resource computing and storage," in
Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on,
2004, pp. 4-10.

[102] G. Fedak, C. Germain, V. Neri, and F. Cappello, "Xtremweb: A generic global
computing system," in Cluster Computing and the Grid, 2001. Proceedings. First
IEEE/ACM International Symposium on, 2001, pp. 582-587.

[103] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, "SETI@ home:
an experiment in public-resource computing," Communications of the ACM, vol.
45, pp. 56-61, 2002.

[104] A. L. Beberg and V. S. Pande, "Storage@ home: Petascale distributed storage," in
2007 IEEE International Parallel and Distributed Processing Symposium, 2007, p.
482.

[105] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande, "Folding@
home: Lessons from eight years of volunteer distributed computing," in Parallel &

222

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, 2009,
pp. 1-8.

[106] A. Cuomo, G. D. Modica, S. Distefano, M. Rak, and A. Vecchio, "The Cloud@Home
Architecture - Building a Cloud Infrastructure from Volunteered Resources,"
presented at the Proceedings of the 1st International Conference on Cloud
Computing and Services Science, Netherlands, 2011.

[107] A. Chandra and J. Weissman, "Nebulas: using distributed voluntary resources to
build clouds," presented at the Proceedings of the 2009 conference on Hot topics
in cloud computing, San Diego, California, 2009.

[108] K. Chard, K. Bubendorfer, S. Caton, and O. F. Rana, "Social Cloud Computing: A
Vision for Socially Motivated Resource Sharing," Services Computing, IEEE
Transactions on, vol. 5, pp. 551-563, 2012.

[109] S. Sebastio, M. Amoretti, and A. L. Lafuente, "AVOCLOUDY: a simulator of
volunteer clouds," Software: Practice and Experience, 2015.

[110] J. R. Douceur, "Is remote host availability governed by a universal law?,"
SIGMETRICS Perform. Eval. Rev., vol. 31, pp. 25-29, 2003.

[111] D. Kondo, A. Andrzejak, and D. P. Anderson, "On correlated availability in
internet-distributed systems," in Proceedings of the 2008 9th IEEE/ACM
International Conference on Grid Computing, 2008, pp. 276-283.

[112] B. Javadi, D. Kondo, J. M. Vincent, and D. P. Anderson, "Discovering Statistical
Models of Availability in Large Distributed Systems: An Empirical Study of
SETI@home," IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp.
1896-1903, 2011.

[113] M. Bakkaloglu, J. J. Wylie, C. Wang, and G. R. Ganger, "On correlated failures in
survivable storage systems," DTIC Document2002.

[114] B. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, et al., "Einstein@ Home
search for periodic gravitational waves in LIGO S4 data," Physical Review D, vol.
79, p. 022001, 2009.

[115] S. Siva Sathya and K. Syam Babu, "Survey of fault tolerant techniques for grid,"
Computer Science Review, vol. 4, pp. 101-120, 2010.

[116] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa, "Volunteer Computing and
Desktop Cloud: The Cloud@Home Paradigm," in Network Computing and
Applications, 2009. NCA 2009. Eighth IEEE International Symposium on, 2009, pp.
134-139.

[117] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa, "Applying Software
Engineering Principles for Designing Cloud@Home," in Cluster, Cloud and Grid

223

Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, 2010, pp.
618-624.

[118] S. Distefano, M. Fazio, and A. Puliafito, "The Cloud@Home Resource Management
System," in Utility and Cloud Computing (UCC), 2011 Fourth IEEE International
Conference on, 2011, pp. 122-129.

[119] S. Distefano, A. Puliafito, M. Rak, S. Venticinque, U. Villano, A. Cuomo, et al., "QoS
Management in Cloud@Home Infrastructures," in Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), 2011 International Conference on,
2011, pp. 190-197.

[120] R. Aversa, B. Di Martino, N. Mazzocca, and S. Venticinque, "MAGDA: A Mobile
Agent based Grid Architecture," Journal of Grid Computing, vol. 4, pp. 395-412,
2006/12/01 2006.

[121] M. Ryden, A. Chandra, and J. Weissman, "Nebula: Data Intensive Computing over
Widely Distributed Voluntary Resources," Dept. of Computer Science and Eng.,
Univ. of Minnesota tech. report TR 13-007, 2013.

