1,820 research outputs found

    Analyzing the Adoption, Cropping Rotation, and Impact of Winter Cover Crops in the Mississippi Alluvial Plain (MAP) Region through Remote Sensing Technologies

    Get PDF
    This dissertation explores the application of remote sensing technologies in conservation agriculture, specifically focusing on identifying and mapping winter cover crops and assessing voluntary cover crop adoption and cropping patterns in the Arkansas portion of the Mississippi Alluvial Plain (MAP). In the first chapter, a systematic review using the PRISMA methodology examines the last 30 years of thematic research, development, and trends in remote sensing applied to conservation agriculture from a global perspective. The review uncovers a growing interest in remote sensing-based research in conservation agriculture and emphasizes the necessity for further studies dedicated to conservation practices. Among the 68 articles examined, 94% of studies utilized a pixel-based classification method, while only 6% employed an object-based approach. The analysis also revealed a thematic shift over time, with tillage practices being extensively studied before 2005, followed by a focus on crop residue from 2004 to 2012. From 2012 to 2020, there was a renewed emphasis on cover crops research. These findings highlight the evolving research landscape and provide insights into the trends within remote sensing-based conservation agriculture studies. The second chapter presents a methodological framework for identifying and mapping winter cover crops. The framework utilizes the Google Earth Engine (GEE) and a Random Forest (RF) classifier with time series data from Landsat 8 satellite. Results demonstrate a high classification accuracy (97.7%) and a significant increase (34%) in model-predicted cover crop adoption over the study period between 2013 and 2019. Additionally, the study showcases the use of multi-year datasets to efficiently map the growing season\u27s length and cover crops\u27 phenological characteristics. The third chapter assesses the voluntary adoption of winter cover crops and cropping patterns in the MAP region. Remote sensing technologies, USDA-NRCS government cover crop data sources, and the USDA Cropland Data Layer (CDL) are employed to identify cover crop locations, analyze county-wide voluntary adoption, and cropping rotations. The result showed a 5.33% increase in the overall voluntary adoption of cover crops in the study region between 2013 and 2019. The findings also indicate a growing trend in cover crop adoption, with soybean-cover crop rotations being prominent. This dissertation enhances our understanding of the role of remote sensing in conservation agriculture with a particular focus on winter cover crops. These insights are valuable for policymakers, stakeholders, and researchers seeking to promote sustainable agricultural practices and increased cover crop adoption. The study also underscores the significance of integrating remote sensing technologies into agricultural decision-making processes and highlights the importance of collaboration among policymakers, researchers, and producers. By leveraging the capabilities of remote sensing, it will enhance conservation agriculture contribution to long-term environmental sustainability and agricultural resilience. Keywords: Remote sensing technologies, Conservation agriculture, Winter cover crops, Voluntary adoption, Cropping patterns, Sustainable agricultural practice

    Analyzing the Adoption, Cropping Rotation, and Impact of Winter Cover Crops in the Mississippi Alluvial Plain (MAP) Region through Remote Sensing Technologies

