9 research outputs found

    Cross Temporal Recurrent Networks for Ranking Question Answer Pairs

    Full text link
    Temporal gates play a significant role in modern recurrent-based neural encoders, enabling fine-grained control over recursive compositional operations over time. In recurrent models such as the long short-term memory (LSTM), temporal gates control the amount of information retained or discarded over time, not only playing an important role in influencing the learned representations but also serving as a protection against vanishing gradients. This paper explores the idea of learning temporal gates for sequence pairs (question and answer), jointly influencing the learned representations in a pairwise manner. In our approach, temporal gates are learned via 1D convolutional layers and then subsequently cross applied across question and answer for joint learning. Empirically, we show that this conceptually simple sharing of temporal gates can lead to competitive performance across multiple benchmarks. Intuitively, what our network achieves can be interpreted as learning representations of question and answer pairs that are aware of what each other is remembering or forgetting, i.e., pairwise temporal gating. Via extensive experiments, we show that our proposed model achieves state-of-the-art performance on two community-based QA datasets and competitive performance on one factoid-based QA dataset.Comment: Accepted to AAAI201

    Hashing based Answer Selection

    Full text link
    Answer selection is an important subtask of question answering (QA), where deep models usually achieve better performance. Most deep models adopt question-answer interaction mechanisms, such as attention, to get vector representations for answers. When these interaction based deep models are deployed for online prediction, the representations of all answers need to be recalculated for each question. This procedure is time-consuming for deep models with complex encoders like BERT which usually have better accuracy than simple encoders. One possible solution is to store the matrix representation (encoder output) of each answer in memory to avoid recalculation. But this will bring large memory cost. In this paper, we propose a novel method, called hashing based answer selection (HAS), to tackle this problem. HAS adopts a hashing strategy to learn a binary matrix representation for each answer, which can dramatically reduce the memory cost for storing the matrix representations of answers. Hence, HAS can adopt complex encoders like BERT in the model, but the online prediction of HAS is still fast with a low memory cost. Experimental results on three popular answer selection datasets show that HAS can outperform existing models to achieve state-of-the-art performance

    Learning to Truncate Ranked Lists for Information Retrieval

    Full text link
    Ranked list truncation is of critical importance in a variety of professional information retrieval applications such as patent search or legal search. The goal is to dynamically determine the number of returned documents according to some user-defined objectives, in order to reach a balance between the overall utility of the results and user efforts. Existing methods formulate this task as a sequential decision problem and take some pre-defined loss as a proxy objective, which suffers from the limitation of local decision and non-direct optimization. In this work, we propose a global decision based truncation model named AttnCut, which directly optimizes user-defined objectives for the ranked list truncation. Specifically, we take the successful transformer architecture to capture the global dependency within the ranked list for truncation decision, and employ the reward augmented maximum likelihood (RAML) for direct optimization. We consider two types of user-defined objectives which are of practical usage. One is the widely adopted metric such as F1 which acts as a balanced objective, and the other is the best F1 under some minimal recall constraint which represents a typical objective in professional search. Empirical results over the Robust04 and MQ2007 datasets demonstrate the effectiveness of our approach as compared with the state-of-the-art baselines

    CoupleNet: Paying Attention to Couples with Coupled Attention for Relationship Recommendation

    Full text link
    Dating and romantic relationships not only play a huge role in our personal lives but also collectively influence and shape society. Today, many romantic partnerships originate from the Internet, signifying the importance of technology and the web in modern dating. In this paper, we present a text-based computational approach for estimating the relationship compatibility of two users on social media. Unlike many previous works that propose reciprocal recommender systems for online dating websites, we devise a distant supervision heuristic to obtain real world couples from social platforms such as Twitter. Our approach, the CoupleNet is an end-to-end deep learning based estimator that analyzes the social profiles of two users and subsequently performs a similarity match between the users. Intuitively, our approach performs both user profiling and match-making within a unified end-to-end framework. CoupleNet utilizes hierarchical recurrent neural models for learning representations of user profiles and subsequently coupled attention mechanisms to fuse information aggregated from two users. To the best of our knowledge, our approach is the first data-driven deep learning approach for our novel relationship recommendation problem. We benchmark our CoupleNet against several machine learning and deep learning baselines. Experimental results show that our approach outperforms all approaches significantly in terms of precision. Qualitative analysis shows that our model is capable of also producing explainable results to users.Comment: Accepted at ICWSM 201
    corecore