23 research outputs found

    Cross-Dataset Person Re-Identification via Unsupervised Pose Disentanglement and Adaptation

    Full text link
    Person re-identification (re-ID) aims at recognizing the same person from images taken across different cameras. To address this challenging task, existing re-ID models typically rely on a large amount of labeled training data, which is not practical for real-world applications. To alleviate this limitation, researchers now targets at cross-dataset re-ID which focuses on generalizing the discriminative ability to the unlabeled target domain when given a labeled source domain dataset. To achieve this goal, our proposed Pose Disentanglement and Adaptation Network (PDA-Net) aims at learning deep image representation with pose and domain information properly disentangled. With the learned cross-domain pose invariant feature space, our proposed PDA-Net is able to perform pose disentanglement across domains without supervision in identities, and the resulting features can be applied to cross-dataset re-ID. Both of our qualitative and quantitative results on two benchmark datasets confirm the effectiveness of our approach and its superiority over the state-of-the-art cross-dataset Re-ID approaches.Comment: Accepted to ICCV 201

    Unsupervised Disentanglement GAN for Domain Adaptive Person Re-Identification

    Full text link
    While recent person re-identification (ReID) methods achieve high accuracy in a supervised setting, their generalization to an unlabelled domain is still an open problem. In this paper, we introduce a novel unsupervised disentanglement generative adversarial network (UD-GAN) to address the domain adaptation issue of supervised person ReID. Our framework jointly trains a ReID network for discriminative features extraction in a source labelled domain using identity annotation, and adapts the ReID model to an unlabelled target domain by learning disentangled latent representations on the domain. Identity-unrelated features in the target domain are distilled from the latent features. As a result, the ReID features better encompass the identity of a person in the unsupervised domain. We conducted experiments on the Market1501, DukeMTMC and MSMT17 datasets. Results show that the unsupervised domain adaptation problem in ReID is very challenging. Nevertheless, our method shows improvement in half of the domain transfers and achieve state-of-the-art performance for one of them.Comment: 8 pages, 5 figures, submitted to ICPR 202

    Unsupervised Domain Adaptation in the Dissimilarity Space for Person Re-identification

    Full text link
    Person re-identification (ReID) remains a challenging task in many real-word video analytics and surveillance applications, even though state-of-the-art accuracy has improved considerably with the advent of deep learning (DL) models trained on large image datasets. Given the shift in distributions that typically occurs between video data captured from the source and target domains, and absence of labeled data from the target domain, it is difficult to adapt a DL model for accurate recognition of target data. We argue that for pair-wise matchers that rely on metric learning, e.g., Siamese networks for person ReID, the unsupervised domain adaptation (UDA) objective should consist in aligning pair-wise dissimilarity between domains, rather than aligning feature representations. Moreover, dissimilarity representations are more suitable for designing open-set ReID systems, where identities differ in the source and target domains. In this paper, we propose a novel Dissimilarity-based Maximum Mean Discrepancy (D-MMD) loss for aligning pair-wise distances that can be optimized via gradient descent. From a person ReID perspective, the evaluation of D-MMD loss is straightforward since the tracklet information allows to label a distance vector as being either within-class or between-class. This allows approximating the underlying distribution of target pair-wise distances for D-MMD loss optimization, and accordingly align source and target distance distributions. Empirical results with three challenging benchmark datasets show that the proposed D-MMD loss decreases as source and domain distributions become more similar. Extensive experimental evaluation also indicates that UDA methods that rely on the D-MMD loss can significantly outperform baseline and state-of-the-art UDA methods for person ReID without the common requirement for data augmentation and/or complex networks.Comment: 14 pages (16 pages with references), 7 figures, conference ECC

    Exploiting Sample Uncertainty for Domain Adaptive Person Re-Identification

    Full text link
    Many unsupervised domain adaptive (UDA) person re-identification (ReID) approaches combine clustering-based pseudo-label prediction with feature fine-tuning. However, because of domain gap, the pseudo-labels are not always reliable and there are noisy/incorrect labels. This would mislead the feature representation learning and deteriorate the performance. In this paper, we propose to estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels, by suppressing the contribution of noisy samples. We build our baseline framework using the mean teacher method together with an additional contrastive loss. We have observed that a sample with a wrong pseudo-label through clustering in general has a weaker consistency between the output of the mean teacher model and the student model. Based on this finding, we propose to exploit the uncertainty (measured by consistency levels) to evaluate the reliability of the pseudo-label of a sample and incorporate the uncertainty to re-weight its contribution within various ReID losses, including the identity (ID) classification loss per sample, the triplet loss, and the contrastive loss. Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.Comment: 9 pages. Accepted to 35th AAAI Conference on Artificial Intelligence (AAAI 2021

    Structured Domain Adaptation with Online Relation Regularization for Unsupervised Person Re-ID

    Full text link
    Unsupervised domain adaptation (UDA) aims at adapting the model trained on a labeled source-domain dataset to an unlabeled target-domain dataset. The task of UDA on open-set person re-identification (re-ID) is even more challenging as the identities (classes) do not overlap between the two domains. One major research direction was based on domain translation, which, however, has fallen out of favor in recent years due to inferior performance compared to pseudo-label-based methods. We argue that translation-based methods have great potential on exploiting the valuable source-domain data but they did not provide proper regularization on the translation process. Specifically, these methods only focus on maintaining the identities of the translated images while ignoring the inter-sample relation during translation. To tackle the challenge, we propose an end-to-end structured domain adaptation framework with an online relation-consistency regularization term. During training, the person feature encoder is optimized to model inter-sample relations on-the-fly for supervising relation-consistency domain translation, which in turn, improves the encoder with informative translated images. An improved pseudo-label-based encoder can therefore be obtained by jointly training the source-to-target translated images with ground-truth identities and target-domain images with pseudo identities. In the experiments, our proposed framework is shown to outperform state-of-the-art methods on multiple UDA tasks of person re-ID. Code is available at https://github.com/yxgeee/SDA
    corecore