    Get PDF
    This dissertation explores the application of remote sensing technologies in conservation agriculture, specifically focusing on identifying and mapping winter cover crops and assessing voluntary cover crop adoption and cropping patterns in the Arkansas portion of the Mississippi Alluvial Plain (MAP). In the first chapter, a systematic review using the PRISMA methodology examines the last 30 years of thematic research, development, and trends in remote sensing applied to conservation agriculture from a global perspective. The review uncovers a growing interest in remote sensing-based research in conservation agriculture and emphasizes the necessity for further studies dedicated to conservation practices. Among the 68 articles examined, 94% of studies utilized a pixel-based classification method, while only 6% employed an object-based approach. The analysis also revealed a thematic shift over time, with tillage practices being extensively studied before 2005, followed by a focus on crop residue from 2004 to 2012. From 2012 to 2020, there was a renewed emphasis on cover crops research. These findings highlight the evolving research landscape and provide insights into the trends within remote sensing-based conservation agriculture studies. The second chapter presents a methodological framework for identifying and mapping winter cover crops. The framework utilizes the Google Earth Engine (GEE) and a Random Forest (RF) classifier with time series data from Landsat 8 satellite. Results demonstrate a high classification accuracy (97.7%) and a significant increase (34%) in model-predicted cover crop adoption over the study period between 2013 and 2019. Additionally, the study showcases the use of multi-year datasets to efficiently map the growing season\u27s length and cover crops\u27 phenological characteristics. The third chapter assesses the voluntary adoption of winter cover crops and cropping patterns in the MAP region. Remote sensing technologies, USDA-NRCS government cover crop data sources, and the USDA Cropland Data Layer (CDL) are employed to identify cover crop locations, analyze county-wide voluntary adoption, and cropping rotations. The result showed a 5.33% increase in the overall voluntary adoption of cover crops in the study region between 2013 and 2019. The findings also indicate a growing trend in cover crop adoption, with soybean-cover crop rotations being prominent. This dissertation enhances our understanding of the role of remote sensing in conservation agriculture with a particular focus on winter cover crops. These insights are valuable for policymakers, stakeholders, and researchers seeking to promote sustainable agricultural practices and increased cover crop adoption. The study also underscores the significance of integrating remote sensing technologies into agricultural decision-making processes and highlights the importance of collaboration among policymakers, researchers, and producers. By leveraging the capabilities of remote sensing, it will enhance conservation agriculture contribution to long-term environmental sustainability and agricultural resilience. Keywords: Remote sensing technologies, Conservation agriculture, Winter cover crops, Voluntary adoption, Cropping patterns, Sustainable agricultural practice

    Earth resources: A continuing bibliography with indexes (issue 55)

    Get PDF
    This bibliography lists 368 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1987. Emphasis is placed on the use of remote sensing and geographical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Big Earth Data and Machine Learning for Sustainable and Resilient Agriculture

    Full text link
    Big streams of Earth images from satellites or other platforms (e.g., drones and mobile phones) are becoming increasingly available at low or no cost and with enhanced spatial and temporal resolution. This thesis recognizes the unprecedented opportunities offered by the high quality and open access Earth observation data of our times and introduces novel machine learning and big data methods to properly exploit them towards developing applications for sustainable and resilient agriculture. The thesis addresses three distinct thematic areas, i.e., the monitoring of the Common Agricultural Policy (CAP), the monitoring of food security and applications for smart and resilient agriculture. The methodological innovations of the developments related to the three thematic areas address the following issues: i) the processing of big Earth Observation (EO) data, ii) the scarcity of annotated data for machine learning model training and iii) the gap between machine learning outputs and actionable advice. This thesis demonstrated how big data technologies such as data cubes, distributed learning, linked open data and semantic enrichment can be used to exploit the data deluge and extract knowledge to address real user needs. Furthermore, this thesis argues for the importance of semi-supervised and unsupervised machine learning models that circumvent the ever-present challenge of scarce annotations and thus allow for model generalization in space and time. Specifically, it is shown how merely few ground truth data are needed to generate high quality crop type maps and crop phenology estimations. Finally, this thesis argues there is considerable distance in value between model inferences and decision making in real-world scenarios and thereby showcases the power of causal and interpretable machine learning in bridging this gap.Comment: Phd thesi

    Land use/land cover mapping (1:25000) of Taiwan, Republic of China by automated multispectral interpretation of LANDSAT imagery

    Get PDF
    Three methods were tested for collection of the training sets needed to establish the spectral signatures of the land uses/land covers sought due to the difficulties of retrospective collection of representative ground control data. Computer preprocessing techniques applied to the digital images to improve the final classification results were geometric corrections, spectral band or image ratioing and statistical cleaning of the representative training sets. A minimal level of statistical verification was made based upon the comparisons between the airphoto estimates and the classification results. The verifications provided a further support to the selection of MSS band 5 and 7. It also indicated that the maximum likelihood ratioing technique can achieve more agreeable classification results with the airphoto estimates than the stepwise discriminant analysis

    Seismotectonic, structural, volcanologic, and geomorphic study of New Zealand; indigenous forest assessment in New Zealand; mapping, land use, and environmental studies in New Zealand, volume 2

