6 research outputs found

    Mining the Demographics of Political Sentiment from Twitter Using Learning from Label Proportions

    Full text link
    Opinion mining and demographic attribute inference have many applications in social science. In this paper, we propose models to infer daily joint probabilities of multiple latent attributes from Twitter data, such as political sentiment and demographic attributes. Since it is costly and time-consuming to annotate data for traditional supervised classification, we instead propose scalable Learning from Label Proportions (LLP) models for demographic and opinion inference using U.S. Census, national and state political polls, and Cook partisan voting index as population level data. In LLP classification settings, the training data is divided into a set of unlabeled bags, where only the label distribution in of each bag is known, removing the requirement of instance-level annotations. Our proposed LLP model, Weighted Label Regularization (WLR), provides a scalable generalization of prior work on label regularization to support weights for samples inside bags, which is applicable in this setting where bags are arranged hierarchically (e.g., county-level bags are nested inside of state-level bags). We apply our model to Twitter data collected in the year leading up to the 2016 U.S. presidential election, producing estimates of the relationships among political sentiment and demographics over time and place. We find that our approach closely tracks traditional polling data stratified by demographic category, resulting in error reductions of 28-44% over baseline approaches. We also provide descriptive evaluations showing how the model may be used to estimate interactions among many variables and to identify linguistic temporal variation, capabilities which are typically not feasible using traditional polling methods

    Improving Health Mention Classification Through Emphasising Literal Meanings: A Study Towards Diversity and Generalisation for Public Health Surveillance

    Get PDF
    People often use disease or symptom terms on social media and online forums in ways other than to describe their health. Thus the NLP health mention classification (HMC) task aims to identify posts where users are discussing health conditions literally, not figuratively. Existing computational research typically only studies health mentions within well-represented groups in developed nations. Developing countries with limited health surveillance abilities fail to benefit from such data to manage public health crises. To advance the HMC research and benefit more diverse populations, we present the Nairaland health mention dataset (NHMD), a new dataset collected from a dedicated web forum for Nigerians. NHMD consists of 7,763 manually labelled posts extracted based on four prevalent diseases (HIV/AIDS, Malaria, Stroke and Tuberculosis) in Nigeria. With NHMD, we conduct extensive experiments using current state-of-the-art models for HMC and identify that, compared to existing public datasets, NHMD contains out-of-distribution examples. Hence, it is well suited for domain adaptation studies. The introduction of the NHMD dataset imposes better diversity coverage of vulnerable populations and generalisation for HMC tasks in a global public health surveillance setting. Additionally, we present a novel multi-task learning approach for HMC tasks by combining literal word meaning prediction as an auxiliary task. Experimental results demonstrate that the proposed approach outperforms state-of-the-art methods statistically significantly (p < 0.01, Wilcoxon test) in terms of F1 score over the state-of-the-art and shows that our new dataset poses a strong challenge to the existing HMC methods

    Information Refinement Technologies for Crisis Informatics: User Expectations and Design Implications for Social Media and Mobile Apps in Crises

    Get PDF
    In the past 20 years, mobile technologies and social media have not only been established in everyday life, but also in crises, disasters, and emergencies. Especially large-scale events, such as 2012 Hurricane Sandy or the 2013 European Floods, showed that citizens are not passive victims but active participants utilizing mobile and social information and communication technologies (ICT) for crisis response (Reuter, Hughes, et al., 2018). Accordingly, the research field of crisis informatics emerged as a multidisciplinary field which combines computing and social science knowledge of disasters and is rooted in disciplines such as human-computer interaction (HCI), computer science (CS), computer supported cooperative work (CSCW), and information systems (IS). While citizens use personal ICT to respond to a disaster to cope with uncertainty, emergency services such as fire and police departments started using available online data to increase situational awareness and improve decision making for a better crisis response (Palen & Anderson, 2016). When looking at even larger crises, such as the ongoing COVID-19 pandemic, it becomes apparent the challenges of crisis informatics are amplified (Xie et al., 2020). Notably, information is often not available in perfect shape to assist crisis response: the dissemination of high-volume, heterogeneous and highly semantic data by citizens, often referred to as big social data (Olshannikova et al., 2017), poses challenges for emergency services in terms of access, quality and quantity of information. In order to achieve situational awareness or even actionable information, meaning the right information for the right person at the right time (Zade et al., 2018), information must be refined according to event-based factors, organizational requirements, societal boundary conditions and technical feasibility. In order to research the topic of information refinement, this dissertation combines the methodological framework of design case studies (Wulf et al., 2011) with principles of design science research (Hevner et al., 2004). These extended design case studies consist of four phases, each contributing to research with distinct results. This thesis first reviews existing research on use, role, and perception patterns in crisis informatics, emphasizing the increasing potentials of public participation in crisis response using social media. Then, empirical studies conducted with the German population reveal positive attitudes and increasing use of mobile and social technologies during crises, but also highlight barriers of use and expectations towards emergency services to monitor and interact in media. The findings led to the design of innovative ICT artefacts, including visual guidelines for citizens’ use of social media in emergencies (SMG), an emergency service web interface for aggregating mobile and social data (ESI), an efficient algorithm for detecting relevant information in social media (SMO), and a mobile app for bidirectional communication between emergency services and citizens (112.social). The evaluation of artefacts involved the participation of end-users in the application field of crisis management, pointing out potentials for future improvements and research potentials. The thesis concludes with a framework on information refinement for crisis informatics, integrating event-based, organizational, societal, and technological perspectives
    corecore