[122] S. Kannan, A. Gavrilovska, and K. Schwan, "Cloud4Home -- Enhancing Data
Services with @Home Clouds," presented at the Proceedings of the 2011 31st
International Conference on Distributed Computing Systems, 2011.

[123] K. Chard, S. Caton, O. Rana, and K. Bubendorfer, "Social Cloud: Cloud Computing
in Social Networks," in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, 2010, pp. 99-106.

[124] A. Jula, E. Sundararajan, and Z. Othman, "Cloud computing service composition: A
systematic literature review," Expert Systems with Applications, vol. 41, pp. 3809-
3824, 2014.

[125] U. K. C. O. E. a. R. Group. (2013, 14/02/2017). End User Device Strategy: Security
Framework & Controls. Available:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/fil
e/261980/EUD_Security.pdf

[126] D. G. Kendall, "Stochastic processes occurring in the theory of queues and their
analysis by the method of the imbedded Markov chain," The Annals of
Mathematical Statistics, pp. 338-354, 1953.

[127] D. Kondo, D. P. Anderson, and J. M. Vii, "Performance evaluation of scheduling
policies for volunteer computing," in e-Science and Grid Computing, IEEE
International Conference on, 2007, pp. 415-422.

[128] D. P. Anderson, "Emulating volunteer computing scheduling policies," in Parallel
and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE
International Symposium on, 2011, pp. 1839-1846.

http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/261980/EUD_Security.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/261980/EUD_Security.pdf

224

[129] H. Ehtamo, R. P. Hämäläinen, P. Heiskanen, J. Teich, M. Verkama, and S. Zionts,
"Generating pareto solutions in a two-party setting: constraint proposal
methods," Management Science, vol. 45, pp. 1697-1709, 1999.

[130] B. Donassolo, H. Casanova, A. Legrand, and P. Velho, "Fast and scalable simulation
of volunteer computing systems using simgrid," in Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, 2010, pp.
605-612.

[131] U. o. C. a. B.-B. group. Open-source software for volunteer computing. Available:
https://boinc.berkeley.edu/

[132] OpenNebula home page. Available: http://www.opennebula.org/

[133] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, et al., "The
Eucalyptus Open-Source Cloud-Computing System," in Cluster Computing and the
Grid, 2009. CCGRID '09. 9th IEEE/ACM International Symposium on, 2009, pp. 124-
131.

[134] H. Casanova, A. Legrand, and M. Quinson, "SimGrid: A Generic Framework for
Large-Scale Distributed Experiments," in Computer Modeling and Simulation,
2008. UKSIM 2008. Tenth International Conference on, 2008, pp. 126-131.

[135] R. Buyya and M. Murshed, "Gridsim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing,"
Concurrency and computation: practice and experience, vol. 14, pp. 1175-1220,
2002.

[136] S. Kounev, F. Brosig, N. Huber, and R. Reussner, "Towards Self-Aware
Performance and Resource Management in Modern Service-Oriented Systems," in
Services Computing (SCC), 2010 IEEE International Conference on, 2010, pp. 621-
624.

[137] Microsoft. (14/02/2017). Microsoft Baseline Security Analyzer. Available:
https://msdn.microsoft.com/en-us/library/ff647642.aspx

[138] (15/02/2117). WHAT IS Self-Awareness in Autonomic Systems? Available:
http://cordis.europa.eu/fp7/ict/fet-proactive/aware_en.html

[139] M. Wirsing, M. Hölzl, M. Tribastone, and F. Zambonelli, "ASCENS: Engineering
Autonomic Service-Component Ensembles," in Formal Methods for Components
and Objects: 10th International Symposium, FMCO 2011, Turin, Italy, October 3-5,
2011, Revised Selected Papers, B. Beckert, F. Damiani, F. S. de Boer, and M. M.
Bonsangue, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1-
24.

[140] F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G. D. Marzo, et al., "Self-
aware Pervasive Service Ecosystems," Procedia Computer Science, vol. 7, pp. 197-
199, 2011.

http://www.opennebula.org/
http://cordis.europa.eu/fp7/ict/fet-proactive/aware_en.html

225

[141] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, "Improved histograms for
selectivity estimation of range predicates," SIGMOD Rec., vol. 25, pp. 294-305,
1996.