    Get PDF
    The author has identified the following significant results. Ship detection via LANDSAT MSS data was demonstrated. In addition, information on ship size, orientation, and movement was obtained. Band 7 was used for the initial detection followed by confirmation on other MSS bands. Under low turbidity, as experienced in open seas, the detection of ships 100 m long was verified and detection of ships down to 30 m length theorized. High turbidity and sea state inhibit ship detection by decreasing S/N ratios. The radiance effect from snow of local slope angles and orientation was also studied. Higher radiance values and even overloading in three bands were recorded for the sun-facing slope. Local hot spots from solar reflection appear at several locations along transect D-C in Six Mile Creek Basin during September 1976

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance

    Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Get PDF
    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transforma­ tion (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with dis­ charge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-201O dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar,and fertilizer amount were used as input variables.Con­tinuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes(around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity

    An evaluation of satellite remote sensing for crop area estimation in the west bank, Palestine

    Get PDF
    This thesis investigates the use of field and satellite data for crop area estimation in the northern part of the West Bank, Palestine. The satellite data were obtained by the SPOT HRV on 19 May 1994. The satellite data were geometrically corrected to the Palestine Grid using 1: 50,000 Israeli topographic maps. The study investigated the ability of SPOT HRV data to produce accurate crop area estimation of the northern part of the West Bank that is characterised with small field sizes and complex physical environment. A land cover classification scheme appropriate to the study area was designed. Twenty-three land cover classes were produced from the SPOT HRV classification. Land cover classes were developed to produce thematic land use classes. The classification accuracy obtained from SPOT HRV image classification was 81%. Classification results were assessed by using the known land use information obtained from the field during the training stage and the field sampling survey. The study area was divided into five strata and the field survey was conducted by applying a stratified random sampling methodology. Seventy three 1 km(^2) sample units were randomly chosen and surveyed by the author using maps, aerial photographs, satellite photographs, a questionnaire, camera photographs, and sketches. The field area measurements were taken and the final hectarage estimates were obtained for each crop type. The SPOT HRV and the field data were combined in regression analysis using a double sampling method and a hectarage estimate was produced for each crop in the study area. The results obtained showed that the regression estimator was more efficient than the field estimator and a gain in precision was achieved. The results were analysed on stratum and crop type basis. Remote sensing and thematic agricultural perspectives were used in the analysis. Results of the study suggest that it is possible to improve image classification accuracy by using better spatial and spectral resolution imagery and the integration of remote sensing data with agricultural data using the Geographical Information Systems (GIS)

    Land use mapping of selected areas of county Durham, north-east England, by satellite remote sensing and field survey methods

    Get PDF
    This thesis investigates the use of field and satellite data for agricultural land use mapping and land use change in six selected areas of County Durham, north-east England. These areas are selected to represent the major land use patterns of the County. The satellite data were obtained by the Thematic Mapper (TM) sensor on board Landsat-5 on May, 31, 1985, August, 1, 1990, and July, 10, 1992. TM data were geometrically corrected to the British National Grid, Land use maps for these study areas were produced by field survey to become the basis on which the research was based. These land use maps along with images were integrated in a Geographical Information System (GIS) called ARC / INFO. The total surface area of the study area is 5483.86 hectare, or 2.3% of the whole County Durham. The field area measurements were taken and the final hectare estimates were obtained for each land use / land cover type. The research demonstrated the ability of Landsat-TM to produce accurate land use maps of the study area. Results obtained emphasised that Satellite data when integrated in a Geographical Information System (GIS), can be used for mapping relatively small agricultural fields. A land cover classification scheme appropriate for the study area was applied. Number of land use \ land cover classes produced varied from one study area to another and from one image date to another also (18-25 classes). These detailed classes were generalised to their broader classes. Using the Landsat-TM data, classification accuracy varied from one study area to another and from one date to another also, but it was not less than 80%. The classification accuracy was assessed using the grid-by-grid overlay method. The study analysed the spectral properties of each land use \ land cover over the three image dates, and the importance of contextual and reference data to assess and improve the classification accuracy. Results obtained by this study showed that the selected study areas can represent the major agricultural crops in County Durham by a percentage of 81-96%. Results of the study also suggests that a data base in digital format of land use, topography, geology, soil and climate is essential to set-up a special model for the County to be used for faster, easier and more efficient updating of land use data of the County
    corecore