11,224 research outputs found

    Shapley Q-value: A Local Reward Approach to Solve Global Reward Games

    Full text link
    Cooperative game is a critical research area in the multi-agent reinforcement learning (MARL). Global reward game is a subclass of cooperative games, where all agents aim to maximize the global reward. Credit assignment is an important problem studied in the global reward game. Most of previous works stood by the view of non-cooperative-game theoretical framework with the shared reward approach, i.e., each agent being assigned a shared global reward directly. This, however, may give each agent an inaccurate reward on its contribution to the group, which could cause inefficient learning. To deal with this problem, we i) introduce a cooperative-game theoretical framework called extended convex game (ECG) that is a superset of global reward game, and ii) propose a local reward approach called Shapley Q-value. Shapley Q-value is able to distribute the global reward, reflecting each agent's own contribution in contrast to the shared reward approach. Moreover, we derive an MARL algorithm called Shapley Q-value deep deterministic policy gradient (SQDDPG), using Shapley Q-value as the critic for each agent. We evaluate SQDDPG on Cooperative Navigation, Prey-and-Predator and Traffic Junction, compared with the state-of-the-art algorithms, e.g., MADDPG, COMA, Independent DDPG and Independent A2C. In the experiments, SQDDPG shows a significant improvement on the convergence rate. Finally, we plot Shapley Q-value and validate the property of fair credit assignment

    Counterfactual Multi-Agent Policy Gradients

    Full text link
    Cooperative multi-agent systems can be naturally used to model many real world problems, such as network packet routing and the coordination of autonomous vehicles. There is a great need for new reinforcement learning methods that can efficiently learn decentralised policies for such systems. To this end, we propose a new multi-agent actor-critic method called counterfactual multi-agent (COMA) policy gradients. COMA uses a centralised critic to estimate the Q-function and decentralised actors to optimise the agents' policies. In addition, to address the challenges of multi-agent credit assignment, it uses a counterfactual baseline that marginalises out a single agent's action, while keeping the other agents' actions fixed. COMA also uses a critic representation that allows the counterfactual baseline to be computed efficiently in a single forward pass. We evaluate COMA in the testbed of StarCraft unit micromanagement, using a decentralised variant with significant partial observability. COMA significantly improves average performance over other multi-agent actor-critic methods in this setting, and the best performing agents are competitive with state-of-the-art centralised controllers that get access to the full state
    • …
    corecore