[142] H. Mousavi and C. Zaniolo, "Fast and accurate computation of equi-depth
histograms over data streams," presented at the Proceedings of the 14th
International Conference on Extending Database Technology, Uppsala, Sweden,
2011.

[143] C. Siang Yew, P. Tino, and Y. Xin, "Measuring Generalization Performance in
Coevolutionary Learning," Evolutionary Computation, IEEE Transactions on, vol.
12, pp. 479-505, 2008.

[144] R. Fujimoto, W. H. Lunceford, E. H. Page, and A. M. U. (editors), "Grand challenges
for modeling and simulation: Dagstuhl report," Technical report 350, 2002.

[145] O. O. Onolaja, "Dynamic data-driven framework for reputation management,"
Ph.D., School of Computer Science, University of Birmingham, 2012.

[146] H. Aydt, S. J. Turner, W. Cai, and M. Y. H. Low, "Symbiotic Simulation Systems: An
Extended Definition Motivated by Symbiosis in Biology," in 2008 22nd Workshop
on Principles of Advanced and Distributed Simulation, 2008, pp. 109-116.

[147] H. Aydt, S. J. Turner, W. Cai, and M. Y. H. Low, "Research issues in symbiotic
simulation," in Proceedings of the 2009 Winter Simulation Conference (WSC),
2009, pp. 1213-1222.

[148] B. Tjahjono and X. Jiang, "Linking symbiotic simulation to enterprise systems:
framework and applications," presented at the Proceedings of the 2015 Winter
Simulation Conference, Huntington Beach, California, 2015.

[149] V.-A. Vu, G. Park, G. Tan, and M. Ben-Akiva, "A simulation-based framework for
the generation and evaluation of traffic management strategies," presented at the
Proceedings of the 2014 Annual Simulation Symposium, Tampa, Florida, 2014.

[150] S. Abar, P. Lemarinier, G. K. Theodoropoulos, and G. M. P. OHare, "Automated
Dynamic Resource Provisioning and Monitoring in Virtualized Large-Scale
Datacenter," in 2014 IEEE 28th International Conference on Advanced Information
Networking and Applications, 2014, pp. 961-970.

[151] F. Darema, "Dynamic data driven applications systems: A new paradigm for
application simulations and measurements," in International Conference on
Computational Science, 2004, pp. 662-669.

[152] D. Ardagna and B. Pernici, "Adaptive Service Composition in Flexible Processes,"
IEEE Transactions on Software Engineering, vol. 33, pp. 369-384, 2007.

226

[153] C.-L. Hwang and K. Yoon, "Lecture notes in economics and mathematical
systems," Multiple Objective Decision Making, Methods and Applications: A State-
of-the-Art Survey, vol. 164, 1981.

[154] R. M. Loynes, "The stability of a queue with non-independent inter-arrival and
service times," in Mathematical Proceedings of the Cambridge Philosophical
Society, 1962, pp. 497-520.

[155] D. Lixin, Z. Sanyou, and K. Lishan, "A fast algorithm on finding the non-dominated
set in multi-objective optimization," in Evolutionary Computation, 2003. CEC '03.
The 2003 Congress on, 2003, pp. 2565-2571 Vol.4.

[156] O. a. o. i. affiliates. (2013). The Java EE 6 Tutorial - Web Services. Available:
http://docs.oracle.com/javaee/6/tutorial/doc/giqsx.html#gkcaw

[157] O. a. o. i. affiliates. (2013). The Java EE 6 Tutorial - Java Message Service Concepts.
Available: http://docs.oracle.com/javaee/6/tutorial/doc/bnceh.html

[158] P. G. D. Group. PostgreSQL Available: https://www.postgresql.org/

[159] O. C. a. o. i. affiliates. GlassFish. Available: https://glassfish.java.net/

http://docs.oracle.com/javaee/6/tutorial/doc/giqsx.html#gkcaw
http://docs.oracle.com/javaee/6/tutorial/doc/bnceh.html
http://www.postgresql.org/

