9 research outputs found

    Problems on Matchings and Independent Sets of a Graph

    Full text link
    Let GG be a finite simple graph. For XV(G)X \subset V(G), the difference of XX, d(X):=XN(X)d(X) := |X| - |N (X)| where N(X)N(X) is the neighborhood of XX and max{d(X):XV(G)}\max \, \{d(X):X\subset V(G)\} is called the critical difference of GG. XX is called a critical set if d(X)d(X) equals the critical difference and ker(G)(G) is the intersection of all critical sets. It is known that ker(G)(G) is an independent (vertex) set of GG. diadem(G)(G) is the union of all critical independent sets. An independent set SS is an inclusion minimal set with d(S)>0d(S) > 0 if no proper subset of SS has positive difference. A graph GG is called K\"onig-Egerv\'ary if the sum of its independence number (α(G)\alpha (G)) and matching number (μ(G)\mu (G)) equals V(G)|V(G)|. It is known that bipartite graphs are K\"onig-Egerv\'ary. In this paper, we study independent sets with positive difference for which every proper subset has a smaller difference and prove a result conjectured by Levit and Mandrescu in 2013. The conjecture states that for any graph, the number of inclusion minimal sets SS with d(S)>0d(S) > 0 is at least the critical difference of the graph. We also give a short proof of the inequality |ker(G)+(G)| + |diadem(G)2α(G)(G)| \le 2\alpha (G) (proved by Short in 2016). A characterization of unicyclic non-K\"onig-Egerv\'ary graphs is also presented and a conjecture which states that for such a graph GG, the critical difference equals α(G)μ(G)\alpha (G) - \mu (G), is proved. We also make an observation about kerG)G) using Edmonds-Gallai Structure Theorem as a concluding remark.Comment: 18 pages, 2 figure

    Some Extremal And Structural Problems In Graph Theory

    Get PDF
    This work considers three main topics. In Chapter 2, we deal with König-Egerváry graphs. We will give two new characterizations of König-Egerváry graphs as well as prove a related lower bound for the independence number of a graph. In Chapter 3, we study joint degree vectors (JDV). A problem arising from statistics is to determine the maximum number of non-zero elements of a JDV. We provide reasonable lower and upper bounds for this maximum number. Lastly, in Chapter 4 we study a problem in chemical graph theory. In particular, we characterize extremal cases for the number of maximal matchings in two linear polymers of chemical interest: the polyspiro chains and benzenoid chains. We also enumerate maximal matchings in several classes of these linear polymers and use the obtained results to determine the asymptotic behavior of these matchings
    